¼¼°èÀÇ Ç×°ø ¿¬·á ½ÃÀå ¿¹Ãø : ¿¬·á À¯Çü, Ç×°ø±â À¯Çü, ¿¬·á ÇüÅÂ, ÃÖÁ¾ »ç¿ëÀÚº°(2025-2030³â)
Aviation Fuel Market by Fuel Type, Aircraft Type, Fuel Form, End-User - Global Forecast 2025-2030
»óǰÄÚµå : 1808431
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 195 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,559,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,997,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,128,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,836,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

Ç×°ø ¿¬·á ½ÃÀåÀº 2024³â¿¡´Â 2,515¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025³â¿¡´Â CAGR 7.16%·Î 2,690¾ï ´Þ·¯·Î ¼ºÀåÇϰí, 2030³â¿¡´Â 3,809¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024³â 2,515¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤³â 2025³â 2,690¾ï ´Þ·¯
¿¹Ãø¿¬µµ 2030³â 3,809¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 7.16%

Ç×°ø ¿¬·áÀÇ ±âÃÊ, °ø±Þ¸ÁÀÇ Çö½Ç ¹× ¿À´Ã³¯ ¾÷°èÀÇ ÀÇ»ç °áÁ¤À» Çü¼ºÇÏ´Â ¿î¿µ ¹× Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ±äÀå¿¡ ´ëÇÑ Àü·«Àû ¹æÇâ

Ç×°ø ¿¬·á¸¦ µÑ·¯½Ñ »óȲÀº ¼ö³â°£ÀÇ ¿îÇ× ¿ä±¸ »çÇ×°ú °¡¼Ó ȯ°æ, ÁöÁ¤ÇÐÀû ¹× °ø±Þ Ãø¸éÀÇ ¾Ð·ÂÀÌ ±³Â÷ÇÏ´Â °÷¿¡ ÀÖ½À´Ï´Ù. Ç×°ø»ç, ¿¬·á Á¦Á¶¾÷ü, ±ÔÁ¦ ´ç±¹Àº ½Å·Ú¼º, ¾ÈÀü¼º, ºñ¿ë È¿À²¼º°ú Żź¼ÒÈ­, ¹«¿ª Á¤Ã¥ ¹× ¿ø·á Á¶´ÞÀÇ º¯È­¿¡ ´ëÀÀÇÏ´Â ¿äû°úÀÇ ±ÕÇüÀ» ¸ÂÃ߸鼭 Àüȯ±â¸¦ ±Øº¹Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óȲ¿¡¼­ º» ¹®¼­´Â ±âÁØÀÌ µÇ´Â ¿ë¾î, Á¤Á¦, À¯Åë, ¿îÇ׿¡ °ü·ÃµÈ ÁÖ¿ä ÀÌÇØ°ü°èÀÚ, Á¶´Þ°ú Àü°³ °áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀο¡ ´ëÇØ ¸íÈ®ÇÑ °üÁ¡¿¡¼­ ¼³¸íÇÕ´Ï´Ù.

±â¼úÀû, ±ÔÁ¦Àû, ÁöÁ¤ÇÐÀû ÈûÀÇ ¼ö·ÅÀ¸·Î Ç×°ø ¿¬·á °ø±Þ, ÀÎÁõ °æ·Î ¹× Á¶´Þ Àü·«ÀÌ ÀçÁ¶ÇÕµÇ¾î ¾÷°è°¡ ½Å¼ÓÇÏ°Ô ÀûÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

