´ÙÀÌij½ºÆ® ½ÃÀå : ÇÁ·Î¼¼½º, Àç·á, ±ÝÇü À¯Çü, ±â°è À¯Çü, ±â°è Åæ¼ö, ÁÖÁ¶ »çÀÌÁî, ÃÖÁ¾ »ç¿ë »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)
Die Casting Market by Process, Material, Die Type, Machine Type, Machine Tonnage, Casting Size, End Use Industry - Global Forecast 2025-2030
»óǰÄÚµå : 1808494
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 198 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,609,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 6,051,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,201,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,924,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

´ÙÀÌij½ºÆ® ½ÃÀåÀº 2024³â 829¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 878¾ï 7,000¸¸ ´Þ·¯¿¡ À̸£°í,CAGR 6.10%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,183¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 829¾ï 3,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 878¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 1,183¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 6.10%

´ÙÀÌij½ºÆÃ ±â¼ú, ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ ÁÖÁ¶ÀÇ °üÇà°ú °ø±Þ¸ÁÀ» Çü¼ºÇÏ´Â Àü·«Àû °íÂû¿¡ ´ëÇÑ ±ÇÀ§ ÀÖ´Â °³¿ä

´ÙÀÌij½ºÆÃ ÁÖÁ¶´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ ´ë·® »ý»êµÇ´Â Á¤¹Ð ±Ý¼Ó ºÎǰÀ» µÞ¹ÞħÇÏ´Â ±âÃÊÀûÀÎ Á¦Á¶ ±â¼úÀÔ´Ï´Ù. Àç·á, ±â°è Á¦¾î ¹× °øÁ¤ °øÇÐÀÇ ¹ßÀüÀº ±¤¹üÀ§ÇÑ Á¦Á¶ ÆÐ·¯´ÙÀÓÀÌ °æ·®È­, Àüµ¿È­ ¹× ¼øÈ¯ÇüÀ¸·Î À̵¿ÇÏ´Â °¡¿îµ¥¿¡µµ ±× °ü·Ã¼ºÀ» À¯ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³¿¡¼­´Â ´ÙÀÌij½ºÆÃÀ» Çö´ë »ê¾÷ Àü·«¿¡ Æ÷ÇÔ½ÃÄÑ ±¸¸Å, ¿£Áö´Ï¾î¸µ ¹× Á¶´Þ ÀÇ»ç°áÁ¤À» Çü¼ºÇÏ´Â ÇÙ½É ÇÁ·Î¼¼½º º¯Çü, Àç·á ¼±ÅÃ, Àåºñ ±¸¼º ¹× ¼ö¿ä ÃËÁø¿äÀο¡ ´ëÇØ ¼³¸íÇÕ´Ï´Ù.

±â¼ú Áý¾à, Áö¼Ó°¡´É¼º Àǹ«È­, µðÁöÅÐ Á¦Á¶°¡ ´ÙÀÌij½ºÆÃ °øÁ¤ÀÇ ¿ì¼ö¼º, °ø±Þ ź·Â¼º, Á¦Ç° Çõ½ÅÀ» ÀçÁ¤ÀÇÇÏ´Â ¹æ¹ý

´ÙÀÌij½ºÆÃÀÇ È¯°æÀº ±â¼ú, ±ÔÁ¦, °í°´ ±â´ëÀÇ ¼ö·Å·Â¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. µðÁöÅÐÈ­¿Í Àδõ½ºÆ®¸® 4.0ÀÇ ½ÇõÀ¸·Î ½Ç½Ã°£ ¿ø°Ý ÃøÁ¤, ¿¹Áöº¸Àü, °íµµÀÇ ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ º¸´Ù ¾ö°ÝÇÑ °øÁ¤ °ü¸®°¡ °¡´ÉÇØÁ® ´Ù¿îŸÀÓ °¨¼Ò, ù °øÁ¤ ¼öÀ² Çâ»ó, Á¦Ç° °³¹ß Áֱ⠴ÜÃàÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ÀûÃþ °¡°ø ¹× ÇÏÀ̺긮µå Åø¸µ Á¢±Ù ¹æ½ÄÀº ±ÝÇü ¼³°è ¹× ¼ö¸® ¹æ½ÄÀ» º¯È­½ÃÄÑ º¸´Ù ºü¸¥ ¹Ýº¹°ú ÇöÁöÈ­µÈ ¸ÂÃãÈ­¸¦ °¡´ÉÇÏ°Ô Çϰí, ½ÃÀå Ãâ½Ã ½Ã°£°ú ±ÝÇü ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ÀÇ °ü¼¼ Á¶Ä¡°¡ ´ÙÀÌij½ºÆÃ »ýŰè¿Í ¹«¿ª È帧¿¡ ¹ÌÄ¡´Â ´©ÀûµÈ ¿î¿µ, Á¶´Þ ¹× °ø±Þ¸Á ¿µÇâÀ» Æò°¡ÇÕ´Ï´Ù.

