¼¼°èÀÇ Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, µ¥ÀÌÅÍ À¯Çüº°, ¼ö¹ýº°, ¿ëµµº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° ¿¹Ãø(2025-2030³â)
Predictive Maintenance for Manufacturing Industry Market by Component, Technology, Data Type, Technique, Application, End Use Industry - Global Forecast 2025-2030
»óǰÄÚµå : 1807932
¸®¼­Ä¡»ç : 360iResearch
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 187 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 3,939 £Ü 5,548,000
PDF, Excel & 1 Year Online Access (Single User License) help
PDF ¹× Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 4,249 £Ü 5,984,000
PDF, Excel & 1 Year Online Access (2-5 User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿Àϱâ¾÷ ³» 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 5,759 £Ü 8,111,000
PDF, Excel & 1 Year Online Access (Site License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ Áö¿ª »ç¾÷ÀåÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)
US $ 6,969 £Ü 9,815,000
PDF, Excel & 1 Year Online Access (Enterprise User License) help
PDF ¹× Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù. ¿Â¶óÀÎ Ç÷§Æû¿¡¼­ 1³â µ¿¾È º¸°í¼­¸¦ ¹«Á¦ÇÑÀ¸·Î ´Ù¿î·ÎµåÇÒ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀ¸·Î ¾÷µ¥ÀÌÆ®µÇ´Â Á¤º¸µµ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. (¿¬ 3-4ȸ Á¤µµ ¾÷µ¥ÀÌÆ®)


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¤± º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼Û±âÀÏÀº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀåÀº 2024³â¿¡ 71¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025³â¿¡ 87¾ï 4,000¸¸ ´Þ·¯, ¿¬Æò±Õ ¼ºÀå·ü(CAGR)Àº 22.82%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç 2030³â¿¡ 247¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 71¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 87¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 247¾ï 1,000¸¸ ´Þ·¯
¿¬Æò±Õ ¼ºÀå·ü(CAGR)(%) 22.82%

Àü ¼¼°è Á¦Á¶¾÷ÀÇ È¿À²¼ºÀ» ÀçÆíÇÏ´Â ¿¹Ãø À¯Áöº¸¼ö ¼Ö·ç¼ÇÀÇ Çõ½ÅÀû ÁøÈ­¿Í Àü·«Àû Á߿伺À» °³°ýÇÏ´Â Æ÷°ýÀû ¼Ò°³

ÃÖ±Ù ¸î ³â°£ ¿¹Ãø À¯Áöº¸¼ö´Â Àåºñ ½Å·Ú¼º Çâ»ó, °èȹµÇÁö ¾ÊÀº °¡µ¿ Áß´Ü ½Ã°£ °¨Ãà, ¿î¿µ È¿À²¼º ÃÖÀûÈ­¸¦ Ãß±¸ÇÏ´Â ÃÖ±Ù Á¦Á¶ ½Ã¼³¿¡ ÇʼöÀûÀÎ ¸ÞÄ¿´ÏÁòÀ¸·Î ºÎ»óÇß½À´Ï´Ù. ½Ç½Ã°£ ºÐ¼®, ¸Ó½Å ·¯´× ¾Ë°í¸®Áò, ¼¾¼­ µ¥ÀÌÅÍ ½ºÆ®¸²À» Ȱ¿ëÇÔÀ¸·Î½á »ê¾÷ ¸®´õµéÀº »çÈÄ ´ëÀÀÀû º¸¼ö ÆÐ·¯´ÙÀÓ¿¡¼­ »çÀü ¿¹¹æÀû À¯Áöº¸¼ö ½ºÄÉÁÙ¸µÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â »ý»ê ¿¬¼Ó¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ¾ÈÀü À§ÇèÀ» ¿ÏÈ­Çϰí ÇÙ½É ÀÚ»êÀÇ »ç¿ë ¼ö¸íÀ» ¿¬ÀåÇÕ´Ï´Ù.

