¼¼°èÀÇ Ç×°ø ¹ÙÀÌ¿À¿¬·á ½ÃÀå
Aviation Biofuel
»óǰÄÚµå : 1744994
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 277 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,136,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,408,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Ç×°ø ¹ÙÀÌ¿À¿¬·á ½ÃÀåÀº 2030³â±îÁö 488¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 387¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø ¹ÙÀÌ¿À¿¬·á ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 3.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 488¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °¡¼öºÐÇØ ¿¡½ºÅ׸£ Áö¹æ»êÀº CAGR 3.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 180¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ö¼ÒÈ­ ó¸® ½Ä¹°¼º ¿ÀÀÏ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 4.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 106¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ç×°ø ¹ÙÀÌ¿À¿¬·á ½ÃÀåÀº 2024³â¿¡ 106¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 98¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.0%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.6%¿Í 3.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ Ç×°ø ¹ÙÀÌ¿À¿¬·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ç×°ø ¹ÙÀÌ¿À¿¬·á°¡ Ç×°ø»ê¾÷ÀÇ Å»Åº¼ÒÈ­¿Í Àå±âÀûÀÎ ¿¡³ÊÁö °­°Ç¼º È®º¸ÀÇ Àü·«Àû ÃàÀ¸·Î ºÎ»óÇϰí ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Áö¼Ó °¡´ÉÇÑ Ç×°ø ¿¬·á(SAF)·Îµµ ¾Ë·ÁÁø Ç×°ø ¹ÙÀÌ¿À¿¬·á´Â Àúź¼Ò ´ëü ¿¬·á°¡ Á¦ÇÑÀûÀÎ È­¼® ±â¹Ý Á¦Æ® ¿¬·á¿¡ ÀÇÁ¸ÇØ ¿Â Ç×°ø »ê¾÷¿¡¼­ Żź¼ÒÈ­¸¦ À§ÇÑ Àü ¼¼°è ³ë·ÂÀÇ ÇÙ½ÉÀ¸·Î ºü¸£°Ô È®»êµÇ°í ÀÖ½À´Ï´Ù. ¹Î°£ Ç×°øÀÌ Àü ¼¼°è CO2 ¹èÃâ·®ÀÇ ¾à 2-3%¸¦ Â÷ÁöÇϸç, ÇâÈÄ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â °¡¿îµ¥, ¹ÙÀÌ¿À¿¬·á´Â ±âÁ¸ Ç×°ø±â ¹× ÀÎÇÁ¶ó ³»¿¡¼­ ¹èÃâ·®À» ÁÙÀÏ ¼ö ÀÖ´Â Áï°¢ÀûÀ̰í È®Àå °¡´ÉÇÑ °æ·Î¸¦ Á¦°øÇÕ´Ï´Ù. ÇöÀç ¿£Áø°ú ±ÞÀ¯ ½Ã½ºÅÛ¿¡ 'µå·Ó ÀÎ'ÇÒ ¼ö ÀÖ´Â ¹ÙÀÌ¿À¿¬·á´Â ¾ÆÁ÷ Ãʱ⠴ܰ迡 ÀÖ´Â Àü±âÈ­ ¹× ¼ö¼Ò ¼Ö·ç¼Ç¿¡ ºñÇØ °áÁ¤ÀûÀÎ ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù.