2025³â °ü¼¼ Á¤Ã¥ ¹× ¹«¿ª Á¶Ä¡ÀÇ º¯È­·Î ÀÎÇØ ´ÙÀÌij½ºÆÃ °ü°èÀÚÀÇ Á¶´Þ, ¹°·ù, °ø±Þ¾÷ü ¼±Á¤¿¡ ´õ¿í º¹À⼺ÀÌ ´õÇØÁ³½À´Ï´Ù. °ü¼¼ Á¶Á¤Àº ¾÷½ºÆ®¸² ÅõÀÔ ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¡°í, ´ÙÀÌij½ºÆÃ »ç¾÷ÀÇ ÀÔÁö °æÁ¦¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡°í, ±¹³»¿Ü °ø±Þ¾÷ü °£ÀÇ °æÀï ¿ªÇп¡ º¯È­¸¦ °¡Á®¿É´Ï´Ù. ƯÁ¤ ¿øÀÚÀ糪 ¿ÏÁ¦Ç°¿¡ °ü¼¼°¡ Àû¿ëµÇ´Â °æ¿ì, ¹ÙÀ̾ Á¦Á¶¾÷ü´Â °ü¼¼, ±ÔÁ¤ Áؼö, Åë°ü 󸮸¦ Á¶´Þ ¸ðµ¨¿¡ ÅëÇÕÇÏ¿© ±âº» ´Ü°¡¸¦ ÃʰúÇÏ´Â ÃÑ »ó·ú ºñ¿ëÀ» Æò°¡ÇØ¾ß ÇÕ´Ï´Ù.

°øÁ¤ ¼±ÅÃ, Àç·á ¼±ÅÃ, ±ÝÇü ¾ÆÅ°ÅØÃ³, ±â°è ±¸¼º, Åæ¼ö µî±Þ ¹× ÃÖÁ¾ ¿ëµµ ¼ö¿ä¸¦ °æÀï ¿ìÀ§¿¡ ¿¬°á, ¼¼ºÐÈ­ Áß½ÉÀÇ ½ÉÃþÀû °íÂû

¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ±â¼úÀû ¼±Åðú ¿ëµµ ÄÁÅØ½ºÆ®°¡ ´ÙÀÌij½ºÆÃ ÁÖÁ¶ÀÇ °¡Ä¡ âÃâÀ» ¾î¶»°Ô Á¤ÀÇÇÏ´ÂÁö ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. °øÁ¤ÀÇ ¼±ÅÃÀº Áß·Â ´ÙÀÌij½ºÆÃ, ¾Ð·Â ´ÙÀÌij½ºÆÃ, ½ºÄûÁî ´ÙÀÌij½ºÆÃ, Áø°ø ´ÙÀÌij½ºÆÃ, ¾Ð·Â ´ÙÀÌij½ºÆÃÀº °í¾Ð°ú Àú¾ÐÀ¸·Î ±¸ºÐµË´Ï´Ù. °í¾Ð ´ÙÀÌij½ºÆÃ¿¡¼­ Àåºñ¿Í ±ÝÇü ¼³°è´Â Äݵå è¹ö¿Í ÇÖ Ã¨¹öÀÇ ±¸¼ºÀ¸·Î ³ª´µ¸ç, °¢°¢ »çÀÌŬ ½Ã°£, ±Ý¼Ó ȣȯ¼º ¹× ±ÝÇü ¸¶¸ð¿¡ ´ëÇÑ ¸íÈ®ÇÑ °í·Á »çÇ×ÀÌ ÀÖ½À´Ï´Ù. ¾Ë·ç¹Ì´½ ÇÕ±ÝÀº ¹«°Ô¸¦ Áß½ÃÇÏ´Â ¿ëµµ¿¡, ¸¶±×³×½·Àº Ãʰ淮 ºÎǰ¿¡, ¾Æ¿¬Àº ´ë·®ÀÇ ¼ÒÇü ºÎǰ¿¡, ±¸¸®¿Í Ȳµ¿Àº Àüµµ¼º°ú ³»½Ä¼ºÀÌ ÇʼöÀûÀÎ ¿ëµµ¿¡ ¸¹ÀÌ ¼±Åõ˴ϴÙ. ±¸¸®¿Í Ȳµ¿ ¼ÒÀç´Â ±× ÀÚü·Î Ȳµ¿°ú ûµ¿ÀÇ ÇÏÀ§ Á¦Ç°±ºÀ¸·Î ³ª´µ¸ç, °¢ ÇÕ±Ý ±×·ìÀº °íÀ¯ÇÑ °¡°ø¼º°ú ¸¶¹«¸®¸¦ °í·ÁÇÕ´Ï´Ù.

