¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå
Anomaly Detection
»óǰÄÚµå : 1650717
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 512 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,056,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,169,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

2030³â±îÁö ÀÌ»ó ŽÁö ¼¼°è ½ÃÀå ±Ô¸ð´Â 168¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 74¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÌ»ó ŽÁö ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 14.8%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 168¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÌ»ó ŽÁö ¼Ö·ç¼ÇÀº CAGR 15.3%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 127¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ»ó ŽÁö ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 13.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 29¾ï ´Þ·¯, Áß±¹Àº CAGR 15.4%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ÀÌ»ó ŽÁö ½ÃÀåÀº 2024³â 29¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 18¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 15.4%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 13.8%¿Í 13.6%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÀÌ»ó ŽÁö ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

ÀÌ»ó ŽÁö´Â µ¥ÀÌÅÍ ºÐ¼®¿¡¼­ Áß¿äÇÑ °úÁ¤À¸·Î, Ç¥ÁØ¿¡¼­ Å©°Ô ¹þ¾î³­ µ¥ÀÌÅÍ ³» ÆÐÅÏÀ» ½Äº°ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ºÎÁ¤ÇàÀ§ ŽÁö, ³×Æ®¿öÅ© º¸¾È, »ê¾÷ ½Ã½ºÅÛ Àå¾Ö °¨Áö, »óÅ ¸ð´ÏÅ͸µ µî ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ»ó°ªÀº ÀÌ»ó°ªÀ̶ó°íµµ Çϸç, »çÀ̹ö °ø°Ý, ±ÝÀ¶ »ç±â ½Ãµµ, ±â°è ¿ÀÀÛµ¿, ÀÇ·á »óÅ µî Áï°¢ÀûÀÎ ´ëÀÀÀÌ ÇÊ¿äÇÑ ºñÁ¤»óÀûÀÎ µ¿ÀÛÀ» ³ªÅ¸³¾ ¼ö ÀÖ½À´Ï´Ù. ÀÌ»ó ŽÁö¿¡ »ç¿ëµÇ´Â ±â¹ýÀº ZÁ¡¼ö, Grubbs Å×½ºÆ®¿Í °°Àº Åë°èÀû Á¢±Ù¹ýºÎÅÍ Å¬·¯½ºÅ͸µ, ½Å°æ¸Á, ¼­Æ÷Æ® º¤ÅÍ ¸Ó½Å°ú °°Àº ¸Ó½Å·¯´× ±â¹ý±îÁö ´Ù¾çÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¹ýµéÀº °ú°Å µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Á¤»ó µ¿ÀÛÀÇ ±âÁؼ±À» ¼³Á¤Çϰí, ÀÌ¿¡ ´ëÇÑ »õ·Î¿î µ¥ÀÌÅÍ Æ÷ÀÎÆ®¸¦ ºñ±³ÇÏ¿© ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÕ´Ï´Ù.

