종양학 분야 인공지능 시장 : 제품 유형, 기술, 암 유형, 용도, 최종사용자, 전개 방식별 - 세계 예측(2025-2030년)
Artificial Intelligence in Oncology Market by Product Type, Technology, Cancer Type, Application, End User, Deployment Mode - Global Forecast 2025-2030
상품코드 : 1809855
리서치사 : 360iResearch
발행일 : 2025년 08월
페이지 정보 : 영문 188 Pages
 라이선스 & 가격 (부가세 별도)
US $ 3,939 ₩ 5,687,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF 및 Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 4,249 ₩ 6,134,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF 및 Excel 보고서를 동일기업 내 5명까지 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 5,759 ₩ 8,314,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF 및 Excel 보고서를 동일 기업 내 동일 지역 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)
US $ 6,969 ₩ 10,061,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트 등의 복사 및 붙여넣기, 인쇄가 가능합니다. 온라인 플랫폼에서 1년 동안 보고서를 무제한으로 다운로드할 수 있으며, 정기적으로 업데이트되는 정보도 이용할 수 있습니다. (연 3-4회 정도 업데이트)


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

종양학 분야 인공지능 시장은 2024년에는 23억 9,000만 달러로 평가되었으며, 2025년에는 27억 4,000만 달러, CAGR 15.14%로 성장하여 2030년에는 55억 9,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 23억 9,000만 달러
추정 연도 2025년 27억 4,000만 달러
예측 연도 2030년 55억 9,000만 달러
CAGR(%) 15.14%

인공지능에 의한 암 치료의 변화: 현대 종양학 및 임상 의사결정에서 AI의 중요한 역할 밝혀내다

인공지능은 조기 발견, 정밀 치료, 환자 맞춤화에서 전례 없는 능력을 제공함으로써 종양학 분야를 근본적으로 재구성하고 있습니다. 새로운 알고리즘은 현재 복잡한 의료 영상과 유전체 데이터를 실시간으로 분석하여 임상의가 진단 시간을 단축하고, 뛰어난 민감도로 암의 이상 징후를 식별할 수 있도록 돕고 있습니다. 그 결과, 치료팀은 개별 종양 프로파일에 맞는 중재를 보다 효과적으로 수행하여 치료 효과와 환자의 삶의 질 향상을 촉진할 수 있습니다.

획기적인 인공지능 혁신이 헬스케어 생태계 전반의 종양 진단, 치료 전략 및 환자 결과를 재정의하는 방법

획기적인 인공지능 혁신은 종양학 진단 및 치료 계획의 모든 단계를 재정의하고 있습니다. 컴퓨터 비전 모델은 이전에는 인간의 검토를 피할 수 있었던 미묘한 이미지 이상을 감지하여 다양한 조직 유형에 걸쳐 악성 종양을 조기에 정확하게 식별할 수 있게 되었습니다. 방대한 멀티모달 데이터세트로 훈련된 딥러닝 프레임워크는 분자간 상호작용을 예측하고, 리드 화합물 스크리닝을 가속화하여 신약개발 과정을 최적화하고 있습니다.

종양학 분야 인공지능 통합 및 공급망에 대한 2025년 미국 관세의 복합적 영향 평가

2025년 미국의 관세 도입은 종양학 공급망에서 인공지능 솔루션의 조달 및 배포에 새로운 복잡성을 가져왔습니다. 그래픽 처리 장치 및 특수 이미지 처리 구성요소를 포함한 고성능 컴퓨팅 하드웨어에 대한 관세는 고급 AI 실험실 설치에 필요한 자본 지출을 증가시켰습니다. 그 결과, 의료 서비스 제공자들은 조달 전략을 재검토하고, 진단 및 치료 능력을 손상시키지 않으면서 비용 압박을 완화할 수 있는 대체 공급업체를 모색하고 있습니다.