Á¦Á¶ ±â¾÷À» À§ÇÑ ¿¹Ãø À¯Áöº¸¼öÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» ÃËÁøÇÏ´Â ÇÙ½É ±â¼úÀû ¹ßÀü°ú ¿î¿µ ÀçÆí¿¡ ´ëÇÑ ½ÉÃþÀû ޱ¸

±â¼úÀû µ¹ÆÄ±¸¿Í ÁøÈ­ÇÏ´Â ¿î¿µ öÇп¡ ÀÇÇØ ÃËÁøµÈ ¿¹Ãø À¯Áöº¸¼ö ¹Ì·¡¿¡´Â Áö°¢º¯µ¿ÀÌ ÀÖ½À´Ï´Ù. °í±Þ ¿§Áö ÄÄÇ»ÆÃÀº ÀÌÁ¦ ±â°è ¼öÁØ¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÄÉ ÇÏ¿© Áö¿¬À» ÃÖ¼ÒÈ­Çϰí, Áß¿äÇÑ °æº¸°¡ À¯Áöº¸¼ö ÆÀ¿¡ Áöü ¾øÀÌ Àü´ÞµÇµµ·Ï º¸ÀåÇÕ´Ï´Ù. µ¿½Ã¿¡ µðÁöÅÐ Æ®À© ÇÁ·¹ÀÓ¿öÅ©´Â °¡»ó ȯ°æ¿¡¼­ ¹°¸®Àû ÀÚ»êÀ» º¹Á¦ÇÏ¿©, ÇöÀå ¹®Á¦ ¹ß»ý Àü¿¡ ¿£Áö´Ï¾îµéÀÌ ½ºÆ®·¹½º Å×½ºÆ®¿Í °íÀå ½Ã³ª¸®¿À¸¦ ½ÇÇàÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

¹Ì±¹ °ü¼¼ Á¶Ä¡°¡ Á¦Á¶¾÷ ºÐ¾ßÀÇ ¿¹Ãø À¯Áöº¸¼ö ¿î¿µ¿¡ ¹ÌÄ¡´Â ¿¬¼âÀû ¿µÇâ°ú Àü·«Àû °úÁ¦µé¿¡ ´ëÇÑ Æ÷°ýÀû ºÐ¼®

2025³â ¹Ì±¹ °ü¼¼ Á¶Ä¡ µµÀÔÀº Àü ¼¼°è Á¦Á¶ °ø±Þ¸Á Àü¹Ý¿¡ ÆÄ±Þ È¿°ú¸¦ ÀÏÀ¸Å°¸ç ¿¹Ãø À¯Áöº¸¼ö Àü·«ÀÇ µµÀÔ ¹× ½ÇÇà¿¡ ¿µÇâÀ» ¹ÌÃÆ´Ù. ¼¾¼­, ÄÁÆ®·Ñ·¯, °ÔÀÌÆ®¿þÀÌ µî Çϵå¿þ¾î ºÎǰÀº ¼öÀÔ °ü¼¼°¡ ±¹Á¦ Á¶´Þ °áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡¸é¼­ ºñ¿ë ¾Ð¹ÚÀ» °Þ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó À¯Áöº¸¼ö ¸®´õµéÀº Á¶´Þ ºñ¿ë ¾ÈÁ¤È­¸¦ À§ÇØ °ø±Þ¾÷ü °è¾àÀ» ÀçÆò°¡ÇÏ°í ±Ù°Å¸® ¾Æ¿ô¼Ò½Ì(nearshoring) ¿É¼ÇÀ» ¸ð»ö ÁßÀÔ´Ï´Ù.