¹ÌÁÖ, À¯·´, Áßµ¿/¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áö¿ªÀû ¿ªÇÐÀ» ºñ±³ÇÏ¿© »ý»ê´É·Â ºÐÆ÷, ¹«¿ª Åë·Î, ÇöÁöÈ­ Àü·«À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Áö¿ªÀû Ư¼ºÀº »ý»ê ´É·ÂÀÌ ¾îµð¿¡ ±¸ÃàµÇ´ÂÁö, °ø±Þ¸ÁÀÌ ¾î¶»°Ô ±¸¼ºµÇ´ÂÁö, ¾î¶² ´É·ÂÀÌ ¿ì¼±½ÃµÇ´ÂÁö¸¦ °áÁ¤ÇÕ´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ÁÖ¿ä ÀÚµ¿Â÷ ¹× ÁßÀåºñ Á¦Á¶¾÷ü¿ÍÀÇ ±ÙÁ¢¼º, źźÇÑ ¹°·ù ³×Æ®¿öÅ© ¹× °í±Þ ±ÝÇü °ø±Þ¾÷ü°¡ Á¸ÀçÇϱ⠶§¹®¿¡ ÃßÀû¼º, ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎ ¹× Á¶¸³ ÀÛ¾÷°úÀÇ ÅëÇÕÀ» Áß½ÃÇÏ´Â °íºÎ°¡°¡Ä¡ ´ÙÀÌij½ºÆÃ ÁÖÁ¶°¡ °¡´ÉÇÕ´Ï´Ù. ºÏ¹Ì »ç¾÷¿¡¼­´Â ¿¡³ÊÁö È¿À²ÀûÀÎ ¿ëÇØ ¹× ÀçȰ¿ë ³ë·ÂÀ» ÅëÇØ Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â ÇÑÆí, OEM »ç¾çÀ» ÃæÁ·Çϱâ À§ÇÑ ÀÚµ¿È­ ¾÷±×·¹ÀÌµå ¹× Àç·á ¿£Áö´Ï¾î¸µ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

¿ª·® Â÷º°È­, ¼öÁ÷Àû ÅëÇÕ, ÆÄÆ®³Ê½Ê, ½ÃÀå Æ÷Áö¼Å´×À» À§ÇÑ ÅõÀÚ ¿ì¼±¼øÀ§ µî ÁÖ¿ä ´ÙÀÌij½ºÆÃ ±â¾÷ °£ Àü·«Àû °æÀï Çൿ

´ÙÀÌij½ºÆÃ ºÐ¾ßÀÇ ±â¾÷ Àü·«Àº ´É·ÂÀÇ Àü¹®È­¿Í ±¤¹üÀ§ÇÑ ¼­ºñ½º Á¦°øÀÇ ±ÕÇüÀ» ¹Ý¿µÇÕ´Ï´Ù. ÀϺΠ±â¾÷Àº ÇÁ·Î¼¼½º ¿£Áö´Ï¾î¸µ ºÐ¾ßÀÇ ±â¼ú ¸®´õ½ÊÀ» ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí, °í±Þ ½Ã¹Ä·¹À̼Ç, ¾ß±Ý Àü¹® Áö½Ä, ¼öÀͼºÀÌ ³ô°í »ç¾çÀÌ ³ôÀº ÀÛ¾÷À» ¼öÁÖÇÒ ¼ö ÀÖ´Â ÅëÇÕ ¸¶¹«¸®¸¦ Á¦°øÇÏ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºñ¿ë °æÀï·Â ÀÖ´Â »ý»ê·®°ú ¹ü¿ë ºÎǰÀÇ ºü¸¥ ÅϾî¶ó¿îµå¸¦ Á¦°øÇÏ´Â ´ë±Ô¸ð ¸ÖƼ ¶óÀÎ ½Ã¼³À» ¿î¿µÇÏ¸ç ±Ô¸ð¿Í È¿À²¼ºÀ¸·Î °æÀïÇÏ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù. Ⱦ´ÜÀû Àü·«¿¡´Â °¡°ø ¹× Ç¥¸é ó¸®ÀÇ ¼öÁ÷Àû ÅëÇÕ, ÀÚµ¿È­ °ø±Þ¾÷ü¿ÍÀÇ Á¦ÈÞ, ÅõÀÔ ºñ¿ëÀÇ º¯µ¿¼º °¨¼Ò, °í°´ÀÇ Áö¼Ó°¡´É¼º ¸ñÇ¥ ´Þ¼ºÀ» À§ÇÑ ÀçȰ¿ë ¹× ÇÕ±Ý Àç»ý¿¡ ´ëÇÑ ÅõÀÚ µîÀÌ Æ÷ÇԵ˴ϴÙ.

