다이캐스트 및 단조 시장 : 프로세스별, 재료 유형별, 최종 용도 산업별, 제품 유형별, 판매 채널별 - 세계 예측(2025-2032년)
Die Casting & Forging Market by Process, Material Type, End Use Industry, Product Type, Sales Channel - Global Forecast 2025-2032
상품코드 : 1857829
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 197 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,850,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,310,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,553,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,350,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

다이캐스트·단조 시장은 2032년까지 CAGR 9.21%로 2,441억 9,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 1,206억 1,000만 달러
추정연도 2025 1,316억 5,000만 달러
예측연도 2032 2,441억 9,000만 달러
CAGR(%) 9.21%

다이캐스팅과 단조를 현대 제조 공급망에 배치하고, 고성능 부품 생산에서 다이캐스팅과 단조의 기본적 중요성을 설명하는 전략적 개요

다이캐스팅 및 단조 산업은 현대 제조업의 방대한 분야를 지원하고 있으며, 고부가가치 용도에서 부품이 설계, 생산 및 배치되는 방식을 지속적으로 형성하고 있습니다. 이 소개에서는 강도, 치수 정확도 및 비용 효율성이 요구되는 산업 부품 제조의 근간을 이루는 기술, 재료 및 공정의 선택에 대해 설명합니다. 또한 공정 제어, 재료 선택, Design-for-Manufacture의 점진적인 개선으로 경량화, 성능 향상, 총소유비용 개선의 새로운 기회가 창출되고 있음을 소개했습니다.

부품 요구사항이 복잡해짐에 따라 공정 계열 간의 기술 혁신이 수렴되어 제조업체는 다이캐스팅과 단조 중 어느 것이 기계적 특성, 표면 마감 및 생산 경제성에서 최상의 균형을 제공할 수 있는지를 재평가하게 되었습니다. 이 섹션에서는 엔지니어링 사양과 공급망 현실의 상호 관계를 강조하고 설계 및 조달 단계의 결정이 라이프 사이클 비용과 애프터마켓에서의 성능을 통해 반향을 일으킨다는 점을 지적합니다. 통합 가공 및 표면 처리와 같은 과도기적 기술은 첨단 공정 모니터링과 함께 공급업체 선택 및 자본 배분을 재조정하는 표준적인 기대치가 되고 있습니다. 이러한 배경을 통해 독자들은 다이캐스팅과 단조가 성능 중심의 제조 전략에 어떻게 기여하는지, 그리고 왜 공정 수준의 개발에 대한 정보를 얻는 것이 탄력적인 운영에 필수적인지에 대한 전반적인 견해를 얻을 수 있습니다.

기술, 공급망, 지속가능성 등의 요인이 집약되어 산업 전반에서 프로세스 선택과 경쟁 포지셔닝을 재구성

다이캐스팅과 단조의 상황은 새로운 경제적, 기술적, 규제적 요인의 수렴에 따라 크게 변화하고 있습니다. 재료의 혁신과 합금의 개발로 설계상의 트레이드오프 계산이 변화하여 피로수명이나 내충격성을 손상시키지 않으면서도 경량화를 추구할 수 있게 되었습니다. 동시에 공장 현장의 디지털화를 통해 인라인 모니터링, 예지보전, 실시간 품질 보증을 통한 엄격한 공정관리가 가능해져 불량률 감소와 초도품화 시간 단축을 실현했습니다.

탄력성 우선순위와 진화하는 무역정책에 의해 촉진된 공급망 재구축은 지역 조달, 니어쇼어링, 전략적 재고 계획에 초점을 맞추었습니다. 이러한 변화는 에너지 효율성, 폐기물 최소화, 순환형 자재 흐름이 설비 투자 및 공급업체 인증 기준에 영향을 미치는 지속가능성에 대한 강조와 맞물려 있습니다. 동시에, 자동차 및 항공우주와 같은 최종 사용 산업은 전동화 및 차량 아키텍처의 경량화에 대응하여 성능 요구 사항을 강화하여 공정 선택, 금형 설계 및 재료 처리의 반복적 인 변경을 촉진하고 있습니다. 이러한 변혁적 변화를 종합하면 제조업체는 유연한 생산 플랫폼을 채택하고, 디지털 기술에 투자하고, 시장 경쟁력을 유지하고 시장 역학에 대응하기 위해 공급업체와의 협력 관계를 추구해야 합니다.

