¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå
Automotive Predictive Technology
»óǰÄÚµå : 1795863
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 467 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,183,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,550,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ¼¼°è ½ÃÀåÀº 2030³â±îÁö 1,045¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 721¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 6.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,045¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ ½Â¿ëÂ÷´Â CAGR 5.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 595¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ó¿ëÂ÷ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 197¾ï ´Þ·¯, Áß±¹Àº CAGR 9.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀåÀº 2024³â¿¡ 197¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 212¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 9.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.2%¿Í 6.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀΰøÁö´ÉÀÌ ÀÚµ¿Â÷ ¿¹Ãø Áö´ÉÀÇ »õ·Î¿î ÁöÆòÀ» ¿­´Ù?

ÀÚµ¿Â÷ ¿¹Ãø ±â¼úÀº ÀΰøÁö´É, ºòµ¥ÀÌÅÍ ºÐ¼®, ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ Æø¹ßÀûÀÎ ¹ßÀüÀ¸·Î ±Þ°ÝÇÑ º¯ÇõÀ» ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ÀÚµ¿Â÷´Â ¿îÀüÀÚÀÇ ÇൿÀ» ¿¹ÃøÇϰí, ÀáÀçÀûÀÎ ±â°èÀû °íÀåÀ» °¨ÁöÇϰí, ±³Åë »óȲÀ» ¹Ì¸® ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ÁøÈ­ÀÇ ÇÙ½ÉÀº ¼¾¼­, Ŭ¶ó¿ìµå Ç÷§Æû, »ç¿ëÀÚ Çൿ ÆÐÅÏ¿¡¼­ ¼öÁýÇÑ ¹æ´ëÇÑ ¾çÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ¿Í °ú°Å µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â ¿¹Ãø ½Ã½ºÅÛÀÇ ´É·ÂÀÔ´Ï´Ù. OEM(ÁÖ¹®ÀÚ »óÇ¥ ºÎÂø »ý»ê¾÷ü)Àº ÇöÀç AI Áö¿ø Á¦¾î ÀåÄ¡¸¦ Â÷·®¿¡ ³»ÀåÇÏ¿© ¿îÀü ½À°ü°ú ȯ°æ Á¶°ÇÀ» Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÏ¿© °æ·Î º¯°æ, »çÀü ¿¹¹æÀû À¯Áöº¸¼ö ¾Ë¸², ÀûÀÀÇü ¿îÀü Á¶Á¤ µîÀÇ ¼±Á¦Àû °³ÀÔÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöÇü ¿¹Ãø°ú ±³Åë È帧¿¡ µû¶ó ¿£Áø ¼º´É°ú ¿¬·á »ç¿ë·®À» Á¶Á¤ÇÏ¿© ÆÄ¿öÆ®·¹ÀÎÀÇ È¿À²À» ³ôÀ̱â À§ÇØ ¿¹Ãø ºÐ¼®ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛÀº ³»ºñ°ÔÀ̼Ç, °øÁ¶ Á¦¾î, ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿¡ ´ëÇÑ »ç¿ëÀÚÀÇ ¼±È£µµ¸¦ ÇнÀÇÏ´Â Çൿ ¿¹Ãø ¾Ë°í¸®ÁòÀ» ÅëÇØ ´õ¿í °³ÀÎÈ­µÇ¾î °¡°í ÀÖ½À´Ï´Ù. Å×½½¶ó, BMW, µµ¿äŸ µî ÀÚµ¿Â÷ Á¦Á¶»çµéÀº ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, ¿øÈ°ÇÑ ¹«¼± ¾÷µ¥ÀÌÆ®¿Í ¿¹ÃøÀû ½Ã½ºÅÛ °³¼±À» Áö¿øÇÏ´Â ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ Â÷·® ¾ÆÅ°ÅØÃ³¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àüü Â÷·® µ¥ÀÌÅͷκÎÅÍ Áö¼ÓÀûÀ¸·Î ÇнÀÇÏ°í ¿¹ÃøÀ» °³¼±ÇÒ ¼ö Àִ Ŭ¶ó¿ìµå ±â¹Ý AI ¸ðµ¨À» ÅëÇÕÇÔÀ¸·Î½á ´õ¿í °­È­µË´Ï´Ù. ¿¹Ãø ºÐ¼®°ú ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)ÀÇ À¶ÇÕÀº ¿îÀüÀÚ¿¡°Ô ÇÇ·Î, ÁÖÀǻ길, °ø°ÝÀûÀÎ ¿îÀü °æÇâ µîÀÇ À§ÇèÀ» °æ°íÇÏ´Â »õ·Î¿î ½Ã´ëÀÇ ¿¹Ãø ¾ÈÀü ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÚµ¿Â÷ÀÇ ÀÚÀ²È­°¡ ÁøÀüµÊ¿¡ µû¶ó ¿¹Ãø ±â¼úÀº ¿¹Ãø ¿îÀü ÀÎÅÚ¸®Àü½ºÀÇ ±â¹ÝÀ» Çü¼ºÇϰí, ¹ÝÀÀÇü¿¡¼­ »çÀü ¿¹¹æÀû ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