ÄÄÆ÷³ÍÆ®, ±â¼ú, µ¥ÀÌÅÍ À¯Çü, ±â¹ý, ¿ëµµ, ÃÖÁ¾ ÀÌ¿ë »ê¾÷ÀÇ ¿ªÇÐÀ» µå·¯³»´Â ´Ù°¢Àû ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ©ÀÇ ¼¼ºÎ ºÐ¼®

¿¹Ãø À¯Áöº¸¼ö ½ÃÀå ³» ±¸¼º ¿ä¼Ò ºÎ¹®Àº Çϵå¿þ¾î, ¼­ºñ½º, ¼ÒÇÁÆ®¿þ¾î¸¦ ¾Æ¿ì¸£´Â »ïºÐ ±¸Á¶¸¦ º¸¿©ÁÝ´Ï´Ù. Çϵå¿þ¾î ¿µ¿ªÀº ÄÁÆ®·Ñ·¯, °ÔÀÌÆ®¿þÀÌ, ¼¾¼­·Î ±¸¼ºµÇ¸ç, °¢°¢ ¼º´É ½ÅÈ£¸¦ Æ÷ÂøÇϰí Àü¼ÛÇÏ´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. µ¿½Ã¿¡ ¼­ºñ½º´Â °ü¸®Çü ¹× Àü¹®Çü Á¦°øÀ» ¸ðµÎ ¾Æ¿ì¸£¸ç, ¿ø°Ý ¸ð´ÏÅ͸µ Á¦Ç°±ººÎÅÍ ÇöÀå Àü¹® Áö½Ä¿¡ À̸£±â±îÁö ¸ðµç °ÍÀ» Á¦°øÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀº ÀÚ»ê ¼º´É °ü¸®, °í±Þ ½Ã°¢È­ µµ±¸, µ¥ÀÌÅÍ ÅëÇÕ ¹× Àüó¸® ÆÄÀÌÇÁ¶óÀÎ, ¿¹Ãø ¸ðµ¨¸µ ¿£Áø µîÀÇ ¸ðµâÀ» ÅëÇØ ÀÌ·¯ÇÑ ¿ä¼ÒµéÀ» ÅëÇÕÇÕ´Ï´Ù.

¾Æ¸Þ¸®Ä«, EMEA, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­ ¿¹Ãø À¯Áöº¸¼ö µµÀÔÀ» Çü¼ºÇÏ´Â Áö¿ªº° ÃËÁø ¿äÀÎ, °úÁ¦ ¹× ¼ºÀå ±ËÀû¿¡ ´ëÇÑ Á¾ÇÕÀû Æò°¡

¾Æ¸Þ¸®Ä« Áö¿ª¿¡¼­´Â ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ Á¦Á¶ Çãºê ³» »ê¾÷¿ë »ç¹°ÀÎÅͳÝ(IIoT) ÀÎÇÁ¶ó ÅëÇÕÀÌ ¿¹Ãø À¯Áöº¸¼ö µµÀÔÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Àδõ½ºÆ®¸® 4.0 ÅõÀÚ¸¦ Áö¿øÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â °¡µ¿ ½Ã°£À» Çâ»ó½ÃŰ°í ±ÔÁ¤ Áؼö À§ÇèÀ» °¨ÃàÇÏ´Â °í±Þ ºÐ¼® Ç÷§ÆûÀ» ºÏ¹Ì ¹× ¶óƾ ¾Æ¸Þ¸®Ä« »ý»êÀÚµéÀÌ Àü°³Çϵµ·Ï Àå·ÁÇß½À´Ï´Ù. ÇÑÆí, °ø±Þ¸Á º¯µ¿¼ºÀº ´Ù¾çÇÑ »ý»ê ¹Ì·¡ Àü¹Ý¿¡ °ÉÃÄ ½Ç½Ã°£ Áø´Ü µµ±¸ÀÇ °¡Ä¡¸¦ ´õ¿í ºÎ°¢½ÃÄ×½À´Ï´Ù.