Ç×°ø¿¬·áÀÇ Á¤¼¼´Â ±â¼úÀû ¼º¼÷, ±ÔÁ¦ °­È­, ÁöÁ¤ÇÐÀû ¿ªÇÐÀÇ º¯È­°¡ °áÇÕµÈ º¯ÇõÀûÀÎ ½ÃÇÁÆ® Áß¿¡ ÀÖ½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ Ç×°ø ¿¬·á´Â Á¤Ã¥Àû Àμ¾Æ¼ºê, ±â¾÷ÀÇ Å»Åº¼ÒÈ­ ¾à¼Ó, Ç×°ø»ç¿ÍÀÇ ¿ÀÇÁÅ×ÀÌÅ© °è¾à Áõ°¡·Î ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿¡¼­ »ó¾÷Àû ±Ô¸ðÀÇ °æ·Î·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ¿ø·á ó¸® °³¼±, µå·Ó ÀÎ ¿¬·á ÀÎÁõ ÆÐ½º¿þÀÌ, SAF »ý»ê ´É·Â¿¡ ´ëÇÑ ÀÚº» ÅõÀÚ Áõ°¡·Î ä¿ë¿¡ ´ëÇÑ ±â¼úÀû À庮ÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÇ 2025³â±îÁö ´©Àû °ü¼¼ º¯°æÀ¸·Î Á¶´Þ °æÁ¦¼º, °ø±Þ¸Á ź·Â¼º, Ç×°ø ¿¬·á À¯Åë¿¡ À־ ÅõÀÚ ¿ì¼±¼øÀ§°¡ ¾î¶»°Ô º¯È­Çϰí Àִ°¡

2025³â±îÁö Á¦Á¤ ¶Ç´Â Á¶Á¤µÈ ¹Ì±¹ °ü¼¼Á¶Ä¡ÀÇ ´©Àû È¿°ú´Â ¹Ýµå½Ã ¿¬·á »ý»êÀÇ ±â¼úÀû ±âÃʸ¦ º¯È­½ÃŰÁö ¾Ê°í Ç×°ø ¿¬·á ¿¡ÄڽýºÅÛ ÀüüÀÇ ºñ¿ë ±¸Á¶¿Í °ø±Þ¸Á °áÁ¤À» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. Á¤È­Á¦Ç° ¹× ÁÖ¿ä Áß°£Ã¼¿¡ ´ëÇÑ °ü¼¼ ÀλóÀº ÀϺΠÁ¤À¯¾÷ÀÚ¿Í ÆÇ¸Å¾÷üµé¿¡°Ô ±¹°æÀ» ³Ñ¾î¼­´Â Á¶´ÞÀ» ÀçÆò°¡ÇÏ°í ±¹³» ¶Ç´Â ±ÙÇØ¿¡¼­ Á¶´Þ Àü·«À» °¡¼ÓÈ­½ÃŰ´Â µ¿±âºÎ¿©°¡ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Á¤Àº º¸´Ù Àå±âÀûÀÎ °è¾à ÆÐÅϰú °ü¼¼ º¯µ¿ÀÇ ¿µÇâÀ» ¹Þ±â ¾î·Á¿î ¾ÈÁ¤µÈ ¿ø·á ½ºÆ®¸²ÀÇ È®º¸¿¡ ÁßÁ¡À» µÎ´Â ÇüÅ·Π³ªÅ¸³³´Ï´Ù.

¿¬·á µî±Þ, Ç×°ø±â ¿îÇ×, ¿¬·á ÇüÅÂ, ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ëÀÚ ÇÁ·ÎÆÄÀÏÀ» ½ÇÇà °¡´ÉÇÑ °ø±Þ ¹× ¹èÄ¡ ¼±Åÿ¡ ¿¬°áÇÏ´Â ºÎ¹® Áß½ÉÀÇ Ç×°ø ¿¬·á¿¡ ´ëÇÑ °üÁ¡

¼¼ºÐÈ­´Â ¸ÅÅ©·Î µ¿ÇâÀ» ¿¬·á Æ÷Æ®Æú¸®¿À ¹× °í°´ ±â¹Ý ¿î¿µ Çൿ¿¡ ¹Ý¿µÇÏ´Â ½Ç¿ëÀûÀÎ ·»Á Á¦°øÇÕ´Ï´Ù. ¿¬·á À¯Çü¿¡ µû¶ó ¾÷°è´Â ±âÁ¸ ¿¬·á¿Í Áö¼Ó °¡´ÉÇÑ ¿¬·á·Î ±¸º°µË´Ï´Ù. ÀüÅëÀûÀÎ Ä«Å×°í¸® ÀÚü´Â ¾Æ°¡½º, Á¦Æ® A, Á¦Æ® A-1, Á¦Æ® B¸¦ Æ÷ÇÔÇÑ ¿©·¯ Á¤Á¦ Á¦Ç°À¸·Î ±¸¼ºµÇ¸ç, °¢°¢Àº À¯Åë ³×Æ®¿öÅ©¿Í ±ÞÀ¯ ÀÛ¾÷¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¸íÈ®ÇÑ Ãë±Þ, º¸°ü ¹× »ç¾ç ¿ä±¸ »çÇ×À» °¡Áö°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ¿Í ¿î¿µÀÚ´Â ´Ù¾çÇÑ ¿î¿µ ÇÁ·ÎÆÄÀÏ¿¡¼­ ¿©·¯ ¿¬·á µî±ÞÀ» °ü¸®ÇØ¾ß Çϸç È¥ÇÕ Àü·«Àº ¿¬·á °è¿­¿¡ µû¶ó ´Ù¸£¹Ç·Î ÀÌ·¯ÇÑ ±¸º°ÀÌ Áß¿äÇÕ´Ï´Ù.

°ø±Þ Àü·«°ú °æÀïÀû À§Ä¡ °áÁ¤À» °áÁ¤ÇÏ´Â ¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ¿ªÇÐ ¹× ÀÎÇÁ¶ó Çö½Ç

ÀÌ Áö¿ªÀº Ç×°ø¿¬·á ÀÌÇØ°ü°èÀÚ¸¦ À§ÇÑ »ç¾÷ ¿î¿µ»óÀÇ Çö½Ç°ú Àü·«Àû ±âȸ¸¦ ¸ðµÎ Çü¼ºÇÕ´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â È®¸³µÈ Á¤À¯¼Ò ÀÎÇÁ¶ó¿Í Áö¼Ó°¡´ÉÇÑ Ç×°ø ¿¬·á¿¡ ´ëÇÑ Ç×°ø»çÀÇ °­ÇÑ Çå½ÅÀÌ ¿ø·á Çõ½Å°ú Áö¿ª °ø±Þ¸Á ÃÖÀûÈ­¸¦ À§ÇÑ ¿ªµ¿ÀûÀΠȯ°æÀ» âÃâÇϰí ÀÖ½À´Ï´Ù. ³²ºÏ °ø±Þ »ç½½°ú ³»·ú ¹°·ùÀÇ °úÁ¦´Â Á¤À¯¾÷ÀÚ¿Í À¯Åë¾÷ü°¡ ÀúÀå Çãºê¿Í ÆÄÀÌÇÁ¶óÀÎ ¿¬°áÀ» ¾î¶»°Ô ¼³°èÇÏ´ÂÁö¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

Ç×°ø ¿¬·á »ý»ê, À¯Åë ¹× Áö¼Ó °¡´ÉÇÑ ¿¬·á °³¹ß¿¡¼­ ¸®´õ½ÊÀ» Á¤ÀÇÇÏ´Â °æÀï Æ÷Áö¼Å´×, ÆÄÆ®³Ê½Ê ¸ðµ¨ ¹× ¾÷¹« ´É·Â¿¡ ´ëÇÑ °íÂû

Ç×°ø ¿¬·áÀÇ °æÀï·ÂÀº ·¹°Å½Ã ¸®ÆÄÀ̳Ê, Á¾ÇÕ ¿¡³ÊÁö ±â¾÷, SAF Àü¹® Á¦Á¶¾÷ü, ¹°·ù °ø±ÞÀÚ, °øÇ× ±ÞÀ¯ ¿î¿µÀÚ¸¦ °áÇÕÇÑ »ýŰ迡 ÀÇÇØ Çü¼ºµË´Ï´Ù. ÁÖ¿ä ±â¾÷Àº SAF »ý»ê ´É·Â¿¡ ´ëÇÑ ¼±ÅÃÀû ÅõÀÚ¸¦ ¼öÇàÇϰí Ç×°ø»ç¿ÍÀÇ Àμö °è¾àÀ» °³¹ßÇϰí ÀÚº» Áý¾àÀû ÇÁ·ÎÁ§Æ®ÀÇ À§ÇèÀ» ÁÙÀ̱â À§ÇØ ÄÁ¼Ò½Ã¾öÀ» Çü¼ºÇÕ´Ï´Ù. ¿ø·á °ø±Þ¾÷ü¿Í »ý»ê¾÷ü, Ç×°ø»ç¿Í ¿¬·á Àμö¾÷ü °£ÀÇ ÆÄÆ®³Ê½ÊÀº ±Ý¾×À» È®º¸Çϰí, ±â¼úÀû À§ÇèÀ» °øÀ¯Çϸç, ¹ë·ùüÀÎ Àü¹ÝÀÇ Àμ¾Æ¼ºê¸¦ Á¶Á¤Çϱâ À§ÇØ Á¡Á¡ ´õ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ Ç×°ø¿¬·áÀÇ ±Ô¸ð¸¦ ³ôÀ̱â À§ÇØ °ø±ÞÀÇ Åº·Â¼º, ÀÎÇÁ¶ó Áغñ, Àü·«Àû ÅõÀÚÀÇ ±ÕÇüÀ» À¯ÁöÇϱâ À§ÇØ °æ¿µÁøÀÌ ÃëÇØ¾ß ÇÒ ½ÇÇà °¡´ÉÇÑ Á¦¾È