±â¼ú µµÀÔ, °ø±Þ¸Á Àç¼³°è, ÀÎÀç °³¹ßÀ» ÅëÇØ ´ÙÀÌij½ºÆÃ ÁÖÁ¶ ¼º´ÉÀ» ÃÖÀûÈ­ÇϰíÀÚ ÇÏ´Â ¸®´õ¸¦ À§ÇÑ ¿µÇâ·Â ÀÖ´Â Àü·«Àû ¹× ¿î¿µÀû Á¦¾È

¾÷°è ¸®´õµéÀº Á¦Ç° °³¹ß, °ø±Þ¸Á ¼³°è, Àη °èȹ, Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ÀÏÄ¡½ÃŰ´Â Çù·Â Àü·«À» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, ´ÙÀÌij½ºÆÃ ¼³°è ¿ø¸®¸¦ Ãʱ⠴ܰèÀÇ ¿£Áö´Ï¾î¸µ¿¡ ÅëÇÕÇÏ¿© ÁÖÁ¶ ÈÄ °¡°øÀ» ÁÙÀÌ°í ¼öÀ²À» °³¼±ÇÏ¸ç °ËÁõ Áֱ⸦ ´ÜÃàÇÕ´Ï´Ù. Àç·á ¿£Áö´Ï¾î¿Í ±ÝÇü Àü¹®°¡¸¦ ºÎ¼­ °£ °³¹ß ÆÀ¿¡ ÅëÇÕÇÏ¿© ¹Ýº¹ ÀÛ¾÷À» °¡¼ÓÈ­ÇÏ°í ´Ù¿î½ºÆ®¸² ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù. µÑ°, ÁÖ¿ä ǰÁú ÆÄ¶ó¹ÌÅÍ¿¡ ´ëÇÑ °øÁ¤ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü(¿¹Áöº¸Àü)À» ÅëÇØ °èȹ ¿Ü Á¤Áö¸¦ ÃÖ¼ÒÈ­Çϰí, ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀ» ÅëÇØ ±ÝÇü ½Ã¿îÀü Ƚ¼ö¸¦ ÁÙÀ̰í Àû°Ý¼º È®ÀÎÀ» ºü¸£°Ô ÇÏ´Â µî ¿î¿µ Ãø¸é¿¡¼­ Áï°¢ÀûÀÎ ¼öÀÍÀ» ³¾ ¼ö ÀÖ´Â µðÁöÅÐ ÅõÀÚ¸¦ ¿ì¼±½ÃÇÕ´Ï´Ù.

´ÙÀÌij½ºÆÃ ½ÃÀå Á¤º¸ÀÇ Á¤È®¼º°ú ÀçÇö¼ºÀ» º¸ÀåÇϱâ À§ÇØ »ç¿ëÇÑ Á¶»ç ¹æ¹ý, µ¥ÀÌÅÍ ¼Ò½º, ÀÌÇØ°ü°èÀÚ Âü¿©, ºÐ¼® ±â¹ý¿¡ ´ëÇÑ Åõ¸íÇÑ ¼³¸í

ÀÌ Á¶»ç´Â 1Â÷ Á¶»ç¿Í 2Â÷ Á¶»ç¸¦ ÅëÇÕÇÏ¿© ºÐ¼®ÀÇ ¾ö°Ý¼º°ú ÀçÇö¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¼³°èµÈ ´Ù¹æ¹ý Á¢±Ù¹ýÀ» »ç¿ëÇÕ´Ï´Ù. 1Â÷ Á¶»ç¿¡´Â °íÀ§ Á¶´Þ ¸®´õ, °øÀå °ü¸®ÀÚ, ±ÝÇü ¿£Áö´Ï¾î, Àç·á Àü¹®°¡¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺä¿Í ¿öÅ©¼óÀ» ÅëÇØ ¾÷¹« ½ÇÅÂ, ÅëÁõ °ü¸®, ÅõÀÚ ¿ì¼±¼øÀ§¸¦ ÆÄ¾ÇÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. 2Â÷ Á¤º¸¿¡´Â ±â¼ú ¹®Çå, Ç¥Áؼ­, Á¦Ç° »ç¾ç¼­ µîÀÌ Æ÷ÇԵǸç, Àç·á ¹× °øÁ¤ Ư¼º Æò°¡¿¡ µµ¿òÀÌ µË´Ï´Ù. µ¥ÀÌÅÍ »ï°¢Ãø·®Àº ÁúÀû ÅëÂû·Â°ú °üÂû °¡´ÉÇÑ ¾÷°è °üÇà°úÀÇ ÀÏÄ¡¿¡ Àû¿ëµË´Ï´Ù.