¿¹Ãø À¯Áöº¸¼ö ¹Ì·¡¿¡¼­ Çõ½Å, ÆÄÆ®³Ê½Ê »ýÅÂ°è ¹× °æÀï Â÷º°È­¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¾÷ü¿¡ ´ëÇÑ ÀλçÀÌÆ® ÀÖ´Â Æò°¡

¿¹Ãø À¯Áöº¸¼ö ¹Ì·¡ÀÇ ¼±µµ ¾÷üµéÀº Æ÷°ýÀûÀÎ Çϵå¿þ¾î Æ÷Æ®Æú¸®¿À, ¿£µåÅõ¿£µå ¼ÒÇÁÆ®¿þ¾î Á¦Ç°±º ¹× ¸ÂÃãÇü ¼­ºñ½º Á¦°øÀ» ÅëÇØ Â÷º°È­¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. 1Â÷ OEM(Original Equipment Manufacturer) ¾÷üµéÀº ºÐ¼® Ç÷§Æû °³¹ß»ç¿Í Àü·«Àû Á¦ÈÞ¸¦ ¸Î¾î ¼¾¼­ ³×Æ®¿öÅ©¸¦ ±â¾÷ ¸®¼Ò½º °èȹ(ERP) ½Ã½ºÅÛ¿¡ ¿øÈ°ÇÏ°Ô ¿¬°áÇÏ´Â ÅëÇÕ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¶ÇÕÀ» ÅëÇØ À¯Áöº¸¼ö ÀλçÀÌÆ®°¡ ´õ ³ÐÀº »ý»ê ¿öÅ©Ç÷Π³»¿¡¼­ ¿î¿µÈ­µÉ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø À¯Áö º¸¼ö ROI ¹× ¿î¿µ ź·Â¼ºÀ» ±Ø´ëÈ­ÇÏ´Â Á¦Á¶ ÁöµµÀÚ¿¡°Ô ½Ç¿ëÀûÀ̰í Ãæ°ÝÀûÀÎ ±ÇÀå »çÇ×À» Á¦°øÇÏ´Â Àü·«Àû ·Îµå¸Ê

Á¦Á¶ ¸®´õµéÀº ³×Æ®¿öÅ© ´ë¿ªÆø °úºÎÇÏ ¾øÀÌ ½Å¼ÓÇÑ ÀÌ»ó ŽÁö¸¦ º¸ÀåÇÏ´Â, ¿§Áö ÄÄÇ»ÆÃ°ú Áß¾Ó ÁýÁᫎ ºÐ¼® Ç÷§ÆûÀ» ÅëÇÕÇÏ´Â È®Àå °¡´ÉÇÑ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³ °³¹ßÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. À¯Áöº¸¼ö ¿£Áö´Ï¾î, µ¥ÀÌÅÍ °úÇÐÀÚ, IT Àü¹®°¡·Î ±¸¼ºµÈ ÆÀ¿¡ À¯Áöº¸¼ö ¿£Áö´Ï¾î¿Í µ¥ÀÌÅÍ °úÇÐÀÚ°¡ Æ÷ÇԵǾî¾ß Çϸç, À̵éÀº µðÁöÅÐ Àüȯ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¼ÓÇÏ´Â µ¥ ÇʼöÀûÀÎ Çù¾÷ ¸¶Àε带 Çü¼ºÇÒ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ ¾ö°ÝÇÑ µ¥ÀÌÅÍ °Å¹ö³Í½º ÇÁ·ÎÅäÄÝÀ» ¼ö¸³ÇÏ¸é ¿¹Ãø ¸ðµ¨ÀÇ Ç°Áú°ú ½Å·Ú¼ºÀÌ µÉ °ÍÀÔ´Ï´Ù.

¿¹Ãø À¯Áöº¸¼ö ½ÃÀå ¿¬±¸ÀÇ ±â¹ÝÀÌ µÇ´Â ¿¬±¸ ÇÁ·¹ÀÓ¿öÅ©, µ¥ÀÌÅÍ ¼öÁý ÇÁ·Î¼¼½º ¹× ºÐ¼® ¹æ¹ý·ÐÀ» »ó¼¼È÷ ¼³¸íÇÏ´Â Åõ¸íÇϰí ü°èÀûÀÎ °³¿ä