±¹Á¦¹Î°£Ç×°ø±â±¸(ICAO)ÀÇ CORSIA ÇÁ·Î±×·¥ ¹× EUÀÇ RefuelEU ÀÌ´Ï¼ÅÆ¼ºê¿Í °°Àº ¼¼°è ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â 2050³â±îÁö »ê¾÷À» ¼øÁ¦·Î·Î ²ø¾î¿Ã¸®±â À§ÇØ ¼ö¸íÁֱ⠹èÃâ·® °¨Ãà ¹× SAF È¥ÇÕ ¸ñÇ¥¸¦ Àǹ«È­Çϰí ÀÖ½À´Ï´Ù. »ç¿ëÇÑ ½Ä¿ëÀ¯, ³ó¾÷ ÀÜ·ù¹°, µµ½Ã Æó±â¹°, ºñ½Ä·® ¿¡³ÊÁö ÀÛ¹° µî Áö¼Ó °¡´ÉÇÑ ¿ø·á¿¡¼­ ÃßÃâÇÑ ¹ÙÀÌ¿À¿¬·á´Â ÀÌ·¯ÇÑ Àǹ«¸¦ ÃæÁ·ÇÏ´Â µ¥ ÀÖ¾î ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Ç×°ø»ç, °øÇ×, ¿¬·á °ø±Þ¾÷ü°¡ ESG ¸ñÇ¥¿Í ź¼Ò »ó¼â ¸ÞÄ¿´ÏÁò¿¡ ºÎÇÕÇÏ´Â Ç×°ø ¹ÙÀÌ¿À¿¬·áÀÇ Ã¤ÅÃÀº ÆÄÀÏ·µ ±Ô¸ð¿¡¼­ »ó¾÷Àû ½ÇÇà °¡´É¼ºÀ¸·Î À̵¿Çϰí ÀÖ½À´Ï´Ù.

Ç×°ø ¹ÙÀÌ¿À¿¬·á´Â ¹èÃâ·® °¨¼Ò»Ó¸¸ ¾Æ´Ï¶ó ¿¡³ÊÁö ´Ùº¯È­ ¹× °ø±Þ¸Á °­È­¶ó´Â Àü·«Àû °¡Ä¡µµ Á¦°øÇÕ´Ï´Ù. ÇöÁö ¿ø·á¸¦ »ç¿ëÇÑ SAFÀÇ Áö¿ª »ý»êÀº ºÒ¾ÈÁ¤ÇÑ ¿øÀ¯ ½ÃÀå¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ¿¡³ÊÁö ¾Èº¸¸¦ °­È­ÇÕ´Ï´Ù. °¢±¹ Á¤ºÎ´Â ÇöÀç SAF ¿ª·® °³¹ßÀ» »ê¾÷ Á¤Ã¥ÀÇ ¿ì¼±¼øÀ§·Î »ï°í ÀÖÀ¸¸ç, ÀÏÀÚ¸® âÃâ, ³óÃÌ °³¹ß, ¼øÈ¯ °æÁ¦ÀÇ Çõ½Å°ú ¿¬°èÇϰí ÀÖ½À´Ï´Ù. ±âÈÄ º¯È­ ´ëÀÀÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó Ç×°ø ¹ÙÀÌ¿À¿¬·á´Â ´õ ÀÌ»ó Æ´»õ ½ÃÀåÀÌ ¾Æ´Ï¶ó »ê¾÷ÀÇ Àå±âÀûÀÎ ¿î¿µ°ú ÆòÆÇÀÇ Áö¼Ó°¡´É¼ºÀ» ½ÇÇöÇÏ´Â ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¿ø·á±â¼ú, °¡°ø°æ·Î, ÀÎÁõ±âÁØÀº ¾î¶»°Ô »ó¾÷ÀûÀ¸·Î Àü°³µÇ°í Àִ°¡?

SAF °¡Ä¡»ç½½ Àü¹ÝÀÇ ±â¼ú Çõ½ÅÀº È®À强°ú ¼º´É ÃÖÀûÈ­¸¦ °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, HEFA(°¡¼öºÐÇØ ¿¡½ºÅ׸£ ¹× Áö¹æ»ê), ÇǼÅ-Æ®·Ó½Ã ÇÕ¼º, ¾ËÄÚ¿Ã Á¦Æ®(ATJ), ÇÕ¼º ÀÌ¼Ò ÆÄ¶óÇÉ(SIP) µî ´Ù¾çÇÑ Àüȯ °æ·Î°¡ Áö¿ª °ø±Þ ¿ø·á¿Í Á¤Ã¥Àû Àμ¾Æ¼ºê¸¦ ±â¹ÝÀ¸·Î µµÀԵǰí ÀÖ½À´Ï´Ù. HEFA´Â ÆóÀ¯¸¦ ÀÌ¿ëÇÏ´Â °¡Àå »ó¾÷ÀûÀ¸·Î ¼º¼÷ÇÑ °æ·ÎÀÌÁö¸¸, ¸®±×³ë¼¿·ê·Î¿À½º°è ¹ÙÀÌ¿À¸Å½º, Á¶·ù, ź¼Ò Æ÷Áý ÀüÀÚ ¿¬·á¸¦ Ÿ°ÙÀ¸·Î ÇÏ´Â »õ·Î¿î Ç÷§ÆûÀÌ Â÷¼¼´ë ¿ø·áÀÇ À¯¿¬¼ºÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.