¾÷°è ÁöµµÀÚµéÀº ´Ü±âÀûÀÎ ¿î¿µ ȸº¹·Â°ú Áö¼Ó °¡´ÉÇÑ °æ·Î¿¡ ´ëÇÑ °èȹÀûÀÎ ÅõÀÚÀÇ ±ÕÇüÀ» ÀÌ·ç´Â ÀÌÁ߸³ Àü·«À» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, ¿ø·á °ø±Þ¿øÀ» ´Ù¾çÈ­Çϰí, ÁÖ¿ä °øÇ× Çãºê¿¡¼­ÀÇ ÀúÀå À¯¿¬¼ºÀ» °­È­Çϰí, °ü¼¼ ¹× ¹«¿ª À̵¿¿¡ ´ëÀÀÇÏ¿© ÀûÀÀÀûÀÎ Á¶´ÞÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °è¾à Á¶Ç×À» ÅëÇÕÇÔÀ¸·Î½á °ø±Þ¸ÁÀÇ Åº·Â¼ºÀ» °­È­ÇÕ´Ï´Ù. µÑ°, ¿ÀÇÁÅ×ÀÌÅ© °è¾à, ÇÕÀÛ»ç¾÷, ÀÚº»Âü¿©¸¦ ÅëÇØ SAF »ý»êÀÚ¿ÍÀÇ ÅëÇÕÀ» °¡¼ÓÈ­Çϰí, Àúź¼Ò·®¿¡ ´ëÇÑ ¾×¼¼½º¸¦ È®º¸Çϰí, Àμ¾Æ¼ºê ÇÁ·Î±×·¥À̤·¤·¤·¤·¤·³ª ÄÄÇöóÀ̾𽺠¸ÞÄ¿´ÏÁòÀÇ Àû¿ëÀ» ¹ÞÀ» ÀÚ°ÝÀ» ¾ò´Â´Ù.

ÀÌÇØ °ü°èÀÚ ÀÎÅͺä, Á¤Ã¥ ºÐ¼®, °ø±Þ¸Á ¸ÅÇÎÀ» °áÇÕÇÑ Á¶»ç ±â¹ýÀÇ Åõ¸í¼º°ú ´ÙÁß ¼Ò½º °ËÁõÀ» ÅëÇØ È®°íÇÑ °á·Ð°ú Á¦¾ÈÀ» Áö¿øÇÕ´Ï´Ù.