AI 종양학에서 제품 유형, 기술, 암 카테고리, 용도, 최종사용자, 전개 모델 전반에 걸친 중요한 세분화 역학 파악

세분화 역학에 대한 인사이트는 제품 유형이 채택 경로를 형성하는 방법에 대한 다각적인 관점을 제공하며, 영상 진단 시스템 및 로봇 수술 시스템을 포함한 하드웨어는 자본 집약적 인 배포의 최전선에 있습니다. 동시에 컨설팅 서비스, 도입 서비스 등의 서비스 제공이 기술 공급자와 임상 최종사용자 사이의 가교 역할을 하고 있습니다. 반면, 소프트웨어 솔루션은 기존 인프라에 고급 분석을 직접 계층화하여 임상의가 예측 모델 및 시각화 도구와 상호 작용할 수 있는 매끄러운 인터페이스를 구축합니다.

AI 기반 종양학 솔루션의 아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 지역별 차이와 성장 궤적을 살펴봅니다.

아메리카는 연구기관에 대한 막대한 자금 지원과 우호적인 규제 환경에 힘입어 암 분야 인공지능에 대한 투자와 상용화를 선도하고 있습니다. 북미의 암센터는 일찍부터 도입하여 주요 병원 네트워크에 고급 영상 분석 및 임상 의사결정 지원 플랫폼을 구축했습니다. 한편, 라틴아메리카 시장은 아직 시작 단계에 있지만, 지역 파트너십과 지역 역학 프로파일에 대응하기 위한 시범 프로그램을 통해 유망한 시장으로 평가받고 있습니다.

암 탐지 및 치료 분야에서 인공지능 애플리케이션의 미래를 만들어가는 주요 혁신가 및 전략적 협력자들을 조명합니다.

주요 기술 제공업체들은 인공지능과 임상 종양학의 융합에 있어 혁신을 지속하고 있으며, 전략적 제휴와 플랫폼 확장을 통해 경쟁 구도를 형성하고 있습니다. 선도적인 영상 진단 업체들은 자체 딥러닝 모듈을 기존 플랫폼에 통합하여 영상의학과 전문의가 복잡한 데이터세트에서 미묘한 종양 시그니처를 식별할 수 있도록 돕고 있습니다. 개발형 제약사들은 AI를 우선시하는 스타트업과 파트너십을 맺고 표적 탐색을 강화하고 시험 프로토콜을 간소화하는 등 데이터 중심의 의약품 개발을 위한 업계 전반의 움직임을 반영하고 있습니다.

업계 리더들이 인공지능의 획기적인 발전을 활용하여 암 연구, 임상 혁신, 효율성 향상을 위한 탁월한 암 연구를 추진할 수 있도록 지원합니다.

종양학 분야에서 인공지능을 활용하고자 하는 업계 리더들은 고품질 이미지 및 유전체 데이터 수집을 지원하는 강력한 데이터 인프라 개발을 우선순위에 두어야 합니다. 안전한 데이터 파이프라인과 표준화된 어노테이션 프로토콜을 구축함으로써 예측 모델이 대표성 있는 데이터세트로 확실하게 훈련되어 알고리즘의 신뢰성과 임상적 수용성을 높일 수 있습니다. 동시에 암 전문의, 데이터 과학자, 소프트웨어 엔지니어를 통합한 기능 간 팀을 육성하여 AI 도구의 반복적 개선을 가속화하고 기존 임상 워크플로우에 원활하게 통합할 수 있도록 지원합니다.

정성적 조사, 정량적 분석, 전문가 인터뷰, 데이터 삼각측량 등 종합적인 조사 방법을 통해 AI 종양학에 대한 인사이트를 밝힙니다.

본 분석을 뒷받침하는 조사 방법은 엄격성과 신뢰성을 보장하기 위해 여러 데이터 수집 및 검증 단계를 통합하고 있습니다. 먼저, 종합적인 2차 조사를 실시하여, 학술지, 회의록, 회의록, 규제 당국 신고서, 백서 등을 조사하여 기술 발전과 규제 현황을 매핑했습니다. 이러한 기반이 주요 시장 주제와 새로운 트렌드를 파악할 수 있는 배경이 되었습니다.

