자율 무인 잠수정(AUV) 시장 : 제품 유형, 기술, 최종사용자, 용도별 - 세계 예측(2025-2032년)
Autonomous Underwater Vehicles Market by Product Type, Technology, End User, Application - Global Forecast 2025-2032
상품코드 : 1832297
리서치사 : 360iResearch
발행일 : 2025년 09월
페이지 정보 : 영문 199 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,641,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,085,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,248,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 9,981,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

자율 무인 잠수정(AUV) 시장은 2032년까지 연평균 복합 성장률(CAGR) 14.18%로 58억 4,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 20억 2,000만 달러
추정 연도 : 2025년 22억 9,000만 달러
예측 연도 : 2032년 58억 4,000만 달러
CAGR(%) 14.18%

현대 자율 무인 잠수정(AUV)의 능력, 운영상의 역할, 수중 자율성을 형성하는 진화하는 추진력에 대한 간결한 설명

자율 무인 잠수정(AUV)은 틈새 조사 플랫폼에서 수면 아래에서 새로운 능력을 이끌어내는 운영 시스템으로 전환되었습니다. 이러한 자기 유도형 플랫폼은 추진력, 항법, 영상, 통신 하위 시스템을 통합하여 인간 다이버나 승무원이 탑승한 선박으로는 위험하고 비용이 많이 들거나 불가능한 임무를 수행할 수 있습니다. 얕은 바다 인프라 점검에서 심해 과학 탐사 및 복잡한 방어 활동에 이르기까지 임무 범위가 확대됨에 따라 UV는 고립된 도구가 아닌 더 큰 해양 시스템의 일부로 작동하는 모듈화되고 네트워크화된 자산으로 재조명되고 있습니다.

이러한 진화의 원동력은 추진력과 에너지 저장의 발전, 센서의 충실도 및 처리 능력 향상, 미션 레벨의 의사결정을 가능하게 하는 자율성 소프트웨어의 성숙입니다. 이러한 개발은 프로토타입의 실증 실험에서 실전 배치까지 걸리는 시간을 단축하고, 그 결과 공급업체 기반이 다양해지고 사용자들의 채택이 확대되고 있습니다. 동시에 규제 프레임워크, 영역 간 상호운용성 요구사항, 라이프사이클 운영의 경제성으로 인해 신뢰성, 유지보수성, 안전한 통신에 대한 새로운 기대가 생겨나고 있습니다.

따라서 AUV 배치를 고려하는 조직은 기술적 즉시성, 운영 교리, 라이프사이클 지원성, 데이터 활용 경로를 비교 검토해야 합니다. 이 소개에서는 정부, 상업 및 연구 커뮤니티에서 AUV의 설계, 조달 및 운영 방식을 재구성하고 있는 기술 변화, 정책 추진력 및 상업적 힘에 대해 자세히 살펴봅니다.

자율성, 에너지 시스템, 센서 융합, 통합 해양 아키텍처의 발전이 해저 운영의 패러다임을 재정의하는 방법

AUV를 둘러싼 환경은 기술 및 운영 수요의 수렴으로 인해 변화의 시기를 맞이하고 있습니다. 엣지 컴퓨팅과 머신러닝이 지원하는 오토노미 알고리즘은 복잡한 수중 환경에서 보다 충실한 판단을 내릴 수 있도록 돕습니다. 동시에, 에너지 밀도 향상과 하이브리드 추진 개념으로 인해 임무 지속 시간이 연장되고, 잠수 깊이와 행동 범위가 확대되고 있습니다. 이러한 기술적 진보는 소형화된 고해상도 이미징 시스템 및 음향 시스템으로 보완되어 플랫폼이 과학적 및 상업적 분석을 위한 풍부한 데이터 세트를 수집할 수 있게 해줍니다.

또 다른 핵심적인 변화는 단일 플랫폼에 의한 임무에서 통합된 다중 자산 해상 아키텍처로의 전환입니다. AUV는 수상 함정, 무인 지상 차량, 무인 지상 차량, 원격 조종 차량, 공중 센서와 함께 행동하는 경우가 많아지고 있으며, 계층화된 인식과 작업 분산형 운영을 실현하고 있습니다. 이러한 다중 영역 통합을 위해서는 대역폭, 대기 시간, 전력 소비 제약의 균형을 유지하면서 안전하고 탄력적인 데이터 전송 채널에 중점을 둔 견고한 통신 스택이 필요합니다.