관세 환경이 전체 부품 제조 네트워크의 조달 전략, 공급업체 선택, 자본 배분 결정에 미치는 영향에 대한 종합적 인사이트

관세 및 무역 조치의 도입은 전체 제조 생태계에 즉각적인 혼란과 장기적인 구조적 영향을 미칠 수 있습니다. 관세 조치는 조달 결정, 조달 전략, 국내 생산과 해외 생산의 상대적 매력에 영향을 미칩니다. 수입 관세가 조정되면 기업은 공급업체 포트폴리오를 재평가하고, 현지 생산의 타당성을 재평가하고, 비용 변동을 완화하기 위해 비상 대응 계획을 가속화하여 대응합니다. 이러한 반응은 직접적인 투입 비용뿐만 아니라 재고 정책, 리드타임, 현지 생산능력 확대 투자 경제성에도 영향을 미칩니다.

실제로 다양한 공급업체 네트워크와 유연한 생산 공간을 가진 기업은 관세 신호를 물류 및 계약 조건 재구성의 원동력으로 활용함으로써 보다 쉽게 적응할 수 있습니다. 엔지니어링 팀은 인터페이스를 표준화하고 부품 설계를 모듈화하여 리툴링 없이 멀티 소싱을 가능하게 함으로써 대응하는 경우가 많습니다. 반대로 수출 채널이 집중된 소규모 공급업체는 마진 압박과 자본의 제약에 직면할 수 있으며, 이는 경쟁력을 떨어뜨리고 공급업체 기반의 통합 패턴을 변화시킬 수 있습니다. 밸류체인 전반에 걸쳐 조달, 엔지니어링 및 전략적 리더십은 관세의 역학을 해석하고, 노출을 평가하고, 공급 연속성과 규정 준수를 유지하면서 마진을 보호하기 위한 단계별 대응을 실행하기 위해 협력해야 합니다.

프로세스 유형, 재료 경로, 최종 용도, 제품군, 판매 채널을 연계한 인사이트 있는 세분화 분석을 통해 전략적 우선순위와 기술적 차이점을 파악할 수 있습니다.

시장 세분화에 대한 미묘한 이해를 통해 투자와 혁신이 가장 중요한 분야와 어떤 공정과 재료 조합이 최종 용도 수요에 부합하는지를 파악할 수 있습니다. 다이캐스팅은 중력 다이캐스팅, 저압 다이캐스팅, 압력 다이캐스팅, 스퀴즈 다이캐스팅, 진공 다이캐스팅으로 세분화되며, 단조는 폐쇄형 단조, 개방형 단조, 정밀 단조, 롤 단조로 구분됩니다. 각 공정 경로는 사이클 시간, 치수 제어, 부품의 복잡성에서 뚜렷한 이점을 제공하므로 설계자가 다른 방법보다 한 가지 방법을 지정할 때 지침이 될 수 있습니다. 재료 유형에 따른 경로에는 알루미늄, 구리, 마그네슘, 강철, 아연이 포함되며, 재료 선택은 내식성, 열전도율, 전기 전도도 및 후공정 마감 요구 사항에 대한 결정을 유도하며, 이는 다운스트림 가공 및 접합 전략에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 다이캐스트·단조 시장 : 프로세스별

제9장 다이캐스트·단조 시장 : 소재 유형별

제10장 다이캐스트·단조 시장 : 최종 용도 산업별

제11장 다이캐스트·단조 시장 : 제품 유형별

제12장 다이캐스트·단조 시장 : 판매 채널별

제13장 다이캐스트·단조 시장 : 지역별

제14장 다이캐스트·단조 시장 : 그룹별

제15장 다이캐스트·단조 시장 : 국가별

제16장 경쟁 구도

KSA
영문 목차

영문목차

The Die Casting & Forging Market is projected to grow by USD 244.19 billion at a CAGR of 9.21% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 120.61 billion
Estimated Year [2025] USD 131.65 billion
Forecast Year [2032] USD 244.19 billion
CAGR (%) 9.21%