´ÙÀÌij½ºÆÃ ¼ö¿ä ¹× ±ÔÁ¦ ȯ°æ º¯È­¿¡ ´ëÀÀÇϱâ À§ÇÑ Åº·Â¼º, Çõ½Å, Àü·«Àû ÅõÀÚ¸¦ °­Á¶ÇÏ´Â Àü·«Àû ¿äÁ¡ ÅëÇÕ

´ÙÀÌij½ºÆÃ »ê¾÷Àº ±â¼ú Çõ½Å, ±ÔÁ¦ ¾Ð·Â, °ø±Þ¸Á ȸº¹·ÂÀÌ ¼ö·ÅÇÏ¿© ´Ü±âÀûÀÎ Àü·«Àû ¼±ÅÃÀ» Çü¼ºÇÏ´Â ±³Â÷·Î¿¡ ¼­ ÀÖ½À´Ï´Ù. ¿î¿µÀÇ ¿ì¼ö¼ºÀº °í±Þ°øÁ¤Á¦¾î(APC)¿Í Àç·á¿¡ ´ëÇÑ Àü¹® Áö½Ä ¹× ¹ÎøÇÑ ¼Ò½Ì ¸ðµ¨À» °áÇÕÇÏ´Â ±â¾÷ÀÇ ´É·Â¿¡ ´Þ·Á ÀÖ½À´Ï´Ù. °ø±Þ¸ÁÀÇ È¥¶õ°ú Á¤Ã¥ º¯È­·Î ÀÎÇØ ½Ã³ª¸®¿À °èȹ°ú ÇöÁöÈ­ ¿ª·®ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼ÓÀ¸·Î ÀÎÇØ ±âÁ¸ÀÇ ºñ¿ë°ú ǰÁúÀ» ³Ñ¾î¼± ¼º°ú ÁöÇ¥°¡ ÀçÁ¤Àǵǰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ´ÙÀÌij½ºÆ® ½ÃÀå : ÇÁ·Î¼¼½ºº°

Á¦9Àå ´ÙÀÌij½ºÆ® ½ÃÀå : Àç·áº°

Á¦10Àå ´ÙÀÌij½ºÆ® ½ÃÀå : ±ÝÇü À¯Çüº°

Á¦11Àå ´ÙÀÌij½ºÆ® ½ÃÀå : ±âÁ¾º°

Á¦12Àå ´ÙÀÌij½ºÆ® ½ÃÀå : ±â°è Åæ¼öº°

Á¦13Àå ´ÙÀÌij½ºÆ® ½ÃÀå : ÁÖÁ¶ »çÀÌÁ

Á¦14Àå ´ÙÀÌij½ºÆ® ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ ´ÙÀÌij½ºÆ® ½ÃÀå

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ´ÙÀÌij½ºÆ® ½ÃÀå

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ´ÙÀÌij½ºÆ® ½ÃÀå

Á¦18Àå °æÀï ±¸µµ

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Die Casting Market was valued at USD 82.93 billion in 2024 and is projected to grow to USD 87.87 billion in 2025, with a CAGR of 6.10%, reaching USD 118.35 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 82.93 billion
Estimated Year [2025] USD 87.87 billion
Forecast Year [2030] USD 118.35 billion
CAGR (%) 6.10%

An authoritative overview of die casting technologies, market drivers, and strategic considerations shaping industrial casting practices and supply chains

Die casting remains a foundational manufacturing technology underpinning high-volume, precision metal components across a broad array of industries. Advances in materials, machine controls, and process engineering have sustained its relevance even as broader manufacturing paradigms shift toward lighter weight designs, electrification, and circularity. This introduction situates die casting within contemporary industrial strategies by outlining the core process variants, material choices, equipment configurations, and demand drivers that shape purchasing, engineering, and sourcing decisions.

Across manufacturing operations, die casting is valued for dimensional accuracy, repeatability, and the capacity to deliver complex geometries with minimal secondary machining. Process differentiation - from gravity and vacuum approaches to pressure-driven methods that include low and high pressure variants - creates a spectrum of technical trade-offs between cycle time, surface finish, mechanical properties, and tooling complexity. These trade-offs are further mediated by material selection; aluminum, magnesium, zinc, and copper/brass alloys each present distinct performance, corrosion, and joining characteristics that inform part design and long-term lifecycle costs.