º» ¿ä¾àÀÇ ±âÃʰ¡ µÇ´Â Á¶»ç ÅëÇÕÀº ±â´ÉÀû Ⱦ´ÜÀû Ãâó¿Í È¥ÇÕ ±â¹ý Á¢±Ù¹ýÀ» ÅëÇÕÇÏ¿© °­·ÂÇϰí ÀçÇö¼º ÀÖ´Â °á·ÐÀ» º¸ÀåÇÕ´Ï´Ù. 1Â÷ ÀԷ¿¡´Â Á¤À¯¼Ò °æ¿µÀÚ, Ç×°ø»ç ¿¬·á Á¶´Þ ÆÀ, ¹°·ù °ø±ÞÀÚ, ÀÎÁõ ±â°ü¿¡ ´ëÇÑ ±¸Á¶È­µÈ ÀÎÅÍºä ¹× ºê¸®ÇÎÀÌ Æ÷ÇÔµÇ¾î ¾÷¹«»óÀÇ Á¦¾à°ú Çö½ÇÀÇ ÀÇ»ç°áÁ¤ ÈÞ¸®½ºÆ½½º¸¦ ºÎ°¢½ÃÄ×½À´Ï´Ù. 2Â÷ ºÐ¼®¿¡¼­´Â °ø°ø Á¤Ã¥ ¹ßÇ¥, ±â¼ú Ç¥ÁØ ¹®¼­, ¹«¿ª µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© °ø±Þ¸Á µ¿Çâ°ú °ü¼¼ º¯È­¸¦ ¹àÇû½À´Ï´Ù.

Àå±â Ç×°ø ¼½ÅÍÀÇ °æÀï·ÂÀ¸·Î ÀÎÇØ ¿îÇ×ÀÇ Åº·Â¼º°ú Áö¼Ó °¡´ÉÇÑ ¿¬·á ÅõÀÚ°¡ »óÈ£ º¸¿ÏÀûÀÎ ¿ªÇÒÀ» ¼öÇàÇÑ´Ù´Â °ÍÀ» °­Á¶ÇÏ´Â °á·ÐÀÇ Á¾ÇÕÀûÀÎ °í·Á »çÇ×

°á·ÐÀº Ç×°ø ¿¬·á Àü·«ÀÌ Á¡Â÷ ´ÙÂ÷¿øÀûÀÌ µÇ°í, Á¶´Þ, ¿î¿µ, Áö¼Ó°¡´É¼º, ±ÔÁ¦¿¡ °ü¿©ÇÏ´Â ÇùÁ¶Àû ÇൿÀ» ÇÊ¿ä·Î ÇÏ´Â Áß¾Ó ÅëÂû·ÂÀ» Á¾ÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. °ü¼¼ º¯µ¿°ú ¹°·ù Á¦¾àÀ¸·Î ÀÎÇØ ÀϽÃÀûÀÎ °ø±Þ À§ÇèÀÌ ¹ß»ýÇϱ⠶§¹®¿¡ ´Ü±â ¿î¿µÀÇ ¹Îø¼ºÀº ¿©ÀüÈ÷ ÇʼöÀûÀÌÁö¸¸ Á߱⠱˵µ´Â Àû±ØÀûÀÎ ÅõÀÚ¿Í ÇùÁ¶ÀûÀÎ °è¾àÀÌ ÇÊ¿äÇÑ Àúź¼Ò ¿¬·á °æ·Î·Î ÇâÇϰí ÀÖ´Ù´Â °ÍÀº ÀǽÉÀÇ ¿©Áö°¡ ¾ø½À´Ï´Ù. ¼º°øÀûÀÎ Á¶Á÷Àº ¿¬·áÀÇ Ãë±Þ°ú È¥ÇÕ¿¡ À־ÀÇ ±â¼úÀû ´É·ÂÀ», ¿ø·á³ª »ý»ê¿¡ÀÇ ¾×¼¼½º¸¦ È®º¸Çϸ鼭, Á¤Ã¥ÀÇ º¯È­¿¡µµ ÀûÀÀÇÒ ¼ö ÀÖ´Â »ó¾÷Àû ±¸Á¶¿Í ÅëÇÕÇÏ´Â Á¶Á÷ÀÏ °ÍÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025³â

Á¦8Àå Ç×°ø ¿¬·á ½ÃÀå : ¿¬·á À¯Çüº°

Á¦9Àå Ç×°ø ¿¬·á ½ÃÀå : Ç×°ø±â À¯Çüº°

Á¦10Àå Ç×°ø ¿¬·á ½ÃÀå : ¿¬·á ÇüÅÂ

Á¦11Àå Ç×°ø ¿¬·á ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦12Àå ¾Æ¸Þ¸®Ä« Ç×°ø ¿¬·á ½ÃÀå