ÀÌ»ó ŽÁö ±¸ÇöÀº ¸Ó½Å·¯´×°ú ÀΰøÁö´ÉÀÇ ¹ßÀü°ú ÇÔ²² Å©°Ô ¹ßÀüÇØ ¿Ô½À´Ï´Ù. ÀüÅëÀûÀÎ Åë°èÀû ±â¹ýÀº ´Ü¼øÇÑ µ¥ÀÌÅͼ¼Æ®¿¡´Â È¿°úÀûÀÌÁö¸¸, ´ë±Ô¸ðÀÇ º¹ÀâÇÑ °íÂ÷¿ø µ¥ÀÌÅÍ Ã³¸®¿¡´Â Á¾Á¾ ºÒÃæºÐÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. ¸Ó½Å·¯´× ¸ðµ¨, ƯÈ÷ Áöµµ ÇнÀ, ºñÁöµµ ÇнÀ, ¹ÝÁöµµ ÇнÀÀ» ±â¹ÝÀ¸·Î ÇÑ ¸ðµ¨Àº ÀÌ·¯ÇÑ ½Ã³ª¸®¿À¿¡¼­ ÀÌ»ó ¡Èĸ¦ ½Äº°ÇÏ´Â µ¥ ´õ È¿°úÀûÀÓÀÌ ÀÔÁõµÇ¾úÀ¸¸ç, k-means Ŭ·¯½ºÅ͸µ ¹× ÀÚµ¿ ÀÎÄÚ´õ¿Í °°Àº ºñÁöµµ ÇнÀ ¸ðµ¨Àº ¶óº§¸µµÈ ÇнÀ µ¥ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê±â ¶§¹®¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ÄÁº¼·ç¼Ç ½Å°æ¸Á(CNN) ¹× ¼øÈ¯ ½Å°æ¸Á(RNN)°ú °°Àº µö·¯´× ±â¼úÀº µ¥ÀÌÅÍ ³»ÀÇ º¹ÀâÇÑ ÆÐÅϰú ½Ã°£Àû ÀÇÁ¸¼ºÀ» ÇнÀÇÏ¿© ¹Ì¹¦ÇÏ°í º¹ÀâÇÑ ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ´Â ´É·ÂÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í±Þ ¸ðµ¨Àº ½Ç½Ã°£ ½Ã½ºÅÛ¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇÕµÇ¾î ´Ù¾çÇÑ ¿µ¿ª¿¡¼­ Áï°¢ÀûÀÎ °¨Áö ¹× ´ëÀÀ ´É·ÂÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.

ÀÌ»ó ŽÁö ½ÃÀåÀÇ ¼ºÀåÀº µ¥ÀÌÅÍ ¾çÀÇ Áõ°¡¿Í º¹À⼺, »çÀ̹ö À§ÇùÀÇ ¹ß»ý·ü Áõ°¡, ÀΰøÁö´É ¹× ¸Ó½Å·¯´× ±â¼úÀÇ ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀÌ¿¡ ÀÇÁ¸ÇÏ°Ô µÇ¸é, ÀÌ µ¥ÀÌÅÍÀÇ ¹«°á¼º°ú º¸¾ÈÀ» º¸ÀåÇØ¾ß ÇÒ Çʿ伺ÀÌ °¡Àå Áß¿äÇØÁý´Ï´Ù. ÀÌ»ó ŽÁö ½Ã½ºÅÛÀº ÀáÀçÀûÀÎ À§ÇùÀ» ½Ç½Ã°£À¸·Î ½Äº°ÇÏ°í ¿ÏÈ­ÇÏ¿© ±â¹Ð Á¤º¸¸¦ º¸È£ÇÏ°í ºñÁî´Ï½º ¿¬¼Ó¼ºÀ» À¯ÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, IoT ±â±âÀÇ º¸±Þ°ú µðÁöÅÐ ÀÎÇÁ¶óÀÇ È®´ë·Î ÀÎÇØ °­·ÂÇÑ ÀÌ»ó ŽÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. AI¿Í ¸Ó½Å·¯´× ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÌ»ó ŽÁö ½Ã½ºÅÛÀÇ Á¤È®¼º°ú È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ¾î ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡¼­ º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°í È®À强ÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã ÄÄÇöóÀ̾𽺸¦ Àǹ«È­ÇÏ´Â ±ÔÁ¦ ¿ä°Ç°ú ¾÷°è Ç¥ÁØÀº ÷´Ü ÀÌ»ó ŽÁö ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ µû¶ó ´Éµ¿ÀûÀ̰í Á¤±³ÇÑ µ¥ÀÌÅÍ ¸ð´ÏÅ͸µ ¹× º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä·Î ÀÎÇØ ÀÌ»ó ŽÁö ½ÃÀåÀº Å« ÆøÀÇ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼Ö·ç¼Ç, ¼­ºñ½º), ±â¼ú(ºòµ¥ÀÌÅÍ ºÐ¼®, µ¥ÀÌÅÍ ¸¶ÀÌ´× & ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º, ¸Ó½Å·¯´× & ÀΰøÁö´É), ÃÖÁ¾»ç¿ëÀÚ(BFSI, IT & Åë½Å, Á¤ºÎ & ±¹¹æ, Á¦Á¶, ÇコÄɾî, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 94°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Anomaly Detection Market to Reach US$16.8 Billion by 2030