종양 진단, 치료의 개인화, 연구 발전, 환자 예후에 혁명을 가져올 인공지능의 역할 정리

결론적으로, 인공지능은 종양학의 조사, 진단, 치료의 개별화에 패러다임의 변화를 가져오고 있습니다. 영상 분석, 유전체 해석, 결과 예측에 고급 알고리즘을 활용함으로써 의료 기관은 보다 정확한 개입을 제공하고 환자의 결과를 개선할 수 있습니다. 딥러닝 프레임워크와 자연어 처리 도구의 성숙은 틈새 사용 사례를 넘어 AI의 범위를 확장하여 현대 암 치료의 기본 요소가 되었습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

제7장 미국 관세의 누적 영향 2025

제8장 종양학 분야 인공지능 시장 : 제품 유형별

제9장 종양학 분야 인공지능 시장 : 기술별

제10장 종양학 분야 인공지능 시장 : 암 종류별

제11장 종양학 분야 인공지능 시장 : 용도별

제12장 종양학 분야 인공지능 시장 : 최종사용자별

제13장 종양학 분야 인공지능 시장 : 전개 방식별

제14장 아메리카의 종양학 분야 인공지능 시장

제15장 유럽, 중동 및 아프리카의 종양학 분야 인공지능 시장

제16장 아시아태평양의 종양학 분야 인공지능 시장

제17장 경쟁 구도

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

KSM
영문 목차

영문목차

The Artificial Intelligence in Oncology Market was valued at USD 2.39 billion in 2024 and is projected to grow to USD 2.74 billion in 2025, with a CAGR of 15.14%, reaching USD 5.59 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.39 billion
Estimated Year [2025] USD 2.74 billion
Forecast Year [2030] USD 5.59 billion
CAGR (%) 15.14%

Transforming Cancer Care Through Artificial Intelligence: Unveiling the Pivotal Role of AI in Modern Oncology and Clinical Decision-Making

Artificial intelligence is radically reshaping the field of oncology, delivering unprecedented capabilities in early detection, precision treatment, and patient personalization. Emerging algorithms now analyze complex medical images and genomic data in real time, empowering clinicians to identify cancerous anomalies with remarkable sensitivity while reducing diagnostic turnaround times. As a result, care teams can tailor interventions to individual tumor profiles more effectively than ever before, driving improvements in treatment efficacy and patient quality of life.

Moreover, the convergence of advanced machine learning techniques with cloud infrastructure and big data repositories has accelerated collaborative research across institutions. Cancer centers and pharmaceutical developers can now leverage shared analytical platforms to uncover novel biomarkers, optimize therapeutic targets, and design adaptive clinical trials. This integration of AI tools into both routine clinical workflows and translational research pipelines heralds a new era of data-driven oncology.

Against this backdrop of rapid innovation, this executive summary offers a concise yet comprehensive overview of the transformative forces reshaping AI adoption in cancer care. It highlights strategic inflection points, explores the impact of evolving trade policies, examines segmentation and regional patterns, and distills actionable recommendations for industry leaders seeking to harness artificial intelligence as a catalyst for future growth.

How Breakthrough Artificial Intelligence Innovations are Redefining Oncology Diagnostics, Treatment Strategies, and Patient Outcomes Across Healthcare Ecosystems

Breakthrough artificial intelligence innovations are redefining every stage of oncology diagnostics and treatment planning. Computer vision models now detect subtle imaging anomalies that previously evaded human review, enabling earlier and more accurate identification of malignancies across diverse tissue types. Deep learning frameworks trained on vast multi-modal datasets are optimizing drug discovery processes by predicting molecular interactions and accelerating lead compound screening.

Furthermore, machine learning algorithms are enhancing outcome prediction by integrating clinical, genomic, and lifestyle data to forecast individual responses to specific therapies. This granular level of insight supports personalized medicine initiatives, guiding clinicians in selecting the most appropriate interventions while minimizing adverse effects.