Concurrently, machine capability and tonnage classifications influence the feasible size and complexity of castings, while die architecture and automation level dictate labor intensity and throughput. End-use industries establish downstream performance expectations: aerospace and defense demand certification and traceability; automotive prioritizes cycle efficiency and crashworthiness; electrical and electronics focus on thermal management and enclosure integrity; and medical sectors prioritize biocompatibility and sterilization resistance. Taken together, these factors form a multidimensional decision framework for manufacturers, specifiers, and procurement teams to optimize cost, performance, and supply chain robustness.

This report's introduction thus frames die casting not as a singular process but as an ecosystem of interdependent choices. Readers should come away with a clear understanding of the technical and commercial levers that influence product development, factory layout, supplier selection, and long-term competitiveness within industries that continue to rely on cast metal components.

How technological convergence, sustainability mandates, and digital manufacturing are redefining die casting process excellence, supply resilience, and product innovation

The die casting landscape is experiencing transformative shifts driven by converging forces in technology, regulation, and customer expectations. Digitalization and Industry 4.0 practices are enabling tighter process controls through real-time telemetry, predictive maintenance, and advanced simulation, which together reduce downtime, improve first-pass yield, and compress product development cycles. Additive manufacturing and hybrid tooling approaches are changing how dies are designed and repaired, enabling more rapid iterations and localized customization that reduce time to market and tooling costs.

Sustainability imperatives are reshaping material and process choices across supply chains. Lightweighting objectives tied to vehicle electrification and energy efficiency continue to favor aluminum and magnesium alloys for cast components, while recycling and closed-loop material flows are prompting OEMs and suppliers to prioritize alloys and process practices that support circularity. Regulatory pressure and buyer commitments on embodied carbon and end-of-life recovery are thus catalyzing investment in cleaner melting practices, energy-efficient furnaces, and alloy reclamation programs.

At the same time, supplier ecosystems are adapting to demand for greater resilience and customization. Geographic diversification, nearshoring, and multi-sourcing strategies are increasingly coupled with digital platforms that improve supplier visibility and transaction speed. Workforce dynamics, including upskilling for advanced machine operators and data-literate engineers, are essential to fully realize productivity gains from automation and design-for-manufacturability principles. Therefore, the competitive frontier is defined not only by cost and capacity but also by the ability to integrate digital process controls, sustainable practices, and talent strategies into operational execution.

These shifts collectively favor organizations that pursue coordinated investments across process modernization, supply chain architecture, and sustainability metrics. By aligning product designers, tooling engineers, and procurement teams around shared performance targets, companies can capture efficiencies, reduce environmental impact, and respond nimbly to evolving regulatory and market demands.

Assessing the cumulative operational, procurement, and supply chain consequences of United States tariff actions in 2025 on die casting ecosystems and trade flows

Changes to tariff policy and trade measures in 2025 have introduced additional complexity into procurement, logistics, and supplier selection for die casting stakeholders. Tariff adjustments affect upstream input costs, influence the location economics of die casting operations, and alter competitive dynamics between domestic and international suppliers. When duties are applied to specific raw materials or finished parts, buyers and manufacturers must evaluate total landed cost beyond base unit price, incorporating duty, compliance, and customs processing into sourcing models.

In response, procurement teams have adopted more sophisticated cost-to-serve analyses and scenario planning. These approaches emphasize flexibility: qualified supplier panels that span multiple geographies, clauses in supplier agreements that address cost pass-through and currency fluctuations, and inventory strategies that buffer short-term volatility. Firms with vertically integrated capabilities or domestic tooling and finishing capacities are often better positioned to mitigate tariff shocks, since they can internalize portions of the value chain and exercise greater control over customs classification and origin documentation.

Operationally, tariff-driven disruption has accelerated interest in nearshoring and reshoring initiatives where labor cost differentials are offset by reduced tariff exposure, lower logistics lead times, and improved intellectual property protection. Manufacturers pursuing such moves must balance capital intensity and ramp timelines against the strategic benefit of localized supply. Concurrently, compliance and trade teams have scaled capabilities to manage classification, obtain preferential origin certificates where applicable, and pursue duty drawback options that recover duties paid on subsequently exported goods.

Overall, tariff dynamics in 2025 underscore the importance of integrating trade policy analysis into product engineering, procurement, and network design decisions. Organizations that proactively model tariff scenarios, diversify sourcing, and strengthen customs and compliance expertise will preserve margin, maintain delivery performance, and reduce exposure to episodic policy shifts.

