ÀÌ»ó ŽÁö ½ÃÀå ±Ô¸ð, Á¡À¯À² ¹× µ¿Ç⠺м® º¸°í¼­ : Àü°³º°, ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, ÃÖÁ¾ ¿ëµµº°, ºÎ¹®º° ¿¹Ãø(2023-2030³â)
Anomaly Detection Market Size, Share & Trends Analysis Report By Deployment (Cloud, On-premise), By Component (Solution, Services), By Technology (Big Data Analytics, ML & AI), By End-use (BFSI, Retail), And Segment Forecasts, 2023 - 2030
»óǰÄÚµå : 1301289
¸®¼­Ä¡»ç : Grand View Research, Inc.
¹ßÇàÀÏ : 2023³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 100 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,950 £Ü 6,991,000
Unprintable PDF & Excel (Single User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» 1Àθ¸ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â ºÒ°¡´ÉÇÕ´Ï´Ù.
US $ 5,950 £Ü 8,404,000
Printable PDF & Excel (5-User License) help
º¸°í¼­ PDF ¹× ¿¢¼¿À» µ¿ÀÏ ±â¾÷ ³» µ¿ÀÏ ºÎ¼­¿¡¼­ ÃÖ´ë 5¸í±îÁö »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 7,950 £Ü 11,229,000
Printable PDF & Excel (Enterprise License) help
º¸°í¼­ ±¸¸Å ±â¾÷ ¹× ±× ÀÚȸ»ç, °ü°è»ç°¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀ̸ç, PDF ¹× ¿¢¼¿ ÅØ½ºÆ® µîÀÇ º¹»ç ¹× ºÙ¿©³Ö±â, ÀμⰡ °¡´ÉÇÕ´Ï´Ù.


¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼­ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Çѱ۸ñÂ÷

ÀÌ»ó ŽÁö ½ÃÀåÀÇ ¼ºÀå°ú µ¿Çâ

Grand View Research, Inc.ÀÇ ÃֽŠº¸°í¼­¿¡ µû¸£¸é ¼¼°è ÀÌ»ó ŽÁö ½ÃÀå ±Ô¸ð´Â 2023³âºÎÅÍ 2030³â±îÁö 16.5%ÀÇ CAGRÀ» ±â·ÏÇÏ¿© 2030³â¿¡´Â 145¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µö·¯´×°ú ¸Ó½Å·¯´× ±â¼úÀÇ ¹ßÀüÀÌ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Åë°èÀû Á¢±Ù ¹æ½ÄÀº GAN(Generative Adversarial Networks), Vaes(Variational Autoencoders), RNN(Recurrent Neural Networks)°ú °°Àº Ãֽбâ¹ýÀ¸·Î ´ëüµÇ°í ÀÖ½À´Ï´Ù. ¿¡ ÀÇÇØ ´Ù¾çÇÑ ½Ã½ºÅÛ¿¡¼­ÀÇ ÀÌ»ó ¡ÈÄ ½Äº°ÀÌ °­È­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´ë¿ë·® µ¥ÀÌÅÍ ÀúÀå ÀåÄ¡¿Í ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϸ鼭 ÀÌ»ó ¡ÈÄ Å½Áö ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿Â¶óÀÎ ¾Ë°í¸®Áò, ÁõºÐ ÇнÀ Á¢±Ù¹ý, ½½¶óÀ̵ù À©µµ¿ì ±â¹ýÀº µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ½ºÆ®¸®¹ÖÇϱâ À§ÇØ ´Ù¾çÇÑ ºÎ¼­¿¡¼­ »ç¿ëµÇ°í ÀÖ´Â ÃֽйèÄ¡ ±â¹Ý ÀÌ»ó ŽÁö ±â¼ú Áß ÇϳªÀÔ´Ï´Ù.