The landscape continues to evolve as natural language processing tools extract critical insights from unstructured pathology reports and medical literature, enriching decision-support systems with the latest scientific findings. Collaborative platforms unite research institutes, diagnostic centers, and technology providers in co-development partnerships, fostering an ecosystem where open innovation catalyzes new applications. As a result, oncology care is transitioning from one-size-fits-all protocols to iterative, data-driven strategies that continuously adapt to emerging evidence, setting the stage for sustained improvements in patient outcomes.

Assessing the Compounding Effects of 2025 United States Tariffs on Artificial Intelligence Integration and Supply Chains in Oncology

The implementation of United States tariffs in 2025 has introduced new complexities into the procurement and deployment of artificial intelligence solutions within oncology supply chains. Tariffs on high-performance computing hardware, including graphic processing units and specialized imaging components, have elevated the capital expenditure required for setting up advanced AI laboratories. Consequently, providers are reassessing sourcing strategies and exploring alternate vendors to mitigate cost pressures without compromising diagnostic or therapeutic capabilities.

Additionally, regulatory fees applied to imported robotic surgical systems and diagnostic imaging equipment have slowed equipment upgrade cycles in certain clinical settings. In response, some service providers have turned to collaborative financing models and leasing arrangements to maintain access to cutting-edge technologies. Software developers and technology integrators have also reconfigured their pricing structures, offering modular subscription services to spread investment over time.

These shifts have accelerated interest in domestic manufacturing and local partnerships aimed at reducing reliance on cross-border supply chains. Companies are forging alliances with regional technology firms and academic centers to develop homegrown solutions capable of meeting stringent quality and performance requirements. By diversifying procurement channels and adopting more flexible deployment approaches, the oncology community is navigating the new tariff environment while sustaining momentum toward AI-driven breakthroughs.

Unveiling Critical Segmentation Dynamics Across Product Types, Technologies, Cancer Categories, Applications, End Users, and Deployment Models in AI Oncology

Insight into segmentation dynamics offers a multifaceted view of how product types shape adoption pathways, with hardware encompassing diagnostic imaging systems and robotic surgical systems at the forefront of capital-intensive deployments. Simultaneously, service offerings such as consulting services and implementation services bridge the gap between technology providers and clinical end users. Meanwhile, software solutions layer advanced analytics directly onto existing infrastructure, creating a seamless interface for clinicians to interact with predictive models and visualization tools.

From a technology perspective, the field is characterized by a rich interplay between computer vision capabilities that excel at pattern recognition in radiology images, deep learning architectures that adaptively refine model performance, conventional machine learning algorithms that offer transparency in decision logic, and natural language processing innovations that unlock insights from unstructured clinical narratives and pathology reports. Each of these technological pillars contributes distinct strengths, which, when integrated, offer a holistic approach to complex oncological challenges.

Examining cancer type segmentation reveals that breast cancer continues to attract significant attention due to high incidence rates and well-defined screening protocols. Cervical and colorectal cancer interventions benefit from AI-enhanced cytology and endoscopic imaging, respectively, while esophageal and stomach (gastric) cancers leverage endoscopic image analysis and algorithmic pattern detection. Liver and lung cancer applications focus on volumetric imaging analytics, skin cancer initiatives exploit mobile-based lesion screening, and thyroid cancer diagnostics increasingly adopt nodule classification models.

Application segmentation further uncovers how diagnostic platforms leverage imaging analytics, molecular diagnostics, and pathology image interpretation. Drug discovery efforts harness AI for clinical trials design, lead discovery, and target identification workflows. Outcome prediction tools assess complication risks, response likelihood, and survival rate visualization. Personalized medicine advances rely on biomarker identification, genomic data analysis, and therapeutic optimization. Treatment planning systems support chemotherapy planning and surgical planning through scenario simulation and resource optimization.

End user segmentation demonstrates that diagnostic centers and hospitals & clinics represent the primary points of care for AI-driven solutions, while pharma & biotech companies integrate predictive analytics into R&D pipelines. Research institutes & organizations serve as incubators for innovative algorithms and validation studies, often collaborating with service providers for real-world testing. Finally, deployment mode segmentation indicates an almost equal split between cloud-based platforms that deliver scalable analytics and on-premise implementations that prioritize data sovereignty and low-latency processing, reflecting diverse organizational priorities and regulatory landscapes.