±ÔÁ¦¿Í Ç¥ÁØÀÌ ¿¹Ãø °¡´ÉÇÑ Â÷·® ´É·ÂÀ» µû¶óÀâÀ» ¼ö ÀÖÀ»±î?

ÀÚµ¿Â÷ ¿¹Ãø ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ±ÔÁ¦ Áغñ¿Í ¾÷°è Àü¹ÝÀÇ Ç¥ÁØ °³¹ß¿¡ ´ëÇÑ ½É°¢ÇÑ ¹®Á¦¸¦ ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ÀÚµ¿Â÷ ºÎǰ°ú ´Þ¸® ¿¹Ãø ½Ã½ºÅÛÀº µ¥ÀÌÅÍ ¼öÁý, ó¸®, »ç¿ëÀÚ ÇÁ·ÎÆÄÀϸµ¿¡ Å©°Ô ÀÇÁ¸Çϱ⠶§¹®¿¡ º¹ÀâÇÑ ÇÁ¶óÀ̹ö½Ã ¹× »çÀ̹ö º¸¾È¿¡ ´ëÇÑ °í·Á°¡ ÇÊ¿äÇÕ´Ï´Ù. Á¤ºÎ¿Í ±ÔÁ¦ ±â°üÀº ÀÚµ¿Â÷ÀÇ ¿¹Ãø ±â´ÉÀ» Ã¥ÀÓ°¨ ÀÖ°Ô È°¿ëÇϱâ À§ÇØ ±âÁ¸ ÇÁ·¹ÀÓ¿öÅ©¸¦ ¾î¶»°Ô ¹ßÀü½ÃÄÑ¾ß ÇÏ´ÂÁö¸¦ ¸ð»öÇϱ⠽ÃÀÛÇß½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)¿¡¼­´Â ÀÌ¹Ì ÀϹݰ³ÀÎÁ¤º¸º¸È£¹ý(GDPR)ÀÌ »ç¿ëÀÚÀÇ µ¿ÀÇ¿Í Åõ¸í¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¿¹Ãø µ¥ÀÌÅÍÀÇ È帧À» Àç¼³°èÇϵµ·Ï Á¦Á¶¾÷ü¿¡ ¾Ð¹ÚÀ» °¡Çϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ¹Ì±¹ ±ÔÁ¦ ´ç±¹µµ Çõ½ÅÀ» ÃËÁøÇÏ°í ¼ÒºñÀÚ º¸È£¸¦ º¸ÀåÇϱâ À§ÇØ ÅÚ·¹¸Åƽ½º¿Í ¿§Áö ¾Ö³Î¸®Æ½½º¿¡ ´ëÇÑ °¡À̵å¶óÀÎÀ» Æò°¡Çϰí ÀÖ½À´Ï´Ù. ISO, SAE¿Í °°Àº ±¹Á¦±â±¸°¡ ¿¹Ãø Áø´Ü, µ¥ÀÌÅÍ ·Î±ë, ½Ã½ºÅÛ »óÈ£¿î¿ë¼º °ü·Ã ÆÄ¶ó¹ÌÅ͸¦ Á¤ÀÇÇÏ´Â µî Ç¥ÁØÈ­´Â Áß¿äÇÑ ÁßÁ¡ ºÐ¾ß·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ÀÇ °¨½Ã°¡ ¼ÒÇÁÆ®¿þ¾î °ËÁõ ÇÁ·Î¼¼½º±îÁö È®´ëµÇ°í ÀÖÀ¸¸ç, OEMÀº AI ±â¹Ý ¿¹Ãø ¸ðµ¨ÀÇ °ß°í¼º, ¼³¸í°¡´É¼º, °øÁ¤¼ºÀ» ÀÔÁõÇØ¾ß ÇÕ´Ï´Ù. ¿¹Áöº¸ÀüÀÌ ´ëÁßÈ­µÇ¸é¼­ Â÷·® °Ë»ç ±âÁØÀº ±â°èÀû Áø´Ü°ú ´õºÒ¾î ¾Ë°í¸®Áò¿¡ ÀÇÇÑ Á¡°ËÀ» Æ÷ÇÔÇϵµ·Ï ÀçÁ¤Àǵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áß¿äÇÑ Â÷·® ±â´É¿¡ Á¢±ÙÇÏ´Â Ä¿³ØÆ¼µå ¿¹Ãø ¸ðµâ°ú °ü·ÃµÈ À§ÇèÀ» ÁÙÀ̱â À§ÇØ ÅëÀÏµÈ »çÀ̹ö º¸¾È º¥Ä¡¸¶Å©¸¦ °³¹ßÇØ¾ß ÇÑ´Ù´Â ¾Ð·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. º¸Çè»çµéÀº ÇÁ¶óÀ̹ö½Ã ±Ç¸®¸¦ Ä§ÇØÇÏÁö ¾Ê°í ¿îÀüÀÚ Çൿ ¿¹Ãø µ¥ÀÌÅ͸¦ ¸®½ºÅ© ¸ðµ¨¸µ¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ¸ðºô¸®Æ¼ ¼­ºñ½º Ç÷§ÆûÀÇ µîÀåÀº ÀÚµ¿Â÷ Á¦Á¶»ç, Ç÷§Æû »ç¾÷ÀÚ, °ø°ø ÀÎÇÁ¶ó ´ç±¹ °£ÀÇ µ¥ÀÌÅÍ °øÀ¯ ÇÁ·ÎÅäÄÝÀ» ÇÊ¿ä·Î Çϸç, º¹À⼺À» ´õ¿í °¡Áß½Ã۰í ÀÖ½À´Ï´Ù. ±ÔÁ¦ °³¹ßÀº ¾ÆÁ÷ ±â¼úÀû ¿ª·®¿¡ ºñÇØ µÚÃÄÁ® ÀÖÁö¸¸, ÀÚµ¿Â÷ ¿¹Ãø ½Ã½ºÅÛÀÇ Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» Áö¿øÇÏ´Â ÀϰüµÈ ¹ýÀû, À±¸®Àû ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇϱâ À§ÇÑ °øµ¿ÀÇ ³ë·ÂÀÌ ÇöÀç ÁøÇà ÁßÀÔ´Ï´Ù.

ÀÚµ¿Â÷ ¿¹Ãø Çõ½ÅÀÇ ÇýÅÃÀ» °¡Àå ¸¹ÀÌ ¹Þ´Â »ê¾÷ ºÐ¾ß´Â ¾îµðÀϱî?