규제와 조달 생태계도 변화하고 있으며, 공공기관과 국방기관은 표준, 인증 경로, 수명주기 유지 모델을 중요시하고 있습니다. 업계 관계자들은 설계의 모듈화, 인터페이스의 표준화, 하드웨어와 소프트웨어 업데이트 및 분석을 번들로 제공하는 서비스 중심 모델 제공으로 대응하고 있습니다. 마지막으로, 비용 최적화 및 지속가능성과 같은 시장의 요구는 공급업체들이 재사용 가능한 아키텍처, 신속한 임무 재구성, 환경 영향 감소에 중점을 두도록 촉구하고 있으며, 비 전통적 분야에서 AUV의 채택을 가속화하고 있습니다.

2025년 관세 조치가 공급망 복원력, 부품 조달, 자율운항선박 생태계의 조달 전략에 미치는 누적 효과

관세 및 무역 조치와 관련하여 2025년까지 제정된 누적적인 정책 조치는 AUV 생태계 이해관계자들에게 중요한 일련의 고려사항들을 만들어냈습니다. 관세로 인한 비용 차이는 특히 특정 제조 거점에 집중된 특수 센서, 추진 모터, 특정 배터리 화학물질 등의 부품 조달 전략에 영향을 미치고 있습니다. 그 결과, 조달팀은 공급망을 파악할 때 단가에만 의존하지 않고, 총 상륙 비용과 공급업체의 탄력성을 재평가했습니다.

수입 규제와 세관의 감시 강화는 공급 리드타임과 재고 정책에도 영향을 미치고 있습니다. 과거 린 생산을 위해 재고를 최적화했던 조직들도 이제는 납기 리스크를 줄이기 위해 완충재고 전략과 단기적인 이중 소싱을 중시하게 되었습니다. 또한, 관세 일정과 컴플라이언스 문서의 도입으로 인해 기밀 기술의 국경 간 이동에 대한 관리 오버헤드가 증가하여 법률, 수출 관리, 공급망 기능 간의 긴밀한 조정이 필요하게 되었습니다.

정부 및 방산 프로그램에 참여하는 원청업체와 서브시스템 공급업체들은 징벌적 관세를 피하고 국가 안보 요건을 충족하기 위해 중요 부품의 국내 생산 또는 동맹국에서의 생산을 요구하는 사례가 증가하고 있습니다. 이와 병행하여, 상업적 최종 사용자는 대체 공급업체로의 다각화를 가속화하고, 제약적인 투입물의 국내 생산이 가능한 대체품에 대한 R&D 투자를 집중하고 있습니다. 이러한 조정과 함께 공급업체와의 관계 재구축, 현지 생산에 대한 노력 가속화, 규제에 대한 선견지명 및 무역에 부합하는 조달 전략의 중요성이 강조되고 있습니다.

제품 유형, 기술 스택, 최종 사용자 요구 사항, 응용 분야가 AUV 설계 및 조달 우선 순위를 결정하는 방법, 실용적인 세분화에 대한 통찰력 제공

세분화 분석을 통해 제품 유형, 기술, 최종 사용자, 용도에 따라 서로 다른 요구사항을 파악하여 개발 우선순위와 상용화 경로를 설정합니다. 제품 유형에 따라 대형 AUV, 중형 AUV, 얕은 AUV의 구분에 따라 내구성, 탑재량, 구조 설계에 대한 요구사항이 다르며, 대형 플랫폼의 경우 장시간 내구성 임무와 무거운 탑재물 탑재가 우선시되는 반면, 얕은 AUV의 경우 기동성 및 비용 효율적인 배치가 중요시됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 자율 무인 잠수정(AUV) 시장 : 제품 유형별

제9장 자율 무인 잠수정(AUV) 시장 : 기술별

제10장 자율 무인 잠수정(AUV) 시장 : 최종사용자별

제11장 자율 무인 잠수정(AUV) 시장 : 용도별

제12장 자율 무인 잠수정(AUV) 시장 : 지역별

제13장 자율 무인 잠수정(AUV) 시장 : 그룹별

제14장 자율 무인 잠수정(AUV) 시장 : 국가별

제15장 경쟁 구도

LSH
영문 목차

영문목차

The Autonomous Underwater Vehicles Market is projected to grow by USD 5.84 billion at a CAGR of 14.18% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 2.02 billion
Estimated Year [2025] USD 2.29 billion
Forecast Year [2032] USD 5.84 billion
CAGR (%) 14.18%

A concise orientation to contemporary autonomous underwater vehicle capabilities, operational roles, and the evolving drivers reshaping subsea autonomy

Autonomous underwater vehicles (AUVs) have moved from niche research platforms to operational systems that unlock new capabilities beneath the surface. These self-guided platforms integrate propulsion, navigation, imaging, and communications subsystems to perform missions that are hazardous, costly, or impossible for human divers and crewed vessels. As mission envelopes expand-from shallow-water infrastructure inspection to deep-sea scientific exploration and complex defense operations-AUVs are being reimagined as modular, networked assets that operate as part of larger maritime systems rather than as isolated tools.