°ø±Þ ¿ø·áÀÇ ´Ù¾çÈ­´Â Áß¿äÇÑ ÃÊÁ¡À̸ç, ÀÌÇØ°ü°èÀÚµéÀº ÅäÁö ÀÌ¿ë °¥µî°ú ½Ä·® ¾Èº¸ ¿ì·Á¸¦ ÇÇÇϱâ À§ÇØ Àúºñ¿ëÀÇ ºñ½Ä¿ë ¹× Æó±â¹° ±â¹Ý ÅõÀÔ ¿ø·á¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¹Ì»ý¹° Àüȯ, ¿­ºÐÇØ ¹× °¡½ºÈ­ ºÐ¾ßÀÇ Ã·´Ü ¿¬±¸ °³¹ßÀº ´õ ³ôÀº ¼öÀ², ´õ ³·Àº GHG °­µµ ¹× ¼¼°è °ø±Þ¸Á°úÀÇ ´õ ³ÐÀº ȣȯ¼ºÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼ö¸íÁÖ±â Æò°¡ ¹× ź¼Ò ¿ø´ÜÀ§ ÃøÁ¤ ±âÁØÀº SAF Á¶´ÞÀÇ Ç¥ÁØ ±¸¼º ¿ä¼Ò°¡ µÇ¾î ȯ°æ °ü·Ã ÁÖÀåÀÌ °ËÁõ °¡´ÉÇϰí, ÃßÀû °¡´ÉÇϸç, ¼¼°è ±âÈÄ º¯È­ ÇÁ·ÎÅäÄÝ¿¡ ºÎÇÕÇϵµ·Ï º¸ÀåÇÕ´Ï´Ù.

ASTM D7566°ú °°Àº Ç¥ÁØÀº ±âÁ¸ Á¦Æ® ¿¬·á¿¡ SAF¸¦ È¥ÇÕÇÒ ¶§ ±â¼úÀû, ȯ°æÀû º¥Ä¡¸¶Å©¸¦ Á¤ÀÇÇϰí ÀÖÀ¸¸ç, ÀÎÁõÀº ½ÃÀåÀÇ Àϰü¼º°ú º¸±Þ¿¡ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÎÁõ °æ·Î´Â ¿¬·áÀÇ ¾ÈÀü¼º, ¿£Áø ÀûÇÕ¼º, ½ÂÀÎµÈ °¡°ø ¹æ¹ýÀÇ ¹èÃâ°¡½º ¼º´ÉÀ» °ËÁõÇÏ´Â °ÍÀÔ´Ï´Ù. Ç×°ø»ç, ±ÔÁ¦ ´ç±¹ ¹× ¿¬·á °ø±Þ¾÷ü´Â »ó¾÷Àû ¿î¿µ¿¡ »ç¿ëÇϱâ Àü¿¡ ICAO CORSIA ÀÚ°Ý ¹× ±¹°¡º° Áö¼Ó°¡´É¼º ¶óº§¸µÀ» Æ÷ÇÔÇÑ ´Ù´Ü°è ÀÎÁõÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±âÁØÀº Á¶´Þ À§ÇèÀ» ¹æÁöÇϰí Àüü Ç×°ø »ýŰ迡 ´ëÇÑ ½Å·Ú¸¦ ±¸ÃàÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¾î¶² Ç×°ø»ç ºÎ¹®, °øÇ× Çãºê, Áö¿ª Á¤Ã¥ÀÌ Ç×°ø ¹ÙÀÌ¿À¿¬·áÀÇ µµÀÔÀ» °¡¼ÓÈ­Çϰí Àִ°¡?