Deep segmentation-driven insights linking process choices, material selection, die architecture, machine configurations, tonnage classes, and end-use demands to competitive advantage

Segmentation analysis reveals how technical choices and application contexts define value creation across the die casting spectrum. Process selection spans gravity die casting, pressure die casting, squeeze die casting, and vacuum die casting, with pressure die casting further differentiated into high pressure and low pressure variants. Within high pressure die casting, equipment and tooling designs diverge between cold chamber and hot chamber configurations, each presenting distinct considerations for cycle time, metal compatibility, and tooling wear. Material selection layers additional complexity: aluminum alloys are frequently selected for weight-sensitive applications, magnesium for ultra-light components, zinc for high-volume small parts, and copper and brass alloys where conductivity or corrosion resistance is essential. Copper and brass materials themselves separate into brass and bronze subfamilies, with each alloy group bringing unique machinability and finishing considerations.

Die architecture impacts throughput and cost-per-part. Single cavity, multiple cavity, combination, and unit die designs each balance tooling cost against production rhythm and part uniformity, influencing capital planning and die maintenance regimes. Machine automation level is a critical determinant of labor intensity and reliability, with fully automatic, semi-automatic, and manual machines mapping to varied investment profiles and workforce skill requirements. Machine tonnage brackets such as up to 400 ton, 401-800 ton, 801-1,250 ton, 1,251-2,000 ton, and above 2,000 ton set practical limits on casting size and complexity and affect plant layout and crane capacity decisions.

Casting size categories from micro through small, medium, large, and extra-large align with differing application sets and tolerancing needs. End-use industries impose their own constraints and certification regimes: aerospace and defense require traceability and component-level testing, with subcategories including aircraft engine parts, defense vehicle parts, and landing gear components; automotive spans passenger vehicles, commercial vehicles, and two-wheelers, with commercial vehicle exposures further divided into heavy and light commercial vehicle segments; electrical and electronics applications prioritize enclosures, heat sinks, and switchgear components; consumer goods cover furniture hardware and kitchen appliances; energy and power feature power transmission housings, solar panel mountings, and wind turbine components; healthcare demands imaging device housings and surgical instruments; and industrial machinery requires gear housings, hydraulic parts, and pump and valve bodies. Understanding how process type, material family, die design, automation, tonnage, casting size, and end-use expectations interact enables more precise product specification, supplier selection, and investment planning.

Comparative regional dynamics across the Americas, Europe, Middle East & Africa, and Asia-Pacific revealing capacity distribution, trade corridors, and localization strategies

Regional characteristics drive where capacity is built, how supply chains are organized, and which competencies are prioritized. In the Americas, proximity to large automotive and heavy equipment manufacturers, combined with robust logistics networks and advanced tooling suppliers, supports high-value die casting work that emphasizes traceability, rapid prototyping, and integration with assembly operations. North American operations often focus on automation upgrades and materials engineering to meet OEM specifications while addressing sustainability targets through energy-efficient melting and recycling initiatives.

Europe, Middle East & Africa presents a heterogeneous landscape where stringent environmental regulation, advanced engineering clusters, and a dense supplier base support high-precision and certification-intensive applications such as aerospace and medical components. Within this region, manufacturers frequently invest in process validation, alloy qualification, and lifecycle assessments to service demanding customers and to comply with evolving regulatory requirements related to emissions and circularity.

Asia-Pacific remains a center of manufacturing scale and vertical supplier ecosystems, combining large foundry networks, diverse material supply chains, and a wide range of machine capabilities. This region supports both high-volume commodity production and increasingly sophisticated components for automotive electrification and consumer electronics. Strategic advantages include rapid supplier development cycles, competitive labor markets for specific skill sets, and growing domestic demand that enables local market testing and iterative design improvements. Across all regions, logistics efficiency, tariff exposure, and proximity to critical customers influence decisions about where to site capacity, how to structure supplier agreements, and which technologies to prioritize for deployment.

Strategic competitive behaviors among leading die casting companies, including capability differentiation, vertical integration, partnerships, and investment priorities that drive market positioning

Company strategies in the die casting space reflect a balance between capability specialization and broader service offerings. Some firms differentiate through technical leadership in process engineering, offering advanced simulation, metallurgy expertise, and integrated finishing to capture higher-margin, specification-heavy work. Others compete on scale and efficiency, operating large multi-line facilities that deliver cost-competitive volumes and rapid turnaround for commodity parts. Cross-cutting strategies include vertical integration of machining and surface treatment, partnerships with automation providers, and investment in recycling and alloy reclamation to reduce input cost volatility and meet customer sustainability targets.

Competitive dynamics also manifest through geographic expansion and selective joint ventures that provide local customer access and reduce tariff exposure. Strategic M&A activity tends to consolidate complementary capabilities-such as tooling design, coating services, and precision machining-into single-service providers that offer end-to-end solutions. At the same time, nimble specialists that excel in rapid prototyping, small-batch production, or niche alloy expertise maintain relevance by serving R&D initiatives and premium applications.