ÀÚµ¿Â÷ ¿¹Ãø ±â¼úÀÇ Ã¤ÅÃÀº ¿©·¯ »ê¾÷ ºÐ¾ß·Î È®»êµÇ°í ÀÖÀ¸¸ç, °¢ »ê¾÷ ºÐ¾ß´Â ƯÁ¤ ¼º´É, ¾ÈÀü, È¿À²¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ¿¹Ãø ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. »ó¿ëÂ÷ ºÐ¾ß¿¡¼­´Â Â÷·® ¿î¿µÀÚ°¡ ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϰí, ¼ö¸® ÀÏÁ¤À» ÃÖÀûÈ­Çϸç, ÁÖÇà°Å¸®°¡ ¸¹Àº Â÷·®ÀÇ ¼ö¸íÀ» ¿¬ÀåÇϱâ À§ÇØ ¿¹Áöº¸Àü ½Ã½ºÅÛÀ» µµÀÔÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ¸ðµ¨Àº ¿£ÁøÀÇ Áøµ¿, À¯Ã¼ ·¹º§, ¿îÀü ÆÐÅÏÀ» ºÐ¼®ÇÏ¿© ÀáÀçÀûÀÎ ¹®Á¦°¡ ½É°¢ÇØÁö±â Àü¿¡ °æ°í¸¦ º¸³»¾î Àû½Ã¿¡ °³ÀÔÇÏ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. °í±ÞÂ÷ ½ÃÀåµµ ¿¹Ãø ±â´ÉÀ» ÅëÇÕÇÏ¿© ¼±È£ÇÏ´Â Á¼® À§Ä¡ºÎÅÍ °ú°Å »ç¿ë·®¿¡ µû¸¥ ¿¡¾îÄÁ Á¶Àý±îÁö Ãʰ³ÀÎÈ­ µÈ °æÇèÀ» Á¦°øÇÏ´Â ¿¹Ãø ±â´ÉÀ» ÅëÇÕÇÏ¿© °í±ÞÂ÷ ½ÃÀåµµ ÁÖ¿ä äÅà ±â¾÷ÀÔ´Ï´Ù. ¶óÀ̵å ÇìÀϸµ°ú °øÀ¯ ¸ðºô¸®Æ¼ ¼­ºñ½º´Â ¿¹Ãø ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© Â÷·®°ú ÀÌ¿ëÀÚ¸¦ º¸´Ù È¿À²ÀûÀ¸·Î ¸ÅĪÇϰí, ¼ö¿ä ±ÞÁõÀ» ¿¹ÃøÇϰí, µ¿Àû °¡°Ý Ã¥Á¤ ¸ðµ¨À» ÃÖÀûÈ­Çϱâ À§ÇØ ¿¹Ãø ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷ Á¦Á¶»çµéÀº ¿¹Ãø ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ¿© ÁÖÇà°Å¸®¸¦ º¸´Ù Á¤È®ÇÏ°Ô ÃßÁ¤Çϰí, »ç¿ëÀÚÀÇ Çൿ°ú ȯ°æ Á¶°Ç¿¡ µû¶ó ÃÖÀûÀÇ ÃæÀü Àü·«À» Á¦¾ÈÇϰí ÀÖ½À´Ï´Ù. º¸Çè»çµéÀº OEM°ú Çù·ÂÇÏ¿© ½Ç½Ã°£À¸·Î À§ÇèÀ» Æò°¡ÇÏ´Â ¿îÀüÀÚ ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÑ ÀÌ¿ë ±â¹Ý º¸Çè ¸ðµ¨À» ¼³°èÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ¾ÖÇÁÅ͸¶ÄÏ ºÐ¾ß¿¡¼­´Â ¿¹Ãø Áø´Ü µµ±¸¸¦ ÅëÇØ ¼­ºñ½º ¼¾ÅͰ¡ µ¥ÀÌÅÍ ±â¹Ý ÄÁ¼³ÆÃ°ú ºÎ°¡°¡Ä¡ À¯Áöº¸¼ö ¼­ºñ½º¸¦ ÀÚµ¿Â÷ ¼ÒÀ¯ÁÖ¿¡°Ô Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÚµ¿Â÷ ±ÝÀ¶È¸»ç¿¡¼­µµ ¸ðºô¸®Æ¼ ÆÐÅϰú »ç¿ëÇàŸ¦ °í·ÁÇÑ ¿¹ÃøÀû ½Å¿ëÀ§Çè Æò°¡¸¦ ½ÃµµÇϰí ÀÖ½À´Ï´Ù. ´ëÁß±³Åë ±â°üÀº °æ·Î °èȹ, À¯Áöº¸¼ö ÀÏÁ¤, ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ¿¹Ãø Â÷·® °ü¸® ½Ã½ºÅÛÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °¢ ºÎ¹®Àº È¿À²¼º°ú ½Å·Ú¼ºÀÇ Çâ»óÀ¸·Î ÀÌÀÍÀ» ¾òÀ» »Ó¸¸ ¾Æ´Ï¶ó ÀÚµ¿Â÷ ¿¹Ãø ¼Ö·ç¼ÇÀÇ ÁøÈ­¿Í ÅëÇÕÀ» Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ¿¹Ãø ±â¼úÀÇ ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀϱî?

ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀº µðÁöÅÐ ÀÎÇÁ¶óÀÇ ¹ßÀü, Â÷·® Ä¿³ØÆ¼ºñƼ, ¼ÒºñÀÚ ±â´ëÄ¡ÀÇ º¯È­¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ´Â ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ¿§Áö ÇÁ·Î¼¼½Ì ±â´ÉÀÇ È®ÀåÀ¸·Î ½Ç½Ã°£ ¿¹Ãø ºÐ¼®ÀÇ ½ÇÇö °¡´É¼ºÀÌ ºñ¾àÀûÀ¸·Î ³ô¾ÆÁ³°í, Â÷·®Àº ·ÎÄÿ¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ¿¹ÃøµÈ À̺¥Æ®¿¡ Áï°¢ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Â÷·® ½Ã½ºÅÛ ³» »ç¹°ÀÎÅͳÝ(IoT) ÀåÄ¡ÀÇ ÅëÇÕÀÌ ÁøÇàµÊ¿¡ µû¶ó ¿¹Ãø ¸ðµ¨¿¡ dzºÎÇÏ°í ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â ÃÎÃÎÇÑ µ¥ÀÌÅÍ Æ÷ÀÎÆ® ³×Æ®¿öÅ©°¡ ±¸ÃàµÇ¾ú½À´Ï´Ù. ¾ÈÀü, ÆíÀǼº, °³ÀÎÈ­ µÈ °æÇè¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼­ ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ¿¹Ãø ±â´ÉÀ» µµÀÔÇÏ¿© ÀÏ»óÀûÀ¸·Î ±¸Ã¼ÀûÀÎ ÇýÅÃÀ» Á¦°øÇϰíÀÚ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¹«¼± ¼ÒÇÁÆ®¿þ¾î ¾÷µ¥ÀÌÆ®¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ¿¹Ãø ±â´ÉÀÇ Á¦°øÀÌ °¡¼ÓÈ­µÇ°í, Çϵå¿þ¾î¸¦ º¯°æÇÏÁö ¾Ê°íµµ ´õ ½±°Ô Á¢±ÙÇϰí Áö¼ÓÀûÀ¸·Î °³¼±ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Ä¿³ØÆ¼µåÄ«¿Í ÀÚÀ²ÁÖÇàÂ÷·ÎÀÇ Àüȯµµ Ã˸ÅÁ¦·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ±â¼úÀº Â÷·®ÀÌ »ç¶÷ÀÇ ÀÔ·Â ¾øÀ̵µ ¿ªµ¿ÀûÀΠȯ°æÀ» ¿¹ÃøÇÏ°í ¹ÝÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ ÇʼöÀûÀ̱⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ¼¾¼­ ¹× ÅÚ·¹¸Åƽ½º Çϵå¿þ¾î ºñ¿ëÀÌ Å©°Ô °¨¼ÒÇϰí ÀÖÀ¸¸ç, ¿¹Ãø ½Ã½ºÅÛÀº Áß±Þ Â÷·®À» Æ÷ÇÔÇÑ Àüü Â÷·® Ä«Å×°í¸®¿¡¼­ ´õ Àú·ÅÇÑ °¡°ÝÀ¸·Î Á¦°øµÇ°í ÀÖ½À´Ï´Ù. Fleet Management PlatformÀº ¾÷¹« È¿À²¼º°ú °æÀï Â÷º°È­¸¦ À§ÇØ ¿¹Ãø µµ±¸¸¦ Ç¥ÁØ ¼­ºñ½º·Î ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. Àüµ¿È­ Ãß¼¼´Â ƯÈ÷ »ç¿ëÀÚ°¡ Á¤È®ÇÑ ÁÖÇà°Å¸® ¿¹Ãø°ú ÀûÀÀÇü ¿¡³ÊÁö Àý¾à ±â´ÉÀ» ¿ä±¸ÇÔ¿¡ µû¶ó ¿¹Ãø ¹èÅ͸® °ü¸®ÀÇ Á߿伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½ÉÀÇ Áõ°¡¿Í ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·ÂÀ¸·Î ÀÎÇØ Á¦Á¶¾÷üµéÀº ¿¬·á »ç¿ëÀ» ÃÖÀûÈ­Çϰí À¯ÈÞ ½Ã°£À» ÃÖ¼ÒÈ­ÇÏ´Â ¿¹Ãø ¿îÀü ½Ã½ºÅÛÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óÈ£ ¿¬°üµÈ ÈûµéÀÌ Á¾ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀåÀ» ÀÏ¹Ý ¼ÒºñÀÚ¿Í »ó¾÷ ºÎ¹® ¸ðµÎ¿¡¼­ ±¤¹üÀ§ÇÑ Ã¤Åðú Áö¼ÓÀûÀÎ Çõ½ÅÀ¸·Î À̲ø°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Â÷Á¾(½Â¿ëÂ÷, »ó¿ëÂ÷), ±¸¼º¿ä¼Ò(¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î), ¿ëµµ(¾ÈÀü¡¤º¸¾È, Â÷·® Á¤ºñ, ¿¹Ãø ½º¸¶Æ® ÁÖÂ÷, ±âŸ ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(Çø´ ¿À³Ê, º¸Çèȸ»ç, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Automotive Predictive Technology Market to Reach US$104.5 Billion by 2030