ƯÈ÷ Ç÷¡±× ij¸®¾î, Ç® ¼­ºñ½º ³×Æ®¿öÅ©, Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ´Â Àúºñ¿ëÇ×°ø»ç µîÀÔ´Ï´Ù. ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÁÖ¿ä Ç×°ø»çµéÀº ¹ÙÀÌ¿À¿¬·á °ø±ÞÀ» È®º¸ÇÏ°í ¹èÃâ·® °¨Ãà ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ¹ÙÀÌ¿À¿¬·á »ý»ê¾÷ü¿Í Àå±â Àμö °è¾àÀ» ü°áÇϰí ÀÖÀ¸¸ç, SAF´Â º¸´Ù ģȯ°æÀûÀÎ ¼±ÅÃÀ» ¿øÇÏ´Â ±â¾÷ °í°´ ¹× ·¹Àú ¿©Çà°´À» À§ÇØ ÁÖ·Â ³ë¼±°ú ±âÈÄ Ä£È­ÀûÀÎ ¿©Çà ¿É¼ÇÀ» ÆÇ¸ÅÇÏ¿© ÆÇ¸ÅÇÔÀ¸·Î½á ÀÏ¹Ý Ç×°øÆí ¿îÇ׿¡ ÅëÇÕµÇ¾î °¡°í ÀÖ½À´Ï´Ù.

°øÇ×Àº ¿¬·á È¥ÇÕ ÀÎÇÁ¶ó, ÀúÀå¼Ò ¾÷±×·¹À̵å, Áö¿ª °ø±Þ¾÷ü¿ÍÀÇ Çù·ÂÀ» ÅëÇØ SAF µµÀÔÀÇ Áß¿äÇÑ ÃßÁø·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Î½º¾ØÁ©·¹½º °øÇ×(LAX), ¾Ï½ºÅ׸£´ã ½ºÅ°Æú °øÇ×, ÇÁ¶ûũǪ¸£Æ® °øÇ×, ½Ì°¡Æ÷¸£ âÀÌ °øÇ×°ú °°Àº Çãºê °øÇ×µéÀº SAF ´ëÀÀ ±ÞÀ¯ ½Ã½ºÅÛÀ» ±¸ÃàÇϰí Âø·ú·á °¨¸é, ¹èÃâ±Ç, °ÔÀÌÆ® ¿ì¼± ¹èÁ¤ µîÀ» ÅëÇØ Ç×°ø»ç¿¡ Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. Áö¿ª °øÇ× ´ç±¹µµ µµ½Ã Æó±â¹° 󸮾÷ü ¹× ³ó¾÷ °ü·Ã ±â¾÷°ú Çù·ÂÇÏ¿© ÁÖ¿ä °ø·Î ±Ùó¿¡ SAF Á¦Á¶ ½Ã¼³À» ¼³Ä¡Çß½À´Ï´Ù.

±¹°¡ ¹× Áö¿ª Á¤Ã¥ÀÌ Ç×°ø ¹ÙÀÌ¿À¿¬·á ½ÃÀå È®´ë¿¡ ÇÊ¿äÇÑ ±¸Á¶Àû Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. À¯·´¿¬ÇÕ(EU)ÀÇ RefuelEU Aviation ÀÌ´Ï¼ÅÆ¼ºê´Â 2025³âºÎÅÍ SAF È¥ÇÕºñÀ²À» Àǹ«È­Çϰí 2050³â±îÁö ¸ñÇ¥¸¦ »óÇâ Á¶Á¤ÇÒ ¿¹Á¤ÀÔ´Ï´Ù. ¹Ì±¹ ÀÎÇ÷¹ÀÌ¼Ç °¨¼Ò¹ý¿¡´Â SAF¿¡ ´ëÇÑ ¼¼¾×°øÁ¦ ¹× »ý»ê Àå·ÁÃ¥ÀÌ Æ÷ÇԵǾî ÀÖÀ¸¸ç, ¿µ±¹, ÀϺ», ij³ª´Ù µîÀÇ ±¹°¡µéÀº Ç×°ø±âÀÇ Å»Åº¼ÒÈ­¸¦ ±¹°¡ ±âÈÄ ¸ñÇ¥¿Í ¿¬°èÇÏ´Â SAF ·Îµå¸ÊÀ» ¼ö¸³Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦Àû Áö¿øÀº ¼ö¿äÀÇ È®½Ç¼º, ÅõÀÚ ÆÄÀÌÇÁ¶óÀÎ, ºÎ¹® °£ Çù·ÂÀ» ÃËÁøÇϰí, ½ÇÁõ¿¡¼­ º¸±ÞÀ¸·Î ÀüȯÇÏ´Â Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