Driving this evolution are advances in propulsion and energy storage, improvements in sensor fidelity and processing, and the maturation of autonomy software that enables mission-level decision-making. These developments have compressed the time between prototype demonstrations and fielded capabilities, resulting in a more diverse supplier base and broader user adoption. At the same time, regulatory frameworks, cross-domain interoperability requirements, and the economics of lifecycle operations are creating new expectations for reliability, maintainability, and secure communications.

Consequently, organizations evaluating AUV deployment must weigh technical readiness against operational doctrine, lifecycle supportability, and data exploitation pathways. This introduction sets the stage for a detailed examination of the technological shifts, policy drivers, and commercial forces that are reshaping how AUVs are designed, procured, and operated across government, commercial, and research communities.

How advances in autonomy, energy systems, sensor fusion, and integrated maritime architectures are redefining subsea operational paradigms

The AUV landscape is undergoing transformative shifts driven by converging technology and operational demand. Autonomy algorithms, supported by edge compute and machine learning, are enabling vehicles to make higher-fidelity decisions in complex underwater environments. Simultaneously, energy density improvements and hybrid propulsion concepts are extending mission duration and increasing the depth and range of operations. These technical advances are complemented by miniaturized, higher-resolution imaging and acoustic systems, which are allowing platforms to collect richer datasets for both scientific and commercial analysis.

Another core shift is the movement from single-platform missions toward integrated, multi-asset maritime architectures. AUVs increasingly operate alongside surface vessels, unmanned surface vehicles, remotely operated vehicles, and airborne sensors to create layered awareness and task-distributed operations. This multi-domain integration demands robust communications stacks that balance bandwidth, latency, and power constraints, while also emphasizing secure and resilient data transfer channels.

Regulatory and procurement ecosystems are also changing, with public agencies and defense organizations emphasizing standards, certification pathways, and lifecycle sustainment models. Industry actors are responding by modularizing designs, standardizing interfaces, and offering service-centric models that bundle hardware with software updates and analytics. Finally, market imperatives such as cost optimization and sustainability are prompting suppliers to focus on reusable architectures, rapid mission reconfiguration, and lower environmental impact, accelerating the adoption of AUVs across non-traditional sectors.

The cumulative effects of 2025 tariff measures on supply chain resilience, component sourcing, and procurement strategies in the autonomous underwater vehicle ecosystem

The cumulative policy actions enacted through 2025 with respect to tariffs and trade measures have created a material set of considerations for stakeholders in the AUV ecosystem. Tariff-induced cost differentials have influenced component sourcing strategies, particularly for specialized sensors, propulsion motors, and certain battery chemistries that are concentrated in specific manufacturing hubs. As a result, procurement teams are reassessing total landed costs and supplier resilience rather than relying solely on unit price when qualifying supply chains.

Import restrictions and increased customs scrutiny have also affected supply lead times and inventory policies. Organizations that previously optimized inventory for lean manufacturing are now giving greater weight to buffer stock strategies and near-term dual-sourcing to mitigate delivery risks. In addition, the introduction of tariff schedules and compliance documentation has increased administrative overhead for cross-border transfers of sensitive technologies, prompting closer coordination between legal, export control, and supply chain functions.

For prime contractors and subsystem suppliers serving government and defense programs, tariff dynamics have sharpened the case for onshore or allied-country production of critical components to avoid punitive duties and to satisfy national security requirements. In parallel, commercial end users have accelerated diversification into alternative suppliers and focused R&D investments on domestically producible substitutes for constrained inputs. These adjustments, taken together, are reshaping supplier relationships, accelerating localized manufacturing initiatives, and increasing the emphasis on regulatory foresight and trade-compliant sourcing strategies.

Actionable segmentation insights revealing how product types, technology stacks, end-user requirements, and application domains determine AUV design and procurement priorities

Segmentation analysis reveals differentiated demands across product types, technologies, end users, and applications that are shaping development priorities and commercialization pathways. Based on product type, distinctions between large AUVs, medium AUVs, and shallow AUVs drive divergent requirements for endurance, payload capacity, and structural design, with larger platforms prioritizing long-endurance missions and heavier payload suites while shallow types emphasize maneuverability and cost-effective deployment.