¿À´Ã³¯ ÁøÈ­ÇÏ´Â »çÀ̹ö º¸¾È ȯ°æ¿¡¼­ ±â¾÷Àº ¾Ç¼ºÄÚµå, ·£¼¶¿þ¾î, ±âŸ º¸¾È Ä§ÇØ µî ´Ù¾çÇÑ »çÀ̹ö °ø°Ý¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT)°ú »çÀ̹ö ¹°¸® ½Ã½ºÅÛ(CP)À» Æ÷ÇÔÇÑ Ã·´Ü Á¤º¸ ½Ã½ºÅÛ¿¡¼­ ÇÁ¶óÀ̹ö½Ã ¹®Á¦¸¦ ¿ÏÀüÈ÷ ¹èÁ¦ÇÏ´Â °ÍÀº °ÅÀÇ ºÒ°¡´ÉÇÕ´Ï´Ù. µû¶ó¼­ ÇÁ¶óÀ̹ö½Ã ¹®Á¦¸¦ ÃßÀûÇÏ°í º¸¾È ÀνÄÀ» Á¦°øÇϱâ À§ÇØ »çÀ̹ö À§Çù°ú ÀÌ»ó ¡Èĸ¦ Áö¼ÓÀûÀ¸·Î ½Äº°ÇÏ´Â °ÍÀÌ »ê¾÷°è¿¡ ÇʼöÀûÀ̸ç, CP¿¡ ´ëÇÑ »çÀ̹ö °ø°ÝÀº ±¹¹ÎÀÇ °æÁ¦Àû, ¹°¸®Àû, ȯ°æÀû ¾ÈÀü¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2021³â ¹Ì±¹ ÃÖ´ëÀÌÀÚ °¡Àå Áß¿äÇÑ ¼®À¯ ÆÄÀÌÇÁ¶óÀÎ Áß ÇϳªÀÎ ÄݷδϾó ÆÄÀÌÇÁ¶óÀÎ(Colonial Pipeline)ÀÌ °ø°ÝÀ» ¹Þ¾Æ ¹Ì±¹ µ¿ºÎ ÇØ¾ÈÀÇ ¿¬·á °ø±ÞÀÌ ÁߴܵǾú½À´Ï´Ù.

¶ÇÇÑ 2022³â¿¡´Â µ¶ÀÏÀÇ ±¹³» ¿¬·á ¹è±Þ ½Ã½ºÅÛ¿¡ °¡Àå ½É°¢ÇÑ ÇÇÇØ¸¦ ÀÔÈù »çÀ̹ö °ø°ÝÀÌ ¹ß»ýÇÏ¿© ¼®À¯ »ê¾÷¿¡¼­ °üÂûµÈ ´ëºÎºÐÀÇ ÇØÅ·À» ÆÄ±«Çß½À´Ï´Ù. ¾ÕÀ¸·Î ÀÌ·¯ÇÑ »çÀ̹ö °ø°ÝÀ» Á¶±â¿¡ °¨ÁöÇÏ°í ¿ÏÈ­Çϱâ À§ÇØ »ê¾÷°è°¡ ÀÌ»óÀ» ±Øº¹ÇÏ´Â °ÍÀÌ ÇʼöÀûÀ̸ç, ÀÌ´Â ½ÃÀå ¼ö¿ä¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁøÈ­ÇÏ´Â »çÀ̹ö º¸¾È ȯ°æ¿¡ µû¶ó ¾÷°è Àü¹Ý¿¡ °ÉÃÄ Çൿ ±â¹Ý ÀÌ»ó ¡ÈÄ Å½Áö ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¶Á÷Àº »çÀ̹ö À§ÇùÀ» Á¶±â¿¡ ½Äº°Çϱâ À§ÇØ ½Ã½ºÅÛ, »ç¿ëÀÚ ¹× ³×Æ®¿öÅ© ¿£Æ¼Æ¼ÀÇ µ¿ÀÛ°ú Ȱµ¿À» ºÐ¼®ÇÏ´Â µ¥ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù. Çൿ ±â¹Ý ÀÌ»ó ¡ÈÄ Å½Áö´Â °íµµÈ­µÈ Áö¼ÓÀû À§Çù°ú ³»ºÎ À§ÇùÀ» Æ÷ÇÔÇÑ Áö´ÉÇü »çÀ̹ö °ø°ÝÀ» Æ÷ÂøÇÏ¿© Á¶Á÷ÀÇ ´Ù¾çÇÑ ½Ã½ºÅÛÀ» º¸È£ÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. »çÀ̹ö ¹°¸®Àû ½ÇüÀÇ Çൿ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Áö¿ªº°·Î ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ»ó ŽÁö ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ÀÌ»ó ŽÁö ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§