¾÷°è Çù·Â ¸ðµ¨, ÀÚº» ¹èÄ¡, °ø±Þ¸Á Çõ½ÅÀº ¾î¶»°Ô ½ÃÀå È®´ë¸¦ Çü¼ºÇϰí Àִ°¡?

Ç×°ø»ç, ¿¡³ÊÁö ±â¾÷, ±â¼ú °³¹ß ±â¾÷ °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº ¹ÙÀÌ¿À¿¬·á »ý»ê ´É·Â°ú À¯Åë ¹°·ù¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °øµ¿ °³¹ß °è¾à, ÁöºÐ ÅõÀÚ, ÇÕÀÛÅõÀÚ´Â ¿ø·á Á¶´Þ, Á¤Á¦ ´É·Â, ¿ÀÇÁ Å×ÀÌÅ© ¾à¼ÓÀ» Á¶Á¤ÇÔÀ¸·Î½á SAF »ó¿ëÈ­ÀÇ À§ÇèÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼®À¯ ¹× °¡½º ȸ»çµéÀº Żź¼ÒÈ­ Àü·«ÀÇ ÀÏȯÀ¸·Î ¹ÙÀÌ¿À¿¬·áÀÇ Æ÷Áö¼Å´×À» Àç°ËÅäÇϰí, ±âÁ¸ Á¤À¯¼Ò ÀÚ»êÀ» Ȱ¿ëÇÏ¿© SAF¸¦ Á¦Ç° Æ÷Æ®Æú¸®¿À¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

¹Î°ü ÀÚ±ÝÁ¶´Þ ¸ÞÄ¿´ÏÁò, ±×¸°º»µå, ±âÈÄ º¯È­ ´ëÀÀ ±ÝÀ¶»óǰÀÌ ¹ÙÀÌ¿À¸®ÆÄÀ̳ʸ® ½Å¼³ ¹× ±âÁ¸ Ç÷£Æ® °³º¸¼ö¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ´ÙÀÚ°³¹ßÀºÇà, ±âÈÄ º¯È­±â±Ý, Á¤ºÎ°è ÆÝµå´Â ¼±Áø±¹°ú ½ÅÈï±¹ ½ÃÀå ¸ðµÎ¿¡¼­ SAF º¥Ã³¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. »ý»êÀÚÀÇ ¼öÀÍ ¿¹Ãø °¡´É¼ºÀ» º¸ÀåÇÏ°í ¼±ÅõÀÚ¸¦ ÃËÁøÇϱâ À§ÇØ Àå±â ±¸¸Å °è¾à°ú °¡°Ý ¹Ù´Ú ¸ÞÄ¿´ÏÁòÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

°ø±Þ¸Á Çõ½ÅÀº ½ÃÀå °³Ã´¿¡ ÀÖ¾î Áß¿äÇÑ Â÷º°È­ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿øÀÚÀç ÁýÇÏ, ¿¬·á È¥ÇÕ, ǰÁú °ü¸®, ź¼Ò ÃßÀûÀ» Á¶Á¤ÇÏ´Â ¹°·ù Ç÷§ÆûÀÌ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ºí·ÏüÀΰú µðÁöÅÐ Æ®À© ±â¼úÀº ¿£µåÅõ¿£µå ÃßÀû¼ºÀ» Á¦°øÇϰí Ç×°ø»ç¿Í ±â¾÷ ±¸¸ÅÀÚ°¡ Scope 3 ¹èÃâ °¨Ãà·®À» Á¤·®È­ÇÒ ¼ö ÀÖµµ·Ï Çϱâ À§ÇØ °ËÅäµÇ°í ÀÖÀ¸¸ç, SAF°¡ È®»êµÊ¿¡ µû¶ó ¿ø·á Àç¹è, °¡°ø, ¹è¼ÛÀ» °áÇÕÇÑ ¼öÁ÷ ÅëÇÕÇü »ýŰ谡 Çü¼ºµÉ °ÍÀÔ´Ï´Ù. ÇüÅÂÀÇ »ýŰ谡 Ç×°ø¿¬·áÀÇ »ý»ê, À¯Åë, Æò°¡ ¹æ½ÄÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