Based on technology, clear specialization is evident across collision avoidance systems, communication systems, imaging systems, navigation systems, and propulsion systems. Communication systems split into acoustic communication systems and satellite communication systems, where acoustic links provide underwater near-range data exchange and satellite channels support surface-relayed, long-range telemetry. Imaging systems break down into LED lighting, multibeam echo sounders, side-scan sonar, and sub-bottom profilers, each delivering distinct geophysical and visual datasets for mapping and inspection tasks. Navigation systems encompass acoustic navigation systems, dead reckoning navigation systems, geophysical navigation systems, and inertial navigation systems, offering layered position solutions that vary in accuracy and susceptibility to environmental conditions. Propulsion systems are further segmented into battery modules, fin control actuators, linear electromechanical actuators, propulsion motors, and pump motors, with each element influencing endurance, maneuverability, and maintainability.

Based on end user, commercial entities, military and defense organizations, public sector bodies, and research organizations present varied purchase criteria. Commercial entities such as oil and gas companies, renewable energy firms, and telecommunication companies often emphasize throughput, operational uptime, and integration with asset management systems. Military and defense actors, including coast guard units, naval forces, and special forces, prioritize ruggedization, mission secrecy, and interoperability. Public sector stakeholders like disaster management authorities, environmental agencies, and marine institutes focus on regulatory compliance and long-term monitoring, while research organizations spanning government agencies, independent research bodies, and universities emphasize data fidelity and experimental flexibility.

Based on application, the portfolio of use-cases ranges from archaeology and exploration to environmental protection and monitoring, military and defense missions, oceanography, oil and gas operations, and search and salvage operations. Environmental protection and monitoring subdivides into biodiversity studies, marine pollution tracking, and water quality monitoring; military and defense operations include anti-submarine warfare, mine countermeasures, and underwater surveillance; oceanography incorporates marine biology studies and oceanographic research; oil and gas activities center on offshore exploration, pipeline inspection, and underwater maintenance; and search and salvage operations focus on emergency response and recovery missions. This layered segmentation highlights the importance of tailoring platform capabilities and support models to the specific operational profile and stakeholder expectations.

Comparative regional dynamics showing how the Americas, Europe Middle East & Africa, and Asia-Pacific uniquely influence adoption, manufacturing, and operational priorities

Regional dynamics continue to shape technology adoption pathways and ecosystem development in distinctive ways. In the Americas, the emphasis is on integration with offshore energy infrastructure, coastal surveillance, and an expanding private sector that demands commercial-grade reliability and uptime. Regional industrial capabilities, coupled with defense modernization initiatives, support a blend of domestic production and targeted international partnerships that accelerate fielding of advanced subsystems.

Europe, the Middle East & Africa exhibit a heterogeneous set of drivers. Western European nations emphasize standards, environmental monitoring, and maritime security; the Middle East focuses significant attention on seabed surveying and offshore energy optimization; and sub-Saharan and North African actors are increasingly exploring AUV-enabled coastal management and research collaborations. Across this region, regulatory harmonization and public-private cooperation are important levers for scaling adoption.

The Asia-Pacific region displays intense activity driven by dense maritime traffic, expansive offshore energy activity, and increasing defense procurement. Strong manufacturing ecosystems in several countries support component-level specialization, while regional research institutions and industrial partners accelerate missionization of emerging sensor and propulsion technologies. These regional distinctions affect supplier strategies, partnership models, and service delivery frameworks, making geographic sensitivity a core factor in commercialization and deployment planning.

Insights into how firms are differentiating through subsystem specialization, service-oriented offerings, modular integration, and aftermarket support

Company-level behavior in the AUV sector is defined by a mix of vertical integration, focused specialization, and collaborative innovation. Leading firms are pursuing differentiated strategies that combine platform development with proprietary sensor packages, software stacks for autonomy, and service-oriented offerings such as mission planning and data analytics. Partnerships between subsystem suppliers and systems integrators are accelerating capability delivery, while alliances with academic and research institutions support validation and certification of novel sensor and navigation concepts.

A notable trend is the growth of specialized firms that concentrate on single subsystems-such as propulsion motors, high-bandwidth acoustic modems, or compact multibeam echo sounders-which then team with integrators to field full solutions. This model reduces development timelines and enhances modularity, but it also places a premium on systems engineering and interface standardization to ensure reliability across mission contexts. In addition, incumbents and new entrants alike are exploring commercial service models that bundle hardware with recurring revenue from data services, maintenance contracts, and upgraded autonomy features.