The global market for Automotive Predictive Technology estimated at US$72.1 Billion in the year 2024, is expected to reach US$104.5 Billion by 2030, growing at a CAGR of 6.4% over the analysis period 2024-2030. Passenger Cars, one of the segments analyzed in the report, is expected to record a 5.1% CAGR and reach US$59.5 Billion by the end of the analysis period. Growth in the Commercial Vehicles segment is estimated at 8.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$19.7 Billion While China is Forecast to Grow at 9.8% CAGR

The Automotive Predictive Technology market in the U.S. is estimated at US$19.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$21.2 Billion by the year 2030 trailing a CAGR of 9.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.2% and 6.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Global Automotive Predictive Technology Market: Key Trends & Drivers Summarized

Is Artificial Intelligence Unlocking New Frontiers in Predictive Automotive Intelligence?

Automotive predictive technology is undergoing a radical transformation, driven by the explosive advancement of artificial intelligence, big data analytics, and machine learning algorithms. These technologies are enabling vehicles to anticipate driver behaviors, detect potential mechanical failures, and even predict traffic conditions before they occur. At the core of this evolution is the ability of predictive systems to process vast volumes of real-time and historical data gathered from sensors, cloud platforms, and user behavior patterns. Original Equipment Manufacturers (OEMs) are now embedding AI-enabled control units within vehicles to monitor driving habits and environmental conditions continuously, enabling preemptive interventions such as route changes, proactive maintenance reminders, or adaptive driving adjustments. Predictive analytics are also being used to enhance powertrain efficiency by adjusting engine performance and fuel usage based on terrain forecasts and traffic flow. Additionally, infotainment systems are becoming more personalized through behavioral prediction algorithms that learn user preferences for navigation, climate control, and entertainment. Automakers such as Tesla, BMW, and Toyota are leading innovation in this domain, investing heavily in software-defined vehicle architectures that support seamless over-the-air updates and predictive system refinements. These systems are further enhanced by the integration of cloud-based AI models capable of refining their predictions through continuous learning from fleet-wide data. The convergence of predictive analytics with advanced driver-assistance systems (ADAS) is enabling a new era of anticipatory safety features that alert drivers to risks such as fatigue, distraction, or aggressive driving tendencies. As vehicles grow increasingly autonomous, predictive technologies will form the bedrock of anticipatory driving intelligence, driving a shift from reactive to proactive mobility solutions.