Strategic overview that situates die casting and forging within modern manufacturing supply chains and outlines their fundamental importance for high-performance component production

The die casting and forging industries underpin a vast array of modern manufacturing sectors and continue to shape how components are designed, produced, and deployed across high-value applications. This introduction frames the technologies, materials, and process choices that together form the backbone of component manufacturing for industries that demand strength, dimensional precision, and cost-efficiency. It highlights how incremental improvements in process control, materials selection, and design-for-manufacture are creating new opportunities for weight reduction, performance enhancement, and total-cost-of-ownership improvements.

Rising complexity in component requirements has driven convergent innovations across process families, prompting manufacturers to reassess where die casting or forging offers the best balance of mechanical properties, surface finish, and production economics. The section emphasizes the interplay between engineering specifications and supply chain realities, noting that decisions made at the design and procurement stages reverberate through lifecycle costs and aftermarket performance. Transitional technologies such as integrated machining and surface finishing, combined with advanced process monitoring, are increasingly standard expectations that recalibrate supplier selection and capital allocation. By setting this context, the reader gains a holistic view of how die casting and forging contribute to performance-driven manufacturing strategies and why staying informed about process-level developments is essential for resilient operations.

Compelling analysis of converging technological, supply chain, and sustainability drivers that are reshaping process selection and competitive positioning across the industry

The landscape for die casting and forging has shifted markedly as new economic, technological, and regulatory forces converge. Material innovations and alloy development have altered the calculus of design trade-offs, allowing manufacturers to pursue lighter-weight solutions without compromising fatigue life or impact resistance. At the same time, digital transformation across the factory floor has enabled tighter process control through in-line monitoring, predictive maintenance, and real-time quality assurance, which together reduce scrap rates and accelerate time-to-first-piece.

Supply chain reconfigurations, spurred by resilience priorities and evolving trade policies, have emphasized regional sourcing, nearshoring, and strategic inventory planning. These shifts intersect with an intensified focus on sustainability, where energy efficiency, waste minimization, and circular material flows influence capital investments and supplier qualification criteria. Concurrently, end-use industries such as automotive and aerospace are tightening performance requirements in response to electrification and lighter vehicle architectures, which in turn drives iterative changes in process selection, tooling design, and material treatments. Taken together, these transformative shifts demand that manufacturers adopt flexible production platforms, invest in digital skills, and pursue collaborative supplier relationships to remain competitive and responsive to market dynamics.

Comprehensive reflection on how tariff environments influence sourcing strategies, supplier selection, and capital allocation decisions across component manufacturing networks

The introduction of tariffs and trade measures can create immediate disruptions and longer-term structural effects across manufacturing ecosystems. Tariff actions influence sourcing decisions, procurement strategies, and the relative attractiveness of domestic versus international production. When import duties are adjusted, organizations respond by reassessing supplier portfolios, re-evaluating the feasibility of localized production, and accelerating contingency planning to mitigate cost volatility. These reactions extend beyond direct input costs to impact inventory policies, lead times, and the economics of investment in local capacity expansion.

In practice, firms with diversified supplier networks and flexible production footprints adapt more readily, using tariff signals as an impetus to reconfigure logistics and contract terms. Engineering teams often respond by standardizing interfaces and modularizing component designs to enable multi-sourcing without retooling. Conversely, smaller suppliers with concentrated export channels may face margin compression and capital constraints, which can reduce competitive intensity and alter consolidation patterns in the supplier base. Across the value chain, procurement, engineering, and strategic leadership must collaborate to interpret tariff dynamics, assess exposure, and implement phased responses that protect margin while preserving supply continuity and compliance.