Competitive positioning increasingly hinges on aftermarket support, software lifecycle management, and the ability to offer rapid customization for unique mission profiles. Firms that can demonstrate secure data handling, regulatory compliance, and proven endurance in harsh operating conditions are securing sustained contracts across defense, energy, and scientific markets, while those that neglect these elements face barriers to scaling beyond prototype demonstrations.

Practical and prioritized strategic actions for executives to fortify supply chains, accelerate modular innovation, and secure long-term customer engagement

Industry leaders should adopt a set of practical initiatives to capture strategic advantage as technology and policy landscapes evolve. First, invest in modular architectures that enable rapid payload swaps and incremental upgrades to collision avoidance, imaging, navigation, and propulsion subsystems. Modular platforms reduce time-to-mission and lower upgrade costs, making them attractive to diverse end users from research institutions to defense agencies.

Second, create resilient supply chain strategies that combine qualified domestic suppliers with vetted international partners and maintain strategic buffer inventories for critical components. This approach minimizes the operational impact of trade measures and customs delays while preserving access to specialized sensor and motor technologies. Third, prioritize secure, layered communications architectures that integrate acoustic, optical, and surface-relay satellite links to ensure mission continuity and robust data exfiltration under varying conditions.

Fourth, engage early with regulatory authorities and standards bodies to shape credible certification pathways and interoperability specifications. Proactive regulatory engagement shortens procurement cycles and reduces ambiguity for customers. Fifth, build partnerships with research organizations and environmental agencies to validate sensing technologies in operational contexts, enhancing credibility and accelerating adoption for environmental and oceanographic use-cases. Finally, adopt service-centric commercial models that bundle hardware with analytics, mission planning, and lifecycle support to create predictable revenue streams and deepen customer relationships.

Transparent and rigorous research methodology combining primary interviews, secondary technical analysis, supply chain mapping, and scenario-based validation

The research underpinning these insights combines multiple qualitative and quantitative approaches designed to ensure robustness and relevance to decision-makers. Primary inputs included structured interviews with technical leaders, procurement officers, and program managers across commercial, defense, and research organizations, complemented by debriefs with subsystem suppliers and integration specialists. These firsthand perspectives provided detailed context on operational constraints, procurement timelines, and technology acceptance criteria.

Secondary research encompassed an exhaustive review of academic literature, technical white papers, and regulatory filings to map technology maturation curves for key subsystems such as collision avoidance sensors, imaging arrays, navigation systems, and propulsion components. In addition, supply chain mapping identified concentration risks and supplier interdependencies that inform resilience recommendations.

Findings were triangulated through cross-validation between interview data, technical documentation, and observed deployment patterns to identify convergent themes and isolate areas of uncertainty. Scenario analysis was applied to explore the implications of trade policy shifts, regulatory changes, and technology breakthroughs. Quality assurance procedures included peer validation of technical assertions and iterative review cycles with domain experts to ensure that conclusions are practical, defensible, and actionable for stakeholders considering investment, procurement, or operational adoption.

A concise synthesis of technological, policy, and operational imperatives that together define success criteria for autonomous underwater vehicle stakeholders

In sum, the autonomous underwater vehicle domain is at an inflection point where technical maturation, evolving policy frameworks, and shifting commercial incentives are collectively driving broader operational adoption. Advances in autonomy, sensor fidelity, propulsion, and communications are enabling more complex missions and expanding use-cases across scientific, commercial, and defense sectors. At the same time, trade policy developments and region-specific industrial capacities are shaping sourcing, manufacturing, and procurement strategies.

Organizations that succeed will be those that balance technical capability with operational pragmatism: designing modular platforms, securing resilient suppliers, engaging proactively with regulatory ecosystems, and delivering service-oriented solutions that address customer mission and lifecycle needs. Collaboration across industry, government, and research institutions will remain a critical accelerant for validating new technologies and establishing interoperable standards.

Ultimately, the path forward requires disciplined investment in core subsystems and supportive practices in supply chain, regulatory engagement, and customer enablement. By aligning product roadmaps with clear end-user requirements and regional realities, stakeholders can convert technological promise into sustained operational advantage beneath the waves.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Autonomous Underwater Vehicles Market, by Product Type

9. Autonomous Underwater Vehicles Market, by Technology

10. Autonomous Underwater Vehicles Market, by End User

11. Autonomous Underwater Vehicles Market, by Application

12. Autonomous Underwater Vehicles Market, by Region

13. Autonomous Underwater Vehicles Market, by Group

14. Autonomous Underwater Vehicles Market, by Country

15. Competitive Landscape

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기