¿¬ÇÕ ÇнÀ ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® ¸®Æ÷Æ® : Á¶Á÷ ±Ô¸ðº°, ¿ëµµº°, ¾÷°èº°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2023-2030³â)
Federated Learning Market Size, Share & Trends Analysis Report By Organization Size (SME, Large), By Application (Drug Discovery, Risk Management), By Industry Vertical (Automotive, BFSI), By Region, And Segment Forecasts, 2023 - 2030
»óǰÄÚµå : 1405932
¸®¼­Ä¡»ç : Grand View Research, Inc.
¹ßÇàÀÏ : 2023³â 12¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 100 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 7,181,000
Unprintable PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠺Ұ¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 5,950 £Ü 8,632,000
Printable PDF (5-User License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ 5¸í±îÁö ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 7,950 £Ü 11,534,000
Printable PDF (Enterprise License) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

¿¬ÇÕ ÇнÀ ½ÃÀåÀÇ ¼ºÀå°ú µ¿Çâ :

Grand View Research, IncÀÇ ÃֽЏ®Æ÷Æ®¿¡ µû¸£¸é ¼¼°èÀÇ ¿¬ÇÕ ÇнÀ ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 2¾ï 9,750¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2023-2030³âÀÇ CAGRÀº 12.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ À¯ÁöÇϸ鼭 ºÐ»êµÈ ±â±â¿¡¼­ ¸Ó½Å·¯´×(ML) ¸ðµ¨À» ÈÆ·ÃÇÒ ¼ö ÀÖ´Â °íÀ¯ÇÑ ±â´ÉÀÔ´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ¿©·¯ ±â°üÀÌ ¿ø½Ã µ¥ÀÌÅ͸¦ °øÀ¯ÇÏÁö ¾Ê°íµµ ¸ðµ¨ ÇнÀÀ» À§ÇØ Çù·ÂÇÒ ¼ö ÀÖÀ¸¸ç, ±â¹Ð Á¤º¸°¡ ·ÎÄà ±â±â¿¡ ³²¾ÆÀÖÀ» ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ¶óÀ̹ö½Ã Áß½ÉÀÇ ÆÐ·¯´ÙÀÓÀº ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤°ú Àß ºÎÇÕÇϸç, µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ ¿ì·Á´Â ¿ø½Ã µ¥ÀÌÅ͸¦ °øÀ¯ÇÏÁö ¾Ê°íµµ Çù¾÷ ¸ðµ¨ ÇнÀÀ» °¡´ÉÇÏ°Ô ÇÏ°í »ç¿ëÀÚÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ º¸ÀåÇÏ´Â Æä´õ·¹ÀÌÆ¼µå ·¯´×ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ µ¶Æ¯ÇÑ Á¢±Ù ¹æ½ÄÀº °æÀï ¿ìÀ§¸¦ Ãß±¸ÇÏ´Â »ê¾÷À» ²ø¾îµéÀ̰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Google LLC´Â ¿¬ÇÕ ÇнÀÀÇ À¯¸íÇÑ ¿ËÈ£ÀÚÀÌÀÚ ½Çõ°¡ÀÔ´Ï´Ù. ±× ¾ÖÇø®ÄÉÀÌ¼Ç Áß ÇϳªÀÎ °¡»ó Űº¸µå ¾Û Gboard´Â ¿¬ÇÕ ÇнÀÀ» »ç¿ëÇÏ¿© »ç¿ëÀÚ µ¥ÀÌÅ͸¦ ¼Õ»ó½ÃŰÁö ¾Ê°í ÅØ½ºÆ® ¿¹Ãø È常¦ °³¼±ÇÕ´Ï´Ù. ½ÃÀåÀº ºü¸£°Ô ¹ßÀüÇÏ´Â ML ±â¹ý°ú ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ °¡¿ë¼ºÀ¸·Î ÀÎÇØ ¹øÃ¢Çϰí ÀÖÀ¸¸ç, IoT ±â±âÀÇ º¸±Þ°ú ¿¡Áö ÄÄÇ»ÆÃÀÇ ºÎ»óÀ¸·Î ÀÎÇØ ÀÇ·á, ±ÝÀ¶ ¹× IoT ºÐ¾ß¿¡¼­ ¿¬ÇÕ ÇнÀÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ºÐ»êµÈ ±â±âµé °£ÀÇ Çù·ÂÀû ¸ðµ¨ ÇнÀÀ» °¡´ÉÇÏ°Ô ÇÏ¿© µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ º¸ÀåÇϸ鼭 AI ´É·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ¿¬ÇÕ ÇнÀÀ» ÅëÇØ °øµ¿ ¸ðµ¨ °³¹ßÀÌ °¡´ÉÇØÁ® ȯÀÚ µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ Ä§ÇØÇÏÁö ¾ÊÀ¸¸é¼­µµ Áø´Ü°ú Ä¡·á¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±ÝÀ¶ ºÐ¾ß¿¡¼­´Â ±ÝÀ¶±â°ü ÀüüÀÇ °Å·¡ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¾ÈÀüÇÑ ºÐ¼®ÀÌ ¿ëÀÌÇØÁ® ºÎÁ¤ÇàÀ§ ŽÁö°¡ °­È­µÇ°í, IoT¿¡ Àû¿ëÇÏ¸é ºÐ»êµÈ µð¹ÙÀ̽º µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© µð¹ÙÀ̽º ±â´ÉÀ» Çâ»ó½ÃŰ´Â ¿§Áö ±â¹Ý MLÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÏ¹Ì, ƯÈ÷ ¹Ì±¹Àº ±â¼ú Çõ½ÅÀÇ Áß½ÉÁöÀ̸ç, ½Ç¸®Äܹ븮¿Í ´Ù¾çÇÑ ¿µÇâ·Â Àִ ÷´Ü ±â¼ú ´ë±â¾÷ÀÌ ¹ßÀüÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº AI¿Í MLÀÇ ¹ßÀüÀ» °³Ã´ÇÏ°í ¿¬ÇÕ ÇнÀ°ú °°Àº ÷´Ü ±â¼úÀÇ ÅëÇÕÀ» ÃËÁøÇÏ´Â ºÐÀ§±â¸¦ Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì ¼ÒºñÀÚµé »çÀÌ¿¡¼­ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÇÁ¶óÀ̹ö½Ã º¸È£ ±â¼úÀÎ ¿¬ÇÕ ÇнÀÀº ¼ÒºñÀÚÀÇ ¿ì·Á¿¡ °ø°¨ÇÏ¸ç ´Ù¾çÇÑ ¿ëµµÀÇ ÇÁ¶óÀ̹ö½Ã Á᫐ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇØ ºÏ¹Ì¿¡¼­ ¿¬ÇÕ ÇнÀÀÇ Ã¤Åðú ÁÖ¸ñµµ°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, °¢ »ê¾÷ ºÐ¾ß¿¡¼­ ¿¬ÇÕ ÇнÀÀÌ Áö¼ÓÀûÀ¸·Î È®´ëµÉ ¼ö Àִ ȯ°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.