The global market for Anomaly Detection estimated at US$7.4 Billion in the year 2024, is expected to reach US$16.8 Billion by 2030, growing at a CAGR of 14.8% over the analysis period 2024-2030. Anomaly Detection Solutions, one of the segments analyzed in the report, is expected to record a 15.3% CAGR and reach US$12.7 Billion by the end of the analysis period. Growth in the Anomaly Detection Services segment is estimated at 13.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.9 Billion While China is Forecast to Grow at 15.4% CAGR

The Anomaly Detection market in the U.S. is estimated at US$2.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.8 Billion by the year 2030 trailing a CAGR of 15.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.8% and 13.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.7% CAGR.

Global Anomaly Detection Market - Key Trends & Drivers Summarized

Anomaly detection is a critical process in data analysis, which involves identifying patterns in data that deviate significantly from the norm. This technique is essential for various applications, including fraud detection, network security, fault detection in industrial systems, and health monitoring. Anomalies, also known as outliers, can indicate unusual behavior that may require immediate attention, such as a cyberattack, a financial fraud attempt, a malfunctioning machine, or a medical condition. The methods used for anomaly detection range from statistical approaches, such as Z-scores and Grubbs' test, to machine learning techniques like clustering, neural networks, and support vector machines. These methods analyze historical data to establish a baseline of normal behavior, against which new data points are compared to detect anomalies.

The implementation of anomaly detection has evolved significantly with advancements in machine learning and artificial intelligence. Traditional statistical methods, while effective for simpler datasets, often fall short in handling large, complex, and high-dimensional data. Machine learning models, particularly those based on supervised, unsupervised, and semi-supervised learning, have proven to be more effective in identifying anomalies in such scenarios. Unsupervised learning models, like k-means clustering and autoencoders, are particularly useful as they do not require labeled training data. Deep learning techniques, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have further enhanced the ability to detect subtle and complex anomalies by learning intricate patterns and temporal dependencies within the data. These advanced models are increasingly integrated into real-time systems, providing immediate detection and response capabilities across various domains.

The growth in the anomaly detection market is driven by several factors, including the increasing volume and complexity of data, the rising incidence of cyber threats, and the advancement of artificial intelligence and machine learning technologies. As organizations generate and rely on vast amounts of data, the need to ensure the integrity and security of this data becomes paramount. Anomaly detection systems are crucial for identifying and mitigating potential threats in real-time, thereby protecting sensitive information and maintaining operational continuity. The proliferation of IoT devices and the expansion of digital infrastructures have further intensified the demand for robust anomaly detection solutions. Technological advancements in AI and machine learning have significantly improved the accuracy and efficiency of anomaly detection systems, making them more accessible and scalable for businesses of all sizes. Additionally, regulatory requirements and industry standards mandating data security and privacy compliance are encouraging the adoption of advanced anomaly detection technologies. As these trends continue, the anomaly detection market is expected to experience substantial growth, driven by the ongoing need for proactive and sophisticated data monitoring and security solutions.

SCOPE OF STUDY:

The report analyzes the Anomaly Detection market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Technology (Big Data Analytics, Data Mining & Business Intelligence, Machine Learning & Artificial Intelligence); End-Use (BFSI, IT & Telecom, Government & Defense, Manufacturing, Healthcare, Other End-Uses)

Geographic Regions/Countries:

World; USA; Canada; Japan; China; Europe; France; Germany; Italy; UK; Rest of Europe; Asia-Pacific; Rest of World.

Select Competitors (Total 94 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â