º» ¿¬±¸´Â Æ÷°ýÀûÀÎ ¹üÀ§¿Í µ¥ÀÌÅÍ ¹«°á¼ºÀ» º¸ÀåÇϱâ À§ÇØ ´Ù´Ü°è ¹æ¹ý·ÐÀ» Ȱ¿ëÇÕ´Ï´Ù. 2Â÷ ¿¬±¸´Â »ê¾÷ °£Ç๰, ¹é¼­, ±ÔÁ¦ ¼­·ù ¹× ±â¼ú Ç¥ÁØ¿¡¼­ ±âÃÊÀûÀÎ ÀλçÀÌÆ®À» Á¦°øÇÏ¿© ½ÃÀå ¿ªÇÐ ¹× ½Å±â¼ú¿¡ ´ëÇÑ ±âº»ÀûÀÎ ÀÌÇØ¸¦ È®¸³Çß½À´Ï´Ù. ÀÌ ´Ü°è¿¡´Â Çõ½Å °æ·Î¸¦ ½Äº°Çϱâ À§ÇÑ Æ¯Çã Ȱµ¿ ¹× ±â¼ú ·Îµå¸Ê °ËÅäµµ Æ÷ÇԵǾú½À´Ï´Ù.

Á¦Á¶¾÷ ¸®´õ¸¦ À§ÇÑ ¿¹Ãø À¯Áöº¸¼ö ¹Ì·¡ ºÐ¼®¿¡¼­ µµÃâµÈ ÇÙ½É ÀλçÀÌÆ®¿Í Àü·«Àû ÇÔÀǸ¦ °£°áÇϸ鼭µµ Æ÷°ýÀûÀ¸·Î Á¾ÇÕÇÑ ³»¿ë

ÁøÈ­ÇÏ´Â ¿¹Ãø À¯Áöº¸¼ö ¹Ì·¡´Â Á¦Á¶ ±â¾÷ÀÌ ¿î¿µ È¿À²¼º°ú ÀÚ»ê ½Å·Ú¼ºÀ» ÀçÁ¤ÀÇÇÒ ¼ö ÀÖ´Â ¸Å·ÂÀûÀÎ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. °í±Þ ¼¾¼­ »ýŰè, ¿§Áö ºÐ¼®, ÀΰøÁö´ÉÀ» ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº ¹ÝÀÀÇü ¼ö¸® Áֱ⿡¼­ ¹þ¾î³ª ÃøÁ¤ °¡´ÉÇÑ ºñ¿ë Àý°¨°ú °¡µ¿ ½Ã°£ Çâ»óÀ» ½ÇÇöÇÏ´Â »çÀü ¿¹¹æÀû À¯Áöº¸¼ö ÆÐ·¯´ÙÀÓÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ(2025³â)

Á¦8Àå Á¦Á¶¾÷ ¿¹Áö º¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦9Àå Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå : ±â¼úº°

Á¦10Àå Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

Á¦11Àå Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå : ¼ö¹ýº°

Á¦12Àå Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå : ¿ëµµº°

Á¦13Àå Á¦Á¶¾÷ ¿¹Áö º¸Àü ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¦Á¶¾÷ ¿¹Ãø À¯Áöº¸¼ö ½ÃÀå

Á¦17Àå °æÀï ±¸µµ

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

HBR
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

The Predictive Maintenance for Manufacturing Industry Market was valued at USD 7.19 billion in 2024 and is projected to grow to USD 8.74 billion in 2025, with a CAGR of 22.82%, reaching USD 24.71 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 7.19 billion
Estimated Year [2025] USD 8.74 billion
Forecast Year [2030] USD 24.71 billion
CAGR (%) 22.82%

An expansive introduction outlining the transformative evolution and strategic imperative of predictive maintenance solutions reshaping efficiency in global manufacturing industries

In recent years, predictive maintenance has emerged as an indispensable mechanism for modern manufacturing facilities striving to enhance equipment reliability, reduce unplanned downtime, and optimize operational efficiency. By harnessing real-time analytics, machine learning algorithms, and sensor data streams, industrial leaders can transition from reactive repair paradigms to proactive maintenance scheduling. This shift not only elevates production continuity but also mitigates safety risks and extends the useful life of critical assets.