Insightful segmentation analysis linking process types, material pathways, end-use verticals, product families, and sales channels to reveal strategic priorities and technical differentials

A nuanced understanding of market segmentation clarifies where investment and innovation matter most and which process-material combinations align with end-use demands. Based on process, the market encompasses die casting and forging, with die casting subdividing into gravity die casting, low pressure die casting, pressure die casting, squeeze die casting, and vacuum die casting, and forging differentiating into closed die forging, open die forging, precision forging, and roll forging. Each process pathway yields distinct advantages in cycle time, dimensional control, and part complexity, thereby guiding where designers specify one method over another. Based on material type, the pathway includes aluminum, copper, magnesium, steel, and zinc, and material choice drives decisions around corrosion resistance, thermal and electrical conductivity, and post-process finishing requirements, which in turn influence downstream machining and joining strategies.

Based on end use industry, the segmentation spans aerospace & defense, automotive, construction, electrical & electronics, and industrial machinery, with each vertical defining unique qualification standards, life-cycle expectations, and aftermarket demands. Product type segmentation covers brackets & frames, engine components, pump housings, structural components, and transmission components, and these product categories impose specific tolerances, surface quality, and mechanical property requirements that determine optimal process selection and tooling design. Based on sales channel, the markets are characterized by aftermarket and OEM dynamics, where OEM relationships prioritize long-term qualification and certification while aftermarket channels emphasize responsiveness, part availability, and unit economics. Mapping these segmentation vectors reveals pockets of margin, innovation hotspots, and technical constraints that should shape strategic roadmaps for suppliers and end users alike.

Regional dynamics and competitive differentiators across the Americas, Europe Middle East & Africa, and Asia-Pacific that determine capacity, expertise, and supplier strategies

Regional dynamics exert significant influence on where capacity is built, how supply chains are structured, and which regulatory and commercial realities shape industry behavior. In the Americas, industrial policy, automotive and aerospace demand, and proximity to large OEMs favor investments in advanced processes and regional supplier networks that prioritize speed-to-market and compliance with local standards. Supply chain resilience and nearshoring trends further accentuate the importance of North American manufacturing hubs for critical or high-value parts, supporting an ecosystem where engineering collaboration and rapid iteration are strategic differentiators.

In Europe, the Middle East & Africa, regulatory frameworks, sustainability mandates, and a concentration of aerospace and high-precision industrial machinery create distinct expectations for quality, traceability, and lifecycle performance. European suppliers often lead in metallurgy expertise and process automation, whereas the Middle East and Africa display a mix of emerging capacity development and targeted industrial investments that aim to capture localized downstream manufacturing opportunities. In the Asia-Pacific region, scale advantages, an expansive supplier base, and strong electronics and automotive manufacturing clusters make it a focal point for high-volume production and cost-competitive sourcing. However, increasing local content requirements, evolving labor dynamics, and investments in automation are shifting the competitive fabric, encouraging a bifurcation between low-cost, high-volume production and advanced, high-value manufacturing nodes across the region.

Evaluation of competitive strengths and capability clusters among suppliers that reveal where technology, certification, and integrated services create strategic advantage

Competitive positioning in die casting and forging is shaped by capabilities in process technology, materials expertise, quality systems, and customer relationships. Leading companies distinguish themselves through a combination of deep metallurgical knowledge, investments in advanced tooling and automation, and robust certification regimes that support entry into demanding verticals such as aerospace and automotive. Strategic suppliers integrate upstream engineering services with downstream finishing, heat treatment, and assembly capabilities to offer value-added packages that reduce OEM integration complexity and accelerate time-to-market.

Smaller and mid-tier firms often compete on specialization, turnaround speed, and flexibility, serving aftermarket channels and niche product families where customization and responsiveness trump scale. Partnership models and joint development agreements increasingly mediate access to new alloys, coatings, and process innovations, allowing participants to share development risk while co-creating application-specific solutions. Across the competitive landscape, digitalization and data-driven quality control serve as differentiators that reduce warranty risk and improve yield, while supplier financial health and capacity planning determine the ability to support large programs and multi-year contracts. For decision-makers, assessing supplier alignment with technical needs, certification expectations, and capacity timelines is essential to minimize program risk and preserve product performance.