Technology adoption is a key differentiator. Firms that invest in real-time process controls, digital twins, and predictive maintenance achieve higher asset utilization and reduced scrap. Companies that build talent pipelines through apprenticeship programs and targeted training secure operational continuity as automation changes job profiles. Ultimately, leadership combines technical depth, operational rigor, and commercial agility to deliver reliable supply, meet regulatory expectations, and support customers through design transitions and product lifecycle changes.

High-impact strategic and operational recommendations for leaders seeking to optimize die casting performance through technology adoption, supply chain redesign, and workforce development

Industry leaders should adopt a coordinated strategy that aligns product development, supply chain design, workforce plans, and sustainability objectives. First, integrate design-for-die-casting principles into early-stage engineering to reduce post-casting machining, improve yields, and shorten validation cycles. Embedding materials engineers and tooling specialists in cross-functional development teams accelerates iterations and reduces downstream costs. Second, prioritize digital investments that deliver immediate operational returns: process monitoring for key quality parameters, predictive maintenance to minimize unplanned outages, and simulation tools that reduce die trials and speed qualification.

Third, develop a flexible sourcing architecture that combines local capacity for critical and high-spec parts with diversified offshore suppliers for high-volume commodity components. Contracts should include mechanisms for cost transparency, compliance with trade requirements, and shared continuous improvement agendas. Fourth, accelerate sustainability commitments by implementing energy-efficient melting systems, alloy recycling programs, and lifecycle assessments that inform product specifications and customer disclosures. Transparent reporting on these measures will increasingly influence OEM sourcing decisions and regulatory compliance.

Fifth, invest in workforce development through targeted training in process controls, metallurgy, and digital toolchains while creating career pathways that blend shop-floor skills with data-analytics competencies. Lastly, prepare for regulatory and policy shifts by building trade compliance expertise, conducting tariff scenario analyses, and maintaining agile logistics plans. Taken together, these actions support resilience, reduce total cost of ownership, and position organizations to capture value as customer expectations and regulatory landscapes evolve.

Transparent description of research approach, data sources, stakeholder engagement, and analytical techniques used to ensure rigor and reproducibility of die casting market intelligence

This research synthesizes primary and secondary inputs using a multi-method approach designed to ensure analytical rigor and reproducibility. Primary engagement includes structured interviews and workshops with senior procurement leaders, plant managers, tooling engineers, and material specialists to capture operational realities, pain points, and investment priorities. Secondary sources encompass technical literature, standards documentation, and product specifications that inform material and process characterizations. Data triangulation is applied to reconcile qualitative insights with observable industry practices.

Analytical techniques include process mapping, cost-to-serve modeling, and scenario analysis to explore policy impacts and sourcing alternatives. Metallurgical and tooling considerations are assessed through engineering reviews and consultation with subject matter experts to validate assumptions about material behavior, die wear, and finishing requirements. Peer review and expert validation steps ensure that methodological choices are documented and that conclusions reflect consensus where available and clearly indicate areas of uncertainty where evidence diverges.

Finally, methodological transparency is maintained through detailed appendices that describe interview protocols, source selection criteria, and analytical formulas used in comparative assessments. This approach enables clients to understand the provenance of insights and to adapt the framework for their internal analyses or bespoke extensions.

Synthesis of strategic takeaways emphasizing resilience, innovation, and strategic investments to capitalize on shifting demand and regulatory environments in die casting

The die casting sector stands at a crossroads where engineering innovation, regulatory pressures, and supply chain resilience converge to shape near-term strategic choices. Operational excellence depends on firms' abilities to marry advanced process controls with materials expertise and agile sourcing models. Supply chain disruptions and policy changes have elevated the need for scenario planning and localized capabilities, while sustainability commitments are redefining performance metrics beyond traditional cost and quality.

Leaders that coordinate investments across tooling, automation, alloy management, and talent development will capture efficiency gains and reduce exposure to external shocks. Equally important is the adoption of transparent trade compliance and lifecycle accounting practices that align with customer expectations and regulatory requirements. In sum, the path to competitiveness in die casting is through integrated decision-making where engineering, procurement, and sustainability agendas are pursued jointly to enable resilient, innovative, and commercially effective operations.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Die Casting Market, by Process

9. Die Casting Market, by Material

10. Die Casting Market, by Die Type

11. Die Casting Market, by Machine Type

12. Die Casting Market, by Machine Tonnage

13. Die Casting Market, by Casting Size

14. Die Casting Market, by End Use Industry

15. Americas Die Casting Market

16. Europe, Middle East & Africa Die Casting Market

17. Asia-Pacific Die Casting Market

18. Competitive Landscape

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â