Furthermore, the convergence of advanced Internet of Things architectures and cloud-based platforms has facilitated a more seamless integration of maintenance intelligence across the enterprise. Digital sensors embedded within rotating machinery continuously relay performance metrics to centralized dashboards, where predictive modeling can identify incipient anomalies. This capability empowers maintenance teams to allocate resources proactively, eliminate unnecessary routine checks, and reallocate budget toward strategic upgrades.

Moreover, the strategic imperative of predictive maintenance extends beyond cost containment. Manufacturing executives are increasingly recognizing its role in sustainability initiatives, as optimized asset utilization reduces energy consumption and waste generation. As a result, organizations are forging cross-functional alliances among operations, IT, and finance to embed predictive maintenance within overarching enterprise transformation roadmaps.

An in-depth exploration of pivotal technological advancements and operational realignments catalyzing a paradigm shift in predictive maintenance for manufacturing enterprises

The predictive maintenance landscape has witnessed seismic shifts driven by technological breakthroughs and evolving operational philosophies. Advanced edge computing now enables real-time data processing at the machine level, minimizing latency and ensuring critical alerts reach maintenance crews without delay. Simultaneously, digital twin frameworks replicate physical assets in virtual environments, allowing engineers to run stress tests and failure scenarios before issues manifest on the shop floor.

Meanwhile, organizations are embracing hybrid cloud environments that balance on-premise data privacy requirements with the scalability of public cloud analytic engines. This hybrid approach ensures sensitive operational data remains secure while benefiting from elastic compute resources during peak analysis cycles. In parallel, the maturation of cybersecurity protocols for industrial networks has fostered greater confidence in deploying connected maintenance solutions across distributed facilities.

At the same time, a cultural metamorphosis is underway within maintenance functions as cross-disciplinary teams integrate data scientists, reliability engineers, and IT specialists. This collaborative model cultivates shared accountability for asset performance, accelerating the adoption of digital maintenance frameworks. As manufacturers move from siloed technology pilots to enterprise-wide rollouts, predictive maintenance is redefining operational excellence and setting new benchmarks for industrial resilience.

A comprehensive analysis of the cascading effects and strategic challenges imposed by United States tariff measures on predictive maintenance operations within manufacturing sectors

The introduction of United States tariff measures in 2025 has reverberated throughout global manufacturing supply chains, influencing the adoption and implementation of predictive maintenance strategies. Hardware components such as sensors, controllers, and gateways have seen cost pressures as import duties impact international sourcing decisions. Consequently, maintenance leaders are reevaluating vendor agreements and exploring nearshoring options to stabilize procurement costs.

Concurrently, service providers specializing in predictive maintenance have adjusted their pricing models to accommodate elevated operational expenses, which has prompted manufacturers to renegotiate long-term contracts. These dynamics have introduced both challenges and strategic opportunities. On one hand, elevated component costs have slowed pilot expansions in certain regions, while on the other, domestic technology developers are leveraging tariff-driven demand shifts to accelerate R&D investments in localized hardware solutions.

Moreover, the tariffs have underscored the importance of resilient maintenance ecosystems. Organizations are diversifying their supplier portfolios, prioritizing partners with regional manufacturing footprints to mitigate future trade disruptions. This renewed focus on supply chain agility and risk management is reshaping predictive maintenance roadmaps, leading to blended models that integrate both global expertise and local responsiveness.

A granular examination of the multifaceted segmentation framework illuminating component, technology, data type, technique, application, and end use industry dynamics

Within the predictive maintenance market, component segmentation reveals a tripartite structure encompassing hardware, services, and software. The hardware domain spans controllers, gateways, and sensors, each playing an integral role in capturing and transmitting performance signals. In parallel, services traverse both managed and professional offerings, delivering everything from remote monitoring suites to on-site expertise. Software platforms unite these elements through modules in asset performance management, advanced visualization tools, data integration and preprocessing pipelines, and predictive modeling engines.

