세계의 혈액제제 시장 규모는 2024년에는 455억 4,000만 달러에 달하며, 2025년에는 480억 9,000만 달러, CAGR 5.74%로 성장하며, 2030년에는 636억 6,000만 달러에 달할 것으로 예측됩니다.
| 주요 시장 통계 | |
|---|---|
| 기준연도 : 2024년 | 455억 4,000만 달러 |
| 추정연도 : 2025년 | 480억 9,000만 달러 |
| 예측연도 : 2030년 | 636억 6,000만 달러 |
| CAGR(%) | 5.74% |
의료 기관이 보다 안전하고 효율적이며 추적 가능한 생물제제의 흐름을 추구함에 따라 혈액제제 생태계는 급속한 기술적, 업무적 개선의 시기를 맞이하고 있습니다. 채혈 및 보존을 위한 하드웨어의 발전과 함께 시설 관리 및 온도 모니터링을 위한 소프트웨어 계층의 확장과 함께 헌혈, 처리, 보존, 유통에 걸친 워크플로우를 재정의하고 있습니다. 혈액 은행, 병원 수혈 서비스에서 외래수술센터(ASC), 연구 기관에 이르기까지 이해 관계자들은 탄력성, 자동화 및 통합 품질관리를 강조하기 위해 조달 우선 순위를 재조정하고 있습니다.
혈액제제를 둘러싼 환경은 공급망과 임상 실무를 모두 변화시키고 있는 몇 가지 수렴적인 벡터를 따라 변화하고 있습니다. 첫째, 자동화는 단일 장비의 장점을 넘어 자동화된 성분 추출, 원심분리, 온도를 고려한 보관 시스템을 통합하는 체계적인 워크플로우를 향해 나아가고 있으며, 이를 통해 수작업과 변동을 줄이고 있습니다. 둘째, 백혈구 감소, 방사선 조사, 병원체 불활성화와 같은 안전 기술이 처리 경로의 초기 단계에 통합되어 다운스트림의 위험을 줄이고 더 광범위한 임상 이용 사례를 지원하기 위해 통합되고 있습니다. 셋째, 소프트웨어에 의한 프로세스 거버넌스가 성숙해지고 있으며, 온도 모니터링 및 혈액 확립 시스템을 통해 기존에는 수작업에 의한 기록 관리에 의존했던 감사 가능성과 컴플라이언스 지원이 제공되고 있습니다.
최근 관세 조치는 혈액제제 밸류체인 전반에 걸쳐 조달 및 공급 탄력성에 복잡한 요소를 도입했습니다. 수입 부품, 자본 장비 및 특정 소모품에 대한 누적 관세 조치는 국경 간 공급업체에 의존하는 의료기관의 총 소유 비용을 증가시켜 많은 조직이 공급업체 집중과 리드 타임을 재평가하도록 유도하고 있습니다. 이에 따라 조달팀은 무역 정책의 변동에 노출되는 위험을 줄이기 위해 이중 소싱 전략을 우선시하고 지역 제조업체와의 협력을 강화하고 있습니다.
세분화는 제품 개발 로드맵과 조달 선택을 모두 촉진합니다. 최종사용자는 제품이 임상 및 운영상의 요구를 어떻게 충족시킬 수 있는지를 명확히 할 필요가 있기 때문입니다. 이 시장은 제공별로 소모품, 장비, 소프트웨어로 구성됩니다. 소모품에는 아페레시스 키트, 혈액백 시스템, 백혈구 제거 필터, 트랜스퍼 세트, 튜브 및 바늘 등 혈액센터나 병원의 시술 당 비용과 마진을 결정하는 품목이 포함됩니다. 장비는 수집 장치, 조사 장치, 병원체 저감 시스템, 처리 장치, 보관 설비로 구성되며, 수집 장치는 다시 아페레시스 장치와 채혈 믹서로 나뉘고, 처리 장치는 자동 성분 추출 장치와 원심분리기를 포함하며, 보관 설비는 혈액은행 냉장고, 극저온 냉동고, 혈장 냉동고, 혈소판 배양기, 교반기를 포함합니다. 및 교반기를 포함합니다. 소프트웨어는 재고 관리 및 규제 추적을 가능하게 하는 혈액 사업체 솔루션과 온도 모니터링 플랫폼을 다루고 있습니다.
지역적 역학은 공급망, 규제 당국의 기대, 새로운 혈액제제 기술 채택 일정에 큰 영향을 미칩니다. 북미와 남미에서는 대규모 혈액 서비스 인프라, 첨단화된 병원 시스템, 자동화 및 안전 기술에 대한 관심 증가가 혼재되어 있습니다. 이러한 환경에서 조달 결정은 상환 프레임워크, 기존 공급업체와의 관계, 온도에 민감한 제품의 장거리 유통의 현실에 영향을 받습니다.