Exploring Regional Variances and Growth Trajectories Across the Americas, Europe Middle East and Africa, and Asia-Pacific in AI-Driven Oncology Solutions

The Americas region continues to lead in investment and commercialization of artificial intelligence in oncology, driven by substantial funding for research institutions and a favorable regulatory environment. North American cancer centers are early adopters, deploying advanced imaging analytics and clinical decision-support platforms across major hospital networks. Collaboration between academic medical centers and technology developers catalyzes translation of algorithms from proof-of-concept to clinical practice, while Latin American markets, though nascent, show promise through regional partnerships and pilot programs aimed at addressing local epidemiological profiles.

Europe, the Middle East & Africa present a heterogeneous landscape in which regulatory harmonization and cross-border health initiatives influence adoption rates. Western European healthcare systems emphasize data privacy and interoperability, leading to the rise of federated learning frameworks that protect patient information while enabling multi-site model training. In the Middle East, national health agencies invest in AI-enabled screening and treatment planning to enhance care delivery, whereas African research centers leverage open-source tools and cloud collaborations to overcome infrastructure limitations and expand access to diagnostic analytics.

Asia-Pacific is emerging as a vibrant center for AI-powered oncology solutions, propelled by robust manufacturing capabilities and large patient populations. China's strategic focus on precision medicine and government incentives has accelerated domestic algorithm development and regulatory approval processes. Japan and South Korea integrate robotic surgical systems and advanced imaging into routine oncology workflows. At the same time, Southeast Asian nations are adopting cloud-based platforms to bridge gaps in specialist availability, demonstrating how regional strategies reflect unique healthcare priorities, resource constraints, and innovation agendas.

Spotlighting Leading Innovators and Strategic Collaborators Shaping the Future of Artificial Intelligence Applications in Cancer Detection and Treatment

Leading technology providers continue to innovate at the convergence of artificial intelligence and clinical oncology, shaping the competitive landscape through strategic collaborations and platform expansions. Major diagnostic imaging manufacturers integrate proprietary deep learning modules into existing platforms, enabling radiologists to identify subtle tumor signatures in complex datasets. Established pharmaceutical firms are forging partnerships with AI-first startups to enhance target discovery and streamline trial protocols, reflecting an industry-wide push toward data-centric drug development.

Simultaneously, pure-play AI companies specializing in pathology image analysis, genomic interpretation, and outcome prediction are differentiating through validated clinical deployments and regulatory clearances. A cohort of emerging ventures focuses on niche applications such as liquid biopsy interpretation and point-of-care lesion screening, often collaborating with academic research institutes to build credibility and evidence bases. These innovative companies are also attracting strategic investments from venture capital and corporate venture arms, underscoring the high strategic value placed on AI capabilities.

In addition, service integrators and consulting firms are expanding their offerings to include end-to-end AI implementation roadmaps, spanning data governance frameworks to change management strategies. By positioning themselves as trusted partners, these firms help healthcare providers and life sciences organizations navigate technical complexities, regulatory requirements, and interoperability challenges. Collectively, the interplay among established medical device leaders, AI specialists, and implementation experts is driving a dynamic ecosystem where strategic alliances and continuous innovation define market leadership.

Empowering Industry Leaders to Harness Artificial Intelligence Breakthroughs to Drive Oncology Research Excellence, Clinical Innovation, and Enhanced Efficiency

Industry leaders seeking to capitalize on artificial intelligence in oncology should prioritize the development of robust data infrastructure that supports high-quality image and genomic data acquisition. Establishing secure data pipelines and standardized annotation protocols will ensure that predictive models are trained on representative datasets, enhancing algorithm reliability and clinical acceptance. Simultaneously, fostering cross-functional teams that integrate oncologists, data scientists, and software engineers can accelerate iterative refinement of AI tools and promote seamless integration into existing clinical workflows.