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Ç×°ø ¿¬·á ½ÃÀå

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾ç Ç×°ø ¿¬·á ½ÃÀå

Á¦15Àå °æÀï ±¸µµ

Á¦16Àå ¸®¼­Ä¡ AI

Á¦17Àå ¸®¼­Ä¡ Åë°è

Á¦18Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦19Àå ¸®¼­Ä¡ ±â»ç

Á¦20Àå ºÎ·Ï

SHW
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Aviation Fuel Market was valued at USD 251.52 billion in 2024 and is projected to grow to USD 269.00 billion in 2025, with a CAGR of 7.16%, reaching USD 380.93 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 251.52 billion
Estimated Year [2025] USD 269.00 billion
Forecast Year [2030] USD 380.93 billion
CAGR (%) 7.16%

A strategic orientation to aviation fuel fundamentals, supply chain realities, and the operational and sustainability tensions shaping industry decision-making today

The aviation fuel landscape sits at the intersection of long-standing operational requirements and accelerating environmental, geopolitical and supply-side pressures. Operators, fuel producers and regulators are navigating a transition that requires balancing reliability, safety and cost-efficiency with imperatives to decarbonize and to adapt to shifting trade policies and feedstock availability. In this context, a clear-eyed introduction establishes the baseline terminology, the principal stakeholders across refining, distribution and flight operations, and the levers that influence procurement and deployment decisions.

Over the past several years, technological advances in sustainable aviation fuels, evolving blending pathways and evolving regulatory expectations have reshaped strategic priorities across commercial, military and general aviation segments. Supply chain complexity remains a defining theme: crude feedstock variability, refinery throughput constraints and logistics bottlenecks influence fuel deliverability and quality assurance protocols. Understanding these dynamics is essential because they drive near-term procurement choices and longer-term investments in alternative fuels, storage, and handling infrastructure. The remainder of this summary sets out the most consequential shifts, the policy and trade implications that are crystallizing in 2025, and the segmentation and regional lenses that will determine where value and risk concentrate for industry leaders.

Converging technological, regulatory and geopolitical forces are reshaping aviation fuel supply, certification pathways, and procurement strategies for rapid industry adaptation

The aviation fuel landscape is undergoing transformative shifts that combine technological maturation, regulatory ambition and altered geopolitical dynamics. Sustainable aviation fuels have moved from pilot projects to commercial-scale pathways, driven by policy incentives, corporate decarbonization commitments and growing airline offtake agreements. Improvements in feedstock processing, certification pathways for drop-in fuels and increased capital investment in SAF production capacity are reducing technical barriers to adoption, while blending protocols and logistical integration continue to evolve.

Meanwhile, regulatory frameworks are aligning more tightly with climate targets, prompting carriers and fuel suppliers to reassess procurement, reporting and lifecycle accounting. Trade measures and tariff adjustments are influencing sourcing strategies, pushing some buyers to shorten supply chains or to diversify feedstocks. In parallel, digitalization in logistics and quality control is improving forecasting and inventory management, enabling more responsive fuel routing and tank farm operations. Together, these shifts are compressing time horizons for strategic decisions: operational teams must reconcile short-term fuel availability and quality with longer-term commitments to sustainable pathways, and enterprises that integrate procurement, sustainability and supply-chain analytics will gain competitive advantage.

How cumulative tariff changes in the United States through 2025 are reshaping procurement economics, supply chain resilience, and investment priorities in aviation fuel distribution

The cumulative effect of United States tariff measures enacted or adjusted through 2025 has altered cost structures and supply chain decisions across the aviation fuel ecosystem without necessarily changing the technical fundamentals of fuel production. Tariff layers on refined products and key intermediates have incentivized some refiners and distributors to re-evaluate cross-border procurement and to accelerate domestic or near-shore sourcing strategies. Those adjustments manifest in longer-term contracting patterns and in increased emphasis on securing stable feedstock streams that are less exposed to tariff volatility.