¿¬ÇÕ ÇнÀ ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¿¬ÇÕ ÇнÀ ½ÃÀå º¯¼ö, µ¿Çâ ¹× ¹üÀ§

Á¦4Àå ¿¬ÇÕ ÇнÀ ½ÃÀå : ¿ëµµ ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦5Àå ¿¬ÇÕ ÇнÀ ½ÃÀå : Á¶Á÷ ±Ô¸ð ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦6Àå ¿¬ÇÕ ÇнÀ ½ÃÀå : ¾÷°èÀÇ ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦7Àå ¿¬ÇÕ ÇнÀ ½ÃÀå : Áö¿ªÀÇ ÃßÁ¤¡¤µ¿Ç⠺м®

Á¦8Àå °æÀï ±¸µµ

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Federated Learning Market Growth & Trends:

The global federated learning market size is expected to reach USD 297.5 million by 2030, growing at a CAGR of 12.7% from 2023 to 2030, according to a new report by Grand View Research, Inc. The growth is primarily fueled by its unique capability to train machine learning (ML) models across decentralized devices while preserving data privacy. This approach allows multiple entities to collaborate on model training without sharing raw data, ensuring sensitive information remains on local devices. This privacy-centric paradigm aligns well with stringent data protection regulations and addresses growing concerns about data security. Concerns over data privacy and compliance with regulations drive the adoption of federated learning, as it allows for collaborative model training without sharing raw data, ensuring user privacy.

This unique approach attracts industries seeking a competitive edge. For instance, Google LLC has been a prominent advocate and practitioner of federated learning. One of its applications, Gboard, the virtual keyboard app, uses federated learning to improve predictive text suggestions without compromising user data. The market thrives due to fast-progressing ML methods and wider data availability. The proliferation of IoT devices and the rise of edge computing have propelled federated learning's adoption in the healthcare, finance, and IoT sectors. This approach allows collaborative model training across decentralized devices, ensuring data privacy while advancing AI capabilities. In healthcare, federated learning enables joint model development, improving diagnostics & treatments without compromising patient data privacy.

In finance, it facilitates secure analysis of transactional data across institutions, enhancing fraud detection. Its application in IoT utilizes distributed device data, empowering edge-based ML for improved device functionalities. North America, especially the U.S., is a center for technological innovation, led by Silicon Valley and various influential tech giants that propel progress. The region pioneers AI & ML advancements, cultivating an atmosphere that encourages the integration of advanced technologies, such as federated learning. There is a rising awareness among consumers in North America about data privacy & security. Federated learning, being a privacy-preserving technology, resonates with consumers' concerns, creating a demand for such privacy-centric solutions in various applications. These factors collectively contribute to the growing adoption & prominence of federated learning in North America, fostering an environment conducive to its continued expansion across industries.

Federated Learning Market Report Highlights:

Table of Contents

Chapter 1. Methodology and Scope

Chapter 2. Executive Summary

Chapter 3. Federated Learning Market Variables, Trends, & Scope

Chapter 4. Federated Learning Market: Application Estimates & Trend Analysis

Chapter 5. Federated Learning Market: Organization Size Estimates & Trend Analysis

Chapter 6. Federated Learning Market: Industry Vertical Estimates & Trend Analysis

Chapter 7. Federated Learning Market: Regional Estimates & Trend Analysis

Chapter 8. Competitive Landscape

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â