Ç×°ø ¹ÙÀÌ¿À¿¬·á ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

Ç×°ø ¹ÙÀÌ¿À¿¬·á ½ÃÀåÀº Żź¼ÒÈ­ ¾Ð·Â, ±ÔÁ¦ Àǹ«È­, ¿¡³ÊÁö ´Ù¾çÈ­ ¿ä±¸°¡ Ç×°ø °¡Ä¡»ç½½ Àü¹Ý¿¡ °ÉÃÄ ÁýÁߵǸ鼭 °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, SAF´Â ±âÁ¸ Ç×°ø±â¿Í ±ÞÀ¯ ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇϸ鼭 ´Ü±âÀûÀÎ ¹èÃâ·® °¨ÃàÀ» ½ÇÇöÇÒ ¼ö ÀÖ´Â µ¶º¸ÀûÀÎ À§Ä¡¿¡ ÀÖ½À´Ï´Ù. ±âÈÄ º¯È­¿¡ ´ëÇÑ ¾ß¸Á°ú ¿î¿µ °¡´É¼ºÀÇ °£±ØÀ» ¸Þ¿ì°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â ¼¼°è ¹èÃâ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ È®»ê, ¿ø·á ¹× Àüȯ ±â¼úÀÇ È®´ë, ±â¾÷ÀÇ Å»Åº¼ÒÈ­ ³ë·Â Áõ°¡, ¿¡³ÊÁö, ³ó¾÷, Ç×°ø ºÎ¹® °£ Çù·Â °­È­ µîÀ» ²ÅÀ» ¼ö ÀÖ½À´Ï´Ù. »ý»ê ±Ô¸ð°¡ È®´ëµÇ°í ºñ¿ëÀÌ ³·¾ÆÁü¿¡ µû¶ó SAF´Â Æ´»õ ½ÃÀåÀÎ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Â¿¡¼­ ¼¼°è Ç×°ø ¿¬·á °ø±ÞÀÇ ÁÖ·ù ¿ä¼Ò·Î ¹ßÀüÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±âÈÄ º¯È­ ¸ñÇ¥°¡ °­È­µÇ°í Ç×°ø ¼ö¿ä°¡ ȸº¹µÊ¿¡ µû¶ó Ç×°ø ¹ÙÀÌ¿À¿¬·á´Â Ç×°ø »ê¾÷ÀÌ Åº¼Ò·ÎºÎÅÍ ¼ºÀåÀ» ºÐ¸®Çϰí Ç×°ø ¿©ÇàÀ» ±âÈÄ º¯È­¿¡ °­ÇÑ ¼ø Á¦·Î ¼¼°è ±³Åë ¼ö´ÜÀ¸·Î ÀüȯÇÏ´Â µ¥ °áÁ¤ÀûÀÎ Ã˸ÅÁ¦°¡ µÉ ¼ö ÀÖÀ»±î?