For fuel consumers and integrators, tariffs have raised the importance of contractual flexibility, with more parties seeking clauses that allow for alternate suppliers or price pass-through mechanisms. In response, some suppliers are reconfiguring logistics to consolidate loads, reduce transshipment points and prioritize routes that minimize tariff exposure. The policy environment has also increased the attractiveness of upstream investments that reduce reliance on imported intermediates, including co-processing and refinery upgrades to handle a broader spectrum of feedstocks. Importantly, tariffs have accelerated discussions about domestic SAF capacity development because locally produced sustainable fuels can mitigate trade friction and offer clearer compliance pathways under incentive programs. From a risk perspective, the combined effect of tariffs and associated trade policy shifts has elevated supply chain resilience as a primary driver of procurement and capital allocation decisions across both private and public sector stakeholders.

Segment-driven perspectives on aviation fuel that connect fuel grades, aircraft operations, fuel forms and diverse end-user profiles to actionable supply and deployment choices

Segmentation provides a practical lens for translating macro trends into operational actions across fuel portfolios and customer bases. Based on fuel type, the industry is differentiated between Conventional Fuel and Sustainable Fuel, and the conventional category itself comprises several refined products including Avgas, Jet A, Jet A-1 and Jet B, each with distinct handling, storage and specification requirements that influence distribution networks and refueling operations. These distinctions matter because end users and operators must manage multiple fuel grades across diverse operational profiles, and blending strategies often differ by fuel family.

Based on aircraft type, the market divides between fixed wing and rotary wing platforms, with fixed wing operations dominating long-haul and scheduled passenger activity while rotary wing activity is characterized by shorter sorties, varied operating environments and different fuel handling constraints. These operational differences affect runway-side storage sizing, refueling turnaround expectations and quality control protocols. Based on fuel form, industry stakeholders work with blended fuels, gas phase fuels and liquid fuels, each presenting unique blending, metering and compatibility considerations for existing fleets and fueling infrastructure. Finally, based on end-user, the landscape spans commercial carriers, government and public sector operators, military users and private operators, and each class has different procurement cycles, regulatory obligations and risk tolerances. By viewing trends through these segmentation lenses, leaders can better align supply contracts, investment in storage and blending facilities, and certification efforts to the specific needs of the customers they serve.

Regional dynamics and infrastructure realities across the Americas, Europe Middle East & Africa, and Asia-Pacific that determine supply strategies and competitive positioning

Geography shapes both the operational realities and the strategic opportunities for aviation fuel stakeholders. In the Americas, established refinery infrastructure and strong airline commitments to sustainable aviation fuels have created a dynamic environment for feedstock innovation and regional supply-chain optimization, while trade policy and domestic incentives continue to shape the pace of SAF adoption and localized production investment. North-South supply linkages and inland logistics challenges also influence how refiners and distributors design storage hubs and pipeline connectivity.

Across Europe, Middle East & Africa, regulatory ambition and national decarbonization targets are prompting a patchwork of policy responses that affect certification, incentives and cross-border trade in fuels. Europe's coordinated sustainability frameworks and carbon pricing mechanisms tend to accelerate uptake of low-carbon pathways, whereas in parts of the Middle East and Africa, abundant feedstock potential and refining capacity create both export opportunities and local integration challenges. In the Asia-Pacific region, rapidly growing aviation demand intersects with diverse policy regimes and varying levels of refining sophistication; this region is a focal point for scaling SAF production through feedstock partnerships and for investments in bunkering and airport fueling innovations. Taken together, these regional dynamics mean that strategic sourcing, investment timing and partnership models must be tailored to local regulatory regimes, infrastructure maturity and the specific operational needs of carriers and government operators.

Insights into competitive positioning, partnership models and operational capabilities that define leadership in aviation fuel production, distribution and sustainable fuel development

Competitive dynamics in aviation fuel are shaped by an ecosystem that combines legacy refiners, integrated energy companies, specialized SAF producers, logistics providers and airport fueling operators. Leading companies are investing selectively in SAF capacity, developing offtake arrangements with airlines and forming consortiums to de-risk capital-intensive projects. Partnerships between feedstock suppliers and producers, as well as between airlines and fuel offtakers, are increasingly common because they secure volumes, share technological risk and align incentives across the value chain.