혈액제제 분야의 경쟁 구도는 단일 제품의 우위보다는 생태계의 포지셔닝에 의해 정의되고 있습니다. 선도적인 공급업체들은 일회용, 자본 장비 및 소프트웨어 기능을 결합한 종합적인 포트폴리오를 통해 차별화를 꾀하고 있으며, 벤더 인터페이스가 적고 예측 가능한 수명주기 비용에 대한 조달 선호도를 충족하는 엔드투엔드 가치 제안을 제공합니다. 제공합니다. 주요 공급업체들의 전략적 행동에는 새로운 처리 기술을 검증하기 위한 임상 네트워크와의 파트너십 형성, 유지보수 리드타임을 단축하기 위한 지역 서비스 센터에 대한 투자, 첨단 장비의 도입 마찰을 줄이기 위한 교육 및 인증 프로그램 제공 등이 포함됩니다.
업계 리더는 공급 탄력성, 안전 및 통합에 직접적으로 대응하는 전략적 행동 포트폴리오를 우선순위에 두어야 합니다. 첫째, 총소유비용을 안정화하고 관세에 의한 가격 충격에 대한 노출을 줄이기 위해 채혈 및 보관 장비에 대한 설비 투자와 소모품 및 정비에 대한 장기 계약의 균형을 맞추는 모듈식 조달 전략을 채택하는 것입니다. 둘째, 혈액 확립 및 온도 모니터링을 위한 소프트웨어 통합을 가속화하여 수작업으로 인한 실수를 줄이고 규제 준수를 지원하는 투명하고 감사 가능한 워크플로우를 구축합니다.
본 Executive Summary를 지원하는 분석은 실용적이고 증거에 기반한 인사이트를 도출하기 위해 설계된 다중 방법론적 연구 접근법을 결합하여 이루어졌습니다. 2차 정보 통합은 기술, 프로세스, 컴플라이언스 요구사항에 대한 종합적인 전체상을 구축하기 위해 피어리뷰 문헌, 규제 지침, 기술 표준, 제조업체의 기술 사양서를 활용했습니다. 1차 조사는 혈액은행 책임자, 병원 수혈 책임자, 조달 전문가, 임상병리학자, 장비 엔지니어와의 구조화된 인터뷰를 통해 현실적인 제약과 채택 촉진요인을 파악했습니다.
즉, 의료기관과 공급업체는 거래적 상호작용에서 탄력적 조달, 자동화, 데이터화된 품질 시스템을 결합한 통합적 가치 파트너십으로 전환해야 합니다. 의료기관은 처리 자동화, 병원체 완화 및 소프트웨어 거버넌스에 대한 투자를 단순한 자본 프로젝트가 아닌 임상 일관성과 공급 탄력성을 달성하기 위한 전략적 수단으로 인식해야 합니다. 모듈화되고, 서비스가 풍부하며, 상호 운용 가능한 솔루션을 제공하는 공급업체는 외래수술센터(ASC)부터 대형 병원 네트워크에 이르기까지 다양한 최종사용자의 미묘한 요구 사항을 충족시킬 수 있는 최상의 위치에 있습니다.
The Blood Preparation Market was valued at USD 45.54 billion in 2024 and is projected to grow to USD 48.09 billion in 2025, with a CAGR of 5.74%, reaching USD 63.66 billion by 2030.
| KEY MARKET STATISTICS | |
|---|---|
| Base Year [2024] | USD 45.54 billion |
| Estimated Year [2025] | USD 48.09 billion |
| Forecast Year [2030] | USD 63.66 billion |
| CAGR (%) | 5.74% |
The blood preparation ecosystem is undergoing a period of rapid technological and operational refinement as institutions seek safer, more efficient, and more traceable flows of biological products. Advances in collection and storage hardware, combined with a growing software layer for establishment management and temperature monitoring, are redefining workflows across donation, processing, storage, and distribution. Stakeholders from blood banks and hospital transfusion services to ambulatory surgical centers and research organizations are recalibrating procurement priorities to emphasize resiliency, automation, and integrated quality controls.
Against this backdrop, procurement decision-makers must balance capital investments in collection devices, pathogen reduction systems, and storage infrastructure with recurring consumable needs such as apheresis kits, tubing, and filters. At the same time, clinical teams are emphasizing component integrity for plasma-derived therapies, transfusion support in oncology and cardiology, and specialized needs for immune and hepatic care. The introductory framing here establishes the operational tensions that follow through the analysis: securing supply continuity, minimizing contamination risk, and enabling seamless traceability through both hardware and software interventions.