Collaborating with regulatory bodies early in the development process is essential to align algorithm validation studies with evolving guidelines and expedite market entry. Embracing federated learning approaches can address data privacy concerns while enabling multi-institutional model training, broadening the generalizability of AI solutions. Additionally, organizations should invest in explainability frameworks that demystify decision-support outputs, building clinician trust and facilitating informed decision-making.

Furthermore, forging strategic partnerships with technology integrators and academic centers can expedite pilot deployments and real-world validations. Engaging in consortiums focused on standardization efforts-such as data common models and interoperability specifications-will help mitigate integration barriers and streamline deployment across heterogeneous healthcare IT environments. By balancing technological rigor with operational agility, industry leaders can unlock the full potential of AI to transform oncology research, diagnosis, and personalized treatment pathways.

Comprehensive Research Methodologies Combining Qualitative Surveys, Quantitative Analysis, Expert Interviews and Data Triangulation to Illuminate AI Oncology Insights

The research methodology underpinning this analysis integrates multiple data collection and validation phases to ensure rigor and reliability. Initially, comprehensive secondary research was conducted, surveying peer-reviewed journals, conference proceedings, regulatory filings, and white papers to map technological advancements and regulatory landscapes. This foundation provided the contextual backdrop for identifying key market themes and emerging trends.

Concurrently, expert consultations were conducted with oncologists, data scientists, technology integrators, and procurement officers to capture first-hand perspectives on adoption drivers, implementation challenges, and strategic priorities. These qualitative insights were systematically triangulated with quantitative data gathered from institutional reports and financial disclosures, allowing for cross-validation and consistency checks across diverse information sources.

Additional rigor was introduced through a multi-stage data triangulation process. Assumptions and interpretations derived from expert interviews were benchmarked against anonymized operational metrics and case study outcomes. Where discrepancies arose, follow-up dialogues were initiated to reconcile findings and refine analytical frameworks. Finally, internal quality control measures, including peer reviews and consistency audits, ensured that the synthesized insights presented herein are both comprehensive and actionable for stakeholders navigating the AI-in-oncology landscape.

Summarizing the Role of Artificial Intelligence in Revolutionizing Oncology Diagnostics, Treatment Personalization, Research Advances and Patient Outcomes

In conclusion, artificial intelligence is ushering in a paradigm shift in oncology research, diagnostics, and treatment personalization. By harnessing sophisticated algorithms for imaging analysis, genomic interpretation, and outcome prediction, healthcare organizations can deliver more precise interventions and improve patient outcomes. The maturation of deep learning frameworks and natural language processing tools has extended the reach of AI beyond niche use cases to become a foundational element of modern cancer care.

Strategic considerations such as trade policy impacts, segmentation dynamics, and regional variances underscore the importance of adaptive planning and collaborative innovation. Leaders who establish robust data governance, engage regulatory stakeholders proactively, and foster interdisciplinary partnerships will be best positioned to translate AI advancements into clinical value. As global ecosystems evolve, continuous evaluation of deployment models and performance metrics will be crucial for sustaining momentum.

Ultimately, the integration of artificial intelligence into oncology represents more than a technological enhancement-it signifies a fundamental transformation in how cancer is detected, understood, and treated. Stakeholders who embrace this shift with a clear strategic vision and operational agility will drive the next wave of breakthroughs in precision medicine and patient-centric care.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Artificial Intelligence in Oncology Market, by Product Type

9. Artificial Intelligence in Oncology Market, by Technology

10. Artificial Intelligence in Oncology Market, by Cancer Type

11. Artificial Intelligence in Oncology Market, by Application

12. Artificial Intelligence in Oncology Market, by End User

13. Artificial Intelligence in Oncology Market, by Deployment Mode

14. Americas Artificial Intelligence in Oncology Market

15. Europe, Middle East & Africa Artificial Intelligence in Oncology Market

16. Asia-Pacific Artificial Intelligence in Oncology Market

17. Competitive Landscape

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기