At the operational level, firms that excel in quality assurance, blending precision and logistics optimization deliver measurable advantages in availability and reliability. Meanwhile, downstream players are differentiating through services: flexible delivery contracts, on-site blending capability and digital platforms that improve fuel inventory visibility and forecasting. In regulatory and policy engagements, firms that participate in standard-setting and certification initiatives influence the pace and shape of SPI pathways and blending mandates. Overall, the competitive landscape rewards integrated approaches that combine technical capability, supply-chain resilience and an ability to form pragmatic partnerships with airlines, governments and downstream distributors.

Actionable recommendations for executives to balance supply resilience, infrastructure readiness and strategic investments in sustainable aviation fuel scale-up

Industry leaders should adopt a dual-track strategy that balances near-term operational resilience with deliberate investment in sustainable pathways. First, strengthen supply-chain resilience by diversifying feedstock sources, enhancing storage flexibility at key airport hubs and incorporating contractual clauses that allow adaptive sourcing in response to tariff or trade shifts. Second, accelerate integration with SAF producers through offtake agreements, joint ventures or equity participation to secure access to low-carbon volumes and to qualify for incentive programs and compliance mechanisms.

Operationally, invest in digital tools that enhance inventory visibility, blending controls and quality assurance checkpoints so that teams can respond quickly to disruptions and maintain specification compliance. Simultaneously, prioritize workforce training and retrofitting of refueling infrastructure where needed to handle blended fuels safely. From a governance perspective, engage proactively with regulators and standards bodies to shape certification pathways and to ensure that lifecycle accounting aligns with organizational sustainability targets. Finally, adopt a scenario-based investment framework that tests assumptions around tariffs, feedstock availability and demand-side adoption of SAF, thereby enabling leaders to pace capital commitments while preserving optionality for scale-up as supply economics evolve.

Methodological transparency and multi-source validation combining stakeholder interviews, policy analysis and supply-chain mapping to underpin robust conclusions and recommendations

The research synthesis underpinning this summary integrates cross-functional sources and a mixed-methods approach to ensure robust, reproducible conclusions. Primary inputs included structured interviews and briefings with refinery operators, airline fuel procurement teams, logistics providers and certification authorities to surface operational constraints and real-world decision heuristics. Secondary analysis drew on public policy announcements, technical standard documentation and trade data to contextualize supply-chain trends and tariff shifts.

Analytical methods combined qualitative thematic analysis with scenario planning and supply-chain mapping to identify critical nodes of vulnerability and opportunity. Validation steps included triangulation across independent stakeholders and iterative review by subject-matter experts in fuel chemistry, logistics and regulatory compliance. Throughout the process, data integrity checks focused on specification changes, blending protocols and certification timelines rather than on proprietary commercial volumes, ensuring that conclusions reflect operational reality and regulatory trajectories without relying on proprietary estimations.

Concluding synthesis highlighting the complementary roles of operational resilience and sustainable fuel investment for long-term aviation sector competitiveness

The conclusion synthesizes the central insight that aviation fuel strategy is increasingly multidimensional, requiring coordinated action across procurement, operations, sustainability and regulatory engagement. Short-term operational agility will remain essential as tariff dynamics and logistics constraints create episodic supply risks, but the medium-term trajectory is unmistakably toward lower-carbon fuel pathways that demand targeted investment and collaborative contracting. The organizations that succeed will be those that integrate technical capability in fuel handling and blending with commercial structures that secure feedstock and production access while remaining adaptable to policy shifts.

In practical terms, this means aligning capital allocation with phased scale-up plans for SAF, investing in digital and physical infrastructure to manage blended fuels, and engaging in partnerships that spread technological and market risk. Ultimately, a strategic orientation that treats supply resilience and sustainability as complementary - rather than competing - objectives will position operators and suppliers to thrive as the aviation sector navigates the next wave of transformation.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Aviation Fuel Market, by Fuel Type

9. Aviation Fuel Market, by Aircraft Type

10. Aviation Fuel Market, by Fuel Form

11. Aviation Fuel Market, by End-User

12. Americas Aviation Fuel Market

13. Europe, Middle East & Africa Aviation Fuel Market

14. Asia-Pacific Aviation Fuel Market

15. Competitive Landscape

16. ResearchAI

17. ResearchStatistics

18. ResearchContacts

19. ResearchArticles

20. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â