Technology segmentation adds another layer of granularity, highlighting core enablers such as big data analytics, digital twin constructs, edge computing frameworks, Internet of Things networks, and sophisticated machine learning and artificial intelligence applications. Complementing these are diverse data types, which range from historical maintenance logs and vibration or acoustic measurements to image and video feeds, sensor outputs, and text or system log records. Together, these facets empower robust anomaly detection and prognostic insights.

Technique segmentation further categorizes the market into specialized monitoring approaches including acoustic, corrosion, electrical and current analysis, oil analysis, thermal imaging, ultrasound testing, and vibration monitoring. Applications extend from real-time condition monitoring and failure detection to remaining useful life estimations and dynamic work order scheduling. Finally, end-use industries span automotive, chemicals, electronics, food and beverage, metal and mining, pharmaceuticals, and textile sectors, each presenting unique maintenance complexities and strategic priorities.

A holistic evaluation of region-specific drivers, challenges, and growth trajectories shaping predictive maintenance adoption across the Americas, EMEA, and Asia-Pacific markets

In the Americas, predictive maintenance adoption is propelled by the integration of Industrial Internet of Things infrastructures within automotive and aerospace manufacturing hubs. Regulatory frameworks supporting Industry 4.0 investments have incentivized North American and Latin American producers to deploy advanced analytics platforms that enhance uptime and reduce compliance risks. Meanwhile, supply chain volatility has further accentuated the value of real-time diagnostic tools across diverse production landscapes.

Meanwhile, Europe, the Middle East, and Africa are witnessing a growing emphasis on sustainability and circular economy mandates. Manufacturers in Western Europe are embedding predictive maintenance within broader decarbonization efforts, while Middle Eastern petrochemical complexes are leveraging corrosion monitoring and thermal imaging to optimize asset integrity. Across the African continent, pilot projects focused on remote equipment monitoring are gaining traction, supported by public-private partnerships and infrastructure modernization initiatives.

Across Asia-Pacific, sprawling electronics and textile manufacturing clusters in East and South Asia are rapidly scaling predictive maintenance deployments. Government-sponsored smart manufacturing programs in countries such as China, India, and South Korea have accelerated digital twin adoption and advanced analytics integration. Cost sensitivity in emerging markets is driving demand for modular, cloud-native maintenance solutions that require minimal upfront capital investment.

An incisive assessment of leading industry players driving innovation, partnership ecosystems, and competitive differentiation in the predictive maintenance landscape

Leading companies in the predictive maintenance arena differentiate through comprehensive hardware portfolios, end-to-end software suites, and bespoke service offerings. Tier-one original equipment manufacturers are forming strategic alliances with analytics platform developers to deliver integrated solutions that seamlessly connect sensor networks to enterprise resource planning systems. This convergence ensures maintenance insights are operationalized within broader production workflows.

Simultaneously, specialized software vendors are forging partnerships with system integrators to embed machine learning algorithms within legacy control systems, enabling greenfield and brownfield sites to benefit from predictive capabilities. These collaborations often extend to academic institutions and research labs, fueling innovation in digital twin fidelity, anomaly detection accuracy, and prescriptive analytics.

Furthermore, service providers are expanding their footprints through mergers and acquisitions, enhancing geographic reach and technical expertise. By combining remote monitoring operations centers with on-site engineering teams, these firms can deliver rapid response times and global support networks. Collectively, these strategic maneuvers are intensifying competitive differentiation and accelerating the maturation of predictive maintenance ecosystems.

A strategic roadmap offering pragmatic and high-impact recommendations for manufacturing leaders to maximize predictive maintenance ROI and operational resilience

Manufacturing leaders should prioritize the development of a scalable data architecture that integrates edge computing with centralized analytic platforms, ensuring rapid anomaly detection without overloading network bandwidth. Cultivating cross-functional teams that include maintenance engineers, data scientists, and IT specialists fosters a collaborative mindset essential for sustaining digital transformation initiatives. Moreover, establishing rigorous data governance protocols will underpin the quality and reliability of predictive models.