Action-oriented strategic priorities and operational tactics that enable suppliers and OEMs to improve resilience, agility, and long-term competitiveness in component manufacturing

Industry leaders should adopt a set of pragmatic, actionable responses to navigate evolving technological, regulatory, and commercial conditions while protecting margins and enabling growth. First, prioritize investments in flexible, modular tooling and process platforms that allow quick reconfiguration between die casting variants and forging techniques to support diverse product lifecycles. These investments reduce the friction of multi-sourcing and enable suppliers to respond to changing OEM requirements without prohibitive capital cycles. Second, accelerate digital adoption across process monitoring, quality analytics, and predictive maintenance to improve yields and shorten lead times, thereby delivering measurable cost and reliability benefits to customers.

Third, embed materials strategy into product design conversations early, aligning material selection with lifecycle requirements and manufacturability to avoid costly rework or late-stage changes. Fourth, deepen vertical relationships through co-development and certification programs with key end users, especially in automotive and aerospace, to secure long-term contracts and transfer risk more effectively. Fifth, assess regional supply chain exposure and pursue a resilient network strategy that blends local capacity with strategic international partnerships, ensuring redundancy without sacrificing cost competitiveness. Finally, implement sustainability-driven process improvements-such as energy optimization, recycling initiatives, and waste reduction-to meet regulatory expectations and unlock procurement preferences tied to environmental performance. Collectively, these actions enable organizations to be both responsive and strategic in a dynamic market environment.

Transparent methodology outlining primary engagements, technical literature synthesis, in-plant validation, and triangulated analysis to ensure rigorous and actionable findings

The research underpinning this report synthesizes primary interviews, technical literature, process case studies, and verified public-domain information to construct a rigorous, replicable view of the industry. Primary engagements include discussions with process engineers, procurement leaders, and technical managers across die casting and forging operations to capture first-hand accounts of process constraints, qualification pathways, and evolving customer requirements. These interviews were supplemented with in-plant observations and supplier capability reviews to validate assertions about cycle times, tooling lifecycles, and post-process integration.

Secondary sources encompassed academic publications, metallurgy texts, industry standards documentation, and regulatory materials that inform material behavior, certification criteria, and environmental compliance requirements. Where applicable, comparative case studies provided context on how organizations navigate trade and tariff environments, adopt digital technologies, and reconfigure supply chains. Analytical methods emphasized triangulation: cross-referencing interview insights, technical documents, and observed practices to minimize bias and ensure factual accuracy. The methodology also prioritized transparency about data provenance and the assumptions underpinning qualitative judgments to support confident, evidence-based decision-making by stakeholders.

Concluding synthesis that aligns technical realities with strategic imperatives to guide decision-makers toward resilient and performance-focused operational models

This concluding synthesis reiterates the central realities facing die casting and forging stakeholders: the choice of process and material profoundly influences product performance and lifecycle economics, while external forces such as tariffs, regional dynamics, and sustainability imperatives continually reshape competitive boundaries. Organizations that integrate process excellence with strategic supplier relationships and a disciplined materials strategy will be best positioned to capture opportunities in high-value verticals and to mitigate exposure to supply chain upheaval. Embracing digital tools for quality assurance and operational resilience provides tangible benefits in yield improvement and program reliability, areas that directly affect customer satisfaction and contract renewal prospects.

Looking forward, the most successful actors will be those that combine technical rigor with adaptive business models-investing selectively in automation and materials innovation, while building flexible sourcing networks and reinforcing certifications critical to end-use industries. Cross-functional collaboration among engineering, procurement, and commercial teams will be essential to translate technical capabilities into sustainable commercial advantages. Ultimately, clarity of strategic intent, supported by evidence-based supplier selection and targeted capital allocation, will determine who thrives as the industry navigates disruption and pursues incremental performance gains.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Die Casting & Forging Market, by Process

9. Die Casting & Forging Market, by Material Type

10. Die Casting & Forging Market, by End Use Industry

11. Die Casting & Forging Market, by Product Type

12. Die Casting & Forging Market, by Sales Channel

13. Die Casting & Forging Market, by Region

14. Die Casting & Forging Market, by Group

15. Die Casting & Forging Market, by Country

16. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기