ºÎ¹®

À¯Çü(°¡¼öºÐÇØ ¿¡½ºÅ׸£ ¹× Áö¹æ»ê, °¡¼öºÐÇØ ½Ä¹°¼º ±â¸§, ºñÇà ½ÃÇè, ¾ÈÀü Á¤º¸ º¸È£, Alcohol-To-Jet), ¿ëµµ(±º, »ó¾÷, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 34°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Aviation Biofuel Market to Reach US$48.8 Billion by 2030

The global market for Aviation Biofuel estimated at US$38.7 Billion in the year 2024, is expected to reach US$48.8 Billion by 2030, growing at a CAGR of 3.9% over the analysis period 2024-2030. Hydroprocessed Esters & Fatty Acids, one of the segments analyzed in the report, is expected to record a 3.2% CAGR and reach US$18.0 Billion by the end of the analysis period. Growth in the Hydrotreated Vegetable Oil segment is estimated at 4.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$10.6 Billion While China is Forecast to Grow at 7.0% CAGR

The Aviation Biofuel market in the U.S. is estimated at US$10.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$9.8 Billion by the year 2030 trailing a CAGR of 7.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.6% and 3.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.3% CAGR.

Global Aviation Biofuel Market - Key Trends & Drivers Summarized

Why Is Aviation Biofuel Emerging as a Strategic Pillar in Decarbonizing the Aviation Industry and Ensuring Long-Term Energy Resilience?

Aviation biofuel, also known as sustainable aviation fuel (SAF), is rapidly becoming a cornerstone of global efforts to decarbonize aviation, a sector historically reliant on fossil-based jet fuels with limited low-carbon alternatives. With commercial aviation responsible for roughly 2-3% of global CO2 emissions and demand expected to rise, biofuels offer an immediate and scalable pathway to emission reductions within existing aircraft and infrastructure. Their “drop-in” compatibility with current engines and fueling systems gives them a critical advantage over electrification and hydrogen solutions still in early-stage deployment.

Global regulatory frameworks, such as the International Civil Aviation Organization’s (ICAO) CORSIA program and the EU’s RefuelEU initiative, are mandating lifecycle emissions reductions and SAF blending targets to push the industry toward net-zero by 2050. Biofuels derived from sustainable feedstocks-such as used cooking oil, agricultural residues, municipal waste, and non-food energy crops-are central to meeting these mandates. As airlines, airports, and fuel suppliers align with ESG targets and carbon offset mechanisms, aviation biofuel adoption is transitioning from pilot-scale to commercial viability.

Beyond emissions mitigation, aviation biofuel offers strategic value in energy diversification and supply chain resilience. Regional production of SAF using local feedstocks reduces dependence on volatile crude oil markets and enhances energy security. Governments are now treating SAF capacity building as an industrial policy priority, linking it with job creation, rural development, and innovation in the circular economy. With climate imperatives accelerating, aviation biofuel is no longer a niche alternative but a central enabler of the industry’s long-term operational and reputational sustainability.

How Are Feedstock Technologies, Processing Pathways, and Certification Standards Advancing Commercial Deployment?

Technological innovation across the SAF value chain is accelerating scalability and performance optimization. Multiple conversion pathways-such as HEFA (Hydroprocessed Esters and Fatty Acids), Fischer-Tropsch synthesis, Alcohol-to-Jet (ATJ), and Synthetic Iso-Paraffins (SIP)-are being deployed based on regional feedstock availability and policy incentives. HEFA remains the most commercially mature route, using waste fats and oils, while emerging platforms are targeting lignocellulosic biomass, algae, and carbon-captured e-fuels for next-generation feedstock flexibility.

Feedstock diversification is a key focus, with industry stakeholders investing in low-cost, non-edible, and waste-based inputs to avoid land-use conflicts and food security concerns. Advanced R&D in microbial conversion, pyrolysis, and gasification is enabling higher yields, lower GHG intensity, and broader compatibility with global supply chains. Lifecycle assessments and carbon intensity metrics are becoming standard components of SAF procurement, ensuring that environmental claims are verifiable, traceable, and aligned with global climate protocols.

Certification remains central to market integrity and uptake. Standards such as ASTM D7566 define technical and environmental benchmarks for SAF blending with conventional jet fuels. Certification pathways validate fuel safety, engine compatibility, and emissions performance across approved processing methods. Airlines, regulators, and fuel providers increasingly require multi-tier certification-including ICAO CORSIA eligibility and national sustainability labeling-before adoption in commercial operations. These standards are instrumental in de-risking procurement and building trust across the aviation ecosystem.