Á¦4Àå ÀÌ»ó ŽÁö ½ÃÀå ÄÄÆ÷³ÍÆ® Àü¸Á

Á¦5Àå ÀÌ»ó ŽÁö ½ÃÀå Àü°³ Àü¸Á

Á¦6Àå ÀÌ»ó ŽÁö ½ÃÀå ±â¼ú Àü¸Á

Á¦7Àå ÀÌ»ó ŽÁö ½ÃÀå ÃÖÁ¾ ¿ëµµ Àü¸Á

Á¦8Àå ÀÌ»ó ŽÁö ½ÃÀå : Áö¿ª Àü¸Á

Á¦9Àå °æÀï »óȲ

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Anomaly Detection Market Growth & Trends

The global anomaly detection market size is expected to reach USD 14.59 billion by 2030, registering a CAGR of 16.5% from 2023 to 2030, according to the new reports of Grand View Research, Inc. The growing advancements in deep learning and machine learning technologies support the market growth. The traditional statistical approaches are being replaced with modern methods, such as Generative Adversarial Networks (GAN), variational autoencoders (Vaes), and Recurrent Neural Networks (RNNs), thereby enhancing the identification of anomalies across various systems. Furthermore, a rise in the need for large data storage units and real-time data analysis has boosted the adoption of anomaly detection systems. Online algorithms, incremental learning approaches, and sliding window techniques are among the modern batch-based anomaly detection techniques used by various sectors for efficiently streaming data.

In today's ever-evolving cybersecurity landscape, businesses are facing various cyberattacks, such as malware, ransomware, and other security breaches. It is almost difficult to entirely exclude privacy issues from advanced information systems, including Internet of Things (IoT), and Cyber-Physical systems (CPs). This makes it essential for industries to continuously identify cyber threats and anomalies to track privacy issues and offer security awareness. Cyberattacks on CPs can result in impacting the economical, physical, and environmental safety of the population severely. For instance, in 2021, the attack on the Colonial Pipeline, which is one of the largest and most important oil pipelines in the U.S., disrupted the fuel supply on the East Coast.

Also, in 2022, there was one of the most severely damaging cyberattacks on Germany's domestic fuel distribution system, thereby mostly destroying hacks observed in the oil industry. Henceforth, to detect and mitigate such cyberattacks at early stages, it has become vital for industries to overcome anomalies, thus fueling market demand. Moreover, with the evolving cybersecurity landscape, there has been a huge demand for behavior-based anomaly detection technology across industries. Organizations need to focus on analyzing the behavior and activities of systems, users, and network entities to identify cyber threats at an early stage. Behavior-based anomaly detection focuses on capturing sophisticated cyber-attacks, including advanced persistent threats and insider threats, thereby securing various systems of organizations. The growing demand for analyzing cyber-physical entities' behavior is anticipated to propel market growth among regions.

Anomaly Detection Market Report Highlights

Table of Contents

Chapter 1. Methodology and Scope

Chapter 2. Executive Summary

Chapter 3. Anomaly Detection Market Variables, Trends & Scope

Chapter 4. Anomaly Detection Market Component Outlook

Chapter 5. Anomaly Detection Market Deployment Outlook

Chapter 6. Anomaly Detection Market Technology Outlook

Chapter 7. Anomaly Detection Market End-Use Outlook

Chapter 8. Anomaly Detection Market: Regional Outlook

Chapter 9. Competitive Landscape

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â