The landscape of blood preparation is shifting along several convergent vectors that are transforming both supply chains and clinical practice. First, automation is moving beyond single-instrument gains toward orchestrated workflows that integrate automated component extraction, centrifugation, and temperature-aware storage systems, thereby reducing manual handling and variability. Second, safety technologies such as leukoreduction, irradiation, and pathogen inactivation are becoming embedded earlier in processing pathways to reduce downstream risk and support broader clinical use cases. Third, software-enabled process governance is maturing, with temperature monitoring and blood establishment systems providing auditability and compliance support that used to rely on manual recordkeeping.
These shifts are complemented by evolving end-user expectations; hospitals and clinics are increasingly demanding modular systems that can scale with changing case mixes and regulatory requirements. Research and biomanufacturing applications are driving adaptations in processing and storage capabilities to support plasma-derived therapies and novel biologic workflows. Finally, the interplay between disposables and capital equipment is changing procurement models, encouraging suppliers to present lifecycle propositions rather than standalone product sales. Together, these transformative shifts necessitate that clinical, operational, and purchasing leaders rethink supplier relationships, maintenance models, and integration strategies to capture the full value of technological advances.
Recent tariff actions have introduced a material layer of complexity into procurement and supply resilience across the blood preparation value chain. Cumulative tariff measures on imported components, capital equipment, and certain consumables have increased the total cost of ownership for institutions reliant on cross-border suppliers, prompting many organizations to reassess supplier concentration and lead times. As a result, procurement teams are prioritizing dual-sourcing strategies and closer collaboration with regional manufacturers to mitigate exposure to trade policy volatility.
Operationally, tariffs have affected decisions around capital replacement cycles and servicing contracts for items such as apheresis machines, pathogen reduction systems, and temperature-sensitive storage equipment. Institutions that had planned synchronized upgrades are reconsidering schedules to avoid short-term price escalations while continuing to manage compliance and safety imperatives. On the supplier side, manufacturers are responding with localized manufacturing investments, regional distribution hubs, and revised commercial models that emphasize bundled service agreements to offset tariff-driven margins. In parallel, regulatory and customs processing requirements associated with tariff regimes are demanding greater documentation and logistics lead time, which influences blood bank inventory strategies and the timing of elective procedures that depend on reliable transfusion support.
Segmentation drives both product development roadmaps and procurement choices because end users require clarity on how offerings map to clinical and operational needs. Based on offerings, the market encompasses Disposables & Consumables, Equipment, and Software. Disposables & Consumables include items such as apheresis kits, blood bag systems, leukocyte reduction filters, transfer sets, and tubing and needles that determine per-procedure cost and margin for blood centers and hospitals. Equipment comprises collection devices, irradiators, pathogen reduction systems, processing equipment, and storage equipment; collection devices further break down into apheresis machines and blood collection mixers, processing equipment includes automated component extractors and centrifuges, and storage equipment captures blood bank refrigerators, cryogenic freezers, plasma freezers, and platelet incubators and agitators. Software covers blood establishment solutions and temperature monitoring platforms that enable inventory control and regulatory traceability.
Based on component, segmentation differentiates plasma, platelets, red blood cells, and whole blood, each with distinct processing, storage, and clinical utilization profiles. Based on processing automation, offerings span fully automated systems, manual workflows, and semi-automated solutions, which influence staffing models and throughput. Based on preparation method, the range includes apheresis processing, extraction workflows, freezing and cryopreservation, irradiation, leukoreduction, pathogen inactivation, washing and volume adjustment, and whole blood processing, each requiring specific consumables and equipment footprints. Based on application, the market addresses plasma-derived therapies, research and biomanufacturing, and transfusion support; plasma-derived therapies further subdivide into autoimmune and neurologic disorders, liver disease and critical care, and primary immunodeficiency, while transfusion support addresses anemia management, cardiovascular and transplant care, hematological disorders, obstetrics and gynecology, and oncology treatments. Finally, based on end user, demand channels include ambulatory surgical centers, blood banks, clinics, and hospitals, with each end user imposing different scale and compliance requirements that affect product selection and service needs.
Regional dynamics exert substantial influence on supply chains, regulatory expectations, and adoption timelines for new blood preparation technologies. The Americas context features a mix of large established blood service infrastructures, advanced hospital systems, and an increasing focus on automation and safety technologies. In this environment, procurement decisions are influenced by reimbursement frameworks, established supplier relationships, and the logistical realities of long-distance distribution for temperature-sensitive products.