Organizations must also cultivate strategic partnerships with technology providers and academic institutions to accelerate innovation cycles in areas such as digital twin accuracy and prescriptive analytics. Pilot projects should be structured with clear performance metrics, enabling rapid evaluation and iterative refinement before enterprise-wide deployment. Concurrently, investing in workforce upskilling and change management will ensure teams are equipped to interpret and act upon maintenance insights effectively.

Finally, embedding predictive maintenance within broader sustainability and resilience frameworks can unlock additional value streams. By aligning maintenance objectives with decarbonization targets, resource efficiency goals, and risk mitigation strategies, executives can secure executive buy-in, justify budget allocations, and accelerate cross-functional adoption of predictive maintenance as a strategic enabler.

A transparent and methodical outline detailing the research framework, data collection processes, and analytical methodologies underpinning this predictive maintenance market study

This research study leverages a multi-stage methodology to ensure comprehensive coverage and data integrity. Secondary research provided foundational insights from industry publications, white papers, regulatory filings, and technical standards, establishing a baseline understanding of market dynamics and emerging technologies. This phase also included a review of patent activity and technology roadmaps to identify innovation trajectories.

Primary research constituted in-depth interviews with maintenance directors, reliability engineers, technology providers, and system integrators across key geographies and verticals. These qualitative engagements were complemented by quantitative surveys that captured deployment challenges, solution preferences, and investment priorities. Data triangulation techniques were then employed to reconcile disparate inputs and validate key findings.

Analytical rigor was maintained through a structured framework that encompassed segmentation analysis, competitive benchmarking, and scenario planning. Continuous quality checks, including peer reviews and stakeholder workshops, ensured the accuracy and relevance of the insights. The resulting report reflects a balanced and methodical examination of predictive maintenance trends, technologies, and strategic considerations.

A concise yet comprehensive synthesis of key insights and strategic implications derived from the predictive maintenance landscape analysis for manufacturing leaders

The evolving predictive maintenance landscape presents a compelling opportunity for manufacturing enterprises to redefine operational efficiency and asset reliability. By integrating advanced sensor ecosystems, edge analytics, and artificial intelligence, organizations can transition from reactive repair cycles to proactive maintenance paradigms that deliver measurable cost savings and uptime enhancements.

Key segmentation insights highlight the importance of a unified hardware-software-services ecosystem, while technology and data type analyses underscore the growing role of digital twins, big data analytics, and diverse data streams in fueling accurate prognostics. Regional evaluations reveal distinct adoption drivers across the Americas, EMEA, and Asia-Pacific, emphasizing the need for tailored deployment strategies that account for regulatory, economic, and cultural factors.

Competitive benchmarking of market players illustrates a landscape defined by strategic alliances, platform integrations, and targeted M&A activity. To seize this transformative moment, manufacturing leaders must implement robust data governance, foster cross-functional collaboration, and pursue strategic partnerships that accelerate innovation cycles. Ultimately, embracing predictive maintenance as a core component of enterprise resilience will be critical to sustaining competitive advantage in an increasingly complex global environment.

Table of Contents

1. Preface

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Dynamics

6. Market Insights

7. Cumulative Impact of United States Tariffs 2025

8. Predictive Maintenance for Manufacturing Industry Market, by Component

9. Predictive Maintenance for Manufacturing Industry Market, by Technology

10. Predictive Maintenance for Manufacturing Industry Market, by Data Type

11. Predictive Maintenance for Manufacturing Industry Market, by Technique

12. Predictive Maintenance for Manufacturing Industry Market, by Application

13. Predictive Maintenance for Manufacturing Industry Market, by End Use Industry

14. Americas Predictive Maintenance for Manufacturing Industry Market

15. Europe, Middle East & Africa Predictive Maintenance for Manufacturing Industry Market

16. Asia-Pacific Predictive Maintenance for Manufacturing Industry Market

17. Competitive Landscape

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â