Which Airline Segments, Airport Hubs, and Regional Policies Are Accelerating Aviation Biofuel Uptake?

Commercial airlines are leading the charge in SAF adoption, particularly flag carriers, full-service networks, and sustainability-focused low-cost carriers. Major players in North America, Europe, and Asia-Pacific have entered long-term offtake agreements with biofuel producers to secure supply and meet emissions reduction targets. SAF is being integrated into regular flight operations, with flagship routes and climate-conscious travel options marketed to corporate and leisure customers seeking greener alternatives.

Airports are becoming critical facilitators of SAF deployment through fuel blending infrastructure, storage upgrades, and collaboration with regional suppliers. Hubs such as Los Angeles (LAX), Amsterdam Schiphol, Frankfurt, and Singapore Changi are establishing SAF-ready fueling systems and incentivizing carriers through reduced landing fees, emissions credits, or preferential gate allocation. Regional airport authorities are also working with municipal waste processors and agribusinesses to co-locate SAF production near major air corridors.

National and regional policies are providing the structural support needed to scale aviation biofuel markets. The European Union’s RefuelEU Aviation initiative mandates SAF blending percentages beginning in 2025, with targets increasing through 2050. The U.S. Inflation Reduction Act includes tax credits and production incentives for SAF, while countries like the UK, Japan, and Canada are launching SAF roadmaps that link aviation decarbonization to national climate goals. These regulatory levers are fostering demand certainty, investment pipelines, and cross-sector collaboration-catalyzing the transition from demonstration to deployment.

How Are Industry Collaboration Models, Capital Deployment, and Supply Chain Innovation Reshaping Market Expansion?

Strategic partnerships between airlines, energy companies, and technology developers are driving investment into biofuel production capacity and distribution logistics. Co-development agreements, equity investments, and joint ventures are helping de-risk SAF commercialization by aligning feedstock sourcing, refining capabilities, and offtake commitments. Major oil and gas companies are repositioning biofuels as part of their decarbonization strategies, leveraging existing refinery assets to integrate SAF into their product portfolios.

Capital deployment into aviation biofuel infrastructure is scaling rapidly, with public-private funding mechanisms, green bonds, and climate-aligned financial instruments supporting new biorefineries and retrofitting of legacy plants. Multilateral development banks, climate funds, and sovereign wealth entities are increasingly backing SAF ventures in both developed and emerging markets. Long-term purchase agreements and price floor mechanisms are being used to secure revenue predictability for producers and encourage first-mover investments.

Supply chain innovation is becoming a key differentiator in market development. Logistics platforms are emerging to coordinate feedstock aggregation, fuel blending, quality control, and carbon tracking. Blockchain and digital twin technologies are being explored to provide end-to-end traceability, enabling airlines and corporate buyers to quantify Scope 3 emissions reductions. As SAF gains traction, vertically integrated ecosystems combining feedstock cultivation, processing, and delivery are reshaping how aviation fuel is produced, distributed, and valued.

What Are the Factors Driving Growth in the Aviation Biofuel Market?

The aviation biofuel market is accelerating as decarbonization pressure, regulatory mandates, and energy diversification imperatives converge across the aviation value chain. SAF is uniquely positioned to deliver near-term emissions reductions while leveraging existing aircraft and fueling infrastructure-bridging the gap between climate ambition and operational feasibility.

Key growth drivers include the global rollout of emissions compliance frameworks, expanding feedstock and conversion technologies, rising corporate travel decarbonization commitments, and increasing alignment between energy, agriculture, and aviation sectors. As production scales and costs decline, SAF is expected to evolve from a niche sustainability initiative to a mainstream component of global aviation fuel supply.

As climate targets tighten and flight demand rebounds, could aviation biofuel become the defining catalyst that enables the aviation industry to decouple growth from carbon-transforming air travel into a climate-resilient, net-zero mode of global connectivity?

SCOPE OF STUDY:

The report analyzes the Aviation Biofuel market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Hydroprocessed Esters & Fatty Acids, Hydrotreated Vegetable Oil, Flight Test, Safety Information Protection, Alcohol-To-Jet); Application (Military, Commercial, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â