Europe, the Middle East & Africa presents a heterogeneous tableau where high-regulation markets drive early adoption of compliance-oriented software and pathogen reduction technologies, while emerging markets in the region prioritize scalable, cost-effective disposables and resilient storage solutions. Adoption patterns in this region are mediated by national blood service models and regional trade dynamics. The Asia-Pacific region is characterized by rapid capacity expansion in both hospital services and plasma collection infrastructure, a growing appetite for localized manufacturing to reduce import dependency, and increasing investment in automation and digital quality systems. Across all regions, the interplay between local regulatory frameworks, tariff influences, and healthcare delivery models shapes how quickly new equipment and processes are validated and scaled.
Competitive dynamics in the blood preparation space are defined less by single-product dominance and more by ecosystem positioning. Leading players differentiate through comprehensive portfolios that combine disposables, capital equipment, and software capabilities, enabling end-to-end value propositions that address procurement preference for fewer vendor interfaces and predictable lifecycle costs. Strategic behaviors observed among major suppliers include forming partnerships with clinical networks to validate new processing technologies, investing in regional service footprints to shorten maintenance lead times, and offering training and accreditation programs that lower implementation friction for sophisticated equipment.
Smaller specialized suppliers are carving sustainable niches by focusing on high-margin consumables, modular add-ons for pathogen reduction, and software modules that integrate with legacy blood establishment systems. Contract manufacturing organizations and regional device assemblers have been expanding capabilities to serve localized demand, particularly where tariff pressures incentivize domestic sourcing. Across the competitive spectrum, successful companies are aligning commercial models to emphasize bundled service agreements, data-enabled support offerings, and interoperability that eases integration with existing blood center workflows.
Industry leaders should prioritize a portfolio of strategic actions that directly address supply resilience, safety, and integration. First, adopt a modular procurement strategy that balances capital investment in collection and storage equipment with long-term agreements for disposables and maintenance to stabilize total cost of ownership and reduce exposure to tariff-driven price shocks. Second, accelerate integration of software for blood establishment and temperature monitoring to create transparent, auditable workflows that reduce manual error and support regulatory compliance.
Third, diversify supplier relationships by qualifying regional manufacturers and contract assemblers to shorten lead times and create buffer capacity for critical consumables. Fourth, invest in phased automation that aligns with staffing realities; prioritize semi-automated interventions that deliver immediate reductions in handling risk while planning for fully automated workflows where throughput and budget permit. Fifth, create clinical-laboratory partnerships to validate pathogen reduction and leukoreduction protocols in real-world settings, generating internal evidence that supports broader adoption and payer conversations. Finally, engage proactively with policymakers and customs authorities to streamline import documentation and advocate for tariff treatment that recognizes the clinical imperative of uninterrupted blood supply.
The analysis underpinning this executive summary combines a multi-method research approach designed to produce actionable, evidence-based insights. Secondary source synthesis drew on peer-reviewed literature, regulatory guidance, technical standards, and manufacturer technical specifications to build a comprehensive picture of technologies, processes, and compliance requirements. Primary research was conducted through structured interviews with blood bank directors, hospital transfusion leads, procurement professionals, clinical pathologists, and device engineers to surface real-world constraints and adoption drivers.
Data triangulation integrated qualitative interview findings with product feature mappings, supply chain case studies, and regional regulatory reviews to validate themes and identify divergence across regions and end-user types. Segmentation logic was applied iteratively to ensure that offerings, components, processing automation levels, preparation methods, applications, and end users were coherently aligned to observed purchasing behavior and clinical workflows. Where appropriate, scenario analysis was used to stress-test procurement and operational responses to tariff shifts and supply disruptions without attempting to estimate market sizes or forecast quantitative outcomes.
The findings converge on a clear imperative: institutions and suppliers must move from transactional interactions to integrated value partnerships that combine resilient sourcing, automation, and data-enabled quality systems. Providers should view investments in processing automation, pathogen mitigation, and software governance not merely as capital projects but as strategic enablers of clinical consistency and supply resilience. Suppliers who offer modular, service-rich, and interoperable solutions will be best positioned to meet the nuanced demands of diverse end users from ambulatory surgical centers to large hospital networks.
At the same time, procurement teams must adopt a more dynamic risk posture that accounts for tariff volatility and regional manufacturing shifts. By aligning clinical validation programs with procurement cycles and engaging in active supplier qualification, organizations can shorten time-to-adoption for high-value technologies while safeguarding continuity of supply. The conclusions here are intended to guide pragmatic decisions that improve patient safety, operational reliability, and cost transparency across the blood preparation lifecycle.