Can Regulations and Standards Keep Pace with Predictive Vehicle Capabilities?

The rapid evolution of automotive predictive technology is prompting critical questions about regulatory readiness and the development of industry-wide standards. Unlike traditional automotive components, predictive systems rely heavily on data collection, processing, and user profiling, which introduce complex privacy and cybersecurity considerations. Governments and regulatory bodies are beginning to explore how existing frameworks must evolve to ensure responsible use of predictive capabilities in vehicles. In the European Union, the General Data Protection Regulation (GDPR) has already forced manufacturers to redesign predictive data flows to ensure user consent and transparency. Similarly, U.S. regulators are evaluating guidelines around telematics and edge analytics to ensure consumer protection while fostering innovation. Standardization is becoming a key focus area, with international organizations such as ISO and SAE working to define parameters for predictive diagnostics, data logging, and system interoperability. Regulatory oversight is also extending into software verification processes, requiring OEMs to demonstrate the robustness, explainability, and fairness of AI-driven prediction models. As predictive maintenance becomes more prevalent, vehicle inspection standards are being redefined to include algorithmic checks alongside mechanical diagnostics. Moreover, there is growing pressure to develop uniform cybersecurity benchmarks to mitigate risks associated with connected predictive modules that access critical vehicle functions. Insurance companies, too, are seeking clear regulatory frameworks to integrate predictive driver behavior data into risk modeling without infringing on privacy rights. The rise of mobility-as-a-service platforms is adding another layer of complexity, necessitating data-sharing protocols between vehicle manufacturers, platform operators, and public infrastructure authorities. While regulatory development still trails behind technological capabilities, concerted efforts are now underway to build a coherent legal and ethical framework that supports the sustainable growth of automotive predictive systems.

Which Industry Segments Are Benefiting Most from Predictive Automotive Innovations?

The adoption of automotive predictive technology is spreading across multiple industry segments, each harnessing its capabilities to meet specific performance, safety, and efficiency objectives. In the commercial vehicle sector, fleet operators are increasingly deploying predictive maintenance systems to minimize downtime, optimize repair scheduling, and extend the lifespan of high-mileage vehicles. By analyzing engine vibrations, fluid levels, and driving patterns, predictive models can flag potential issues before they escalate, allowing for timely intervention and cost savings. The luxury vehicle market is another major adopter, integrating predictive features to deliver hyper-personalized experiences ranging from preferred seat positioning to climate control adjustments based on previous usage. Ride-hailing and shared mobility services are leveraging predictive algorithms to match vehicles with users more effectively, forecast demand surges, and optimize dynamic pricing models. Electric vehicle manufacturers are utilizing predictive energy management systems to estimate range more accurately and suggest optimal charging strategies based on user behavior and environmental conditions. Insurance providers are beginning to collaborate with OEMs to design usage-based insurance models powered by predictive driver analytics that assess risk in real time. In the aftermarket segment, predictive diagnostic tools are empowering service centers to offer data-driven consultations and value-added maintenance services to vehicle owners. Even vehicle financing companies are experimenting with predictive credit risk assessments that factor in mobility patterns and usage behavior. The public transportation sector is exploring predictive fleet management systems to optimize route planning, maintenance schedules, and energy consumption. Each of these sectors is not only benefiting from improved efficiency and reliability but also playing a critical role in shaping the evolution and integration of predictive automotive solutions.

What Are the Key Drivers Accelerating the Growth of Predictive Technologies in Vehicles?

The growth in the automotive predictive technology market is driven by several factors closely tied to advancements in digital infrastructure, vehicle connectivity, and changing consumer expectations. The expansion of cloud computing and edge processing capabilities has dramatically increased the feasibility of real-time predictive analytics at scale, enabling vehicles to process data locally and respond instantaneously to anticipated events. The growing integration of Internet of Things (IoT) devices within vehicle systems has created a dense web of data points that feed predictive models with rich, actionable insights. Rising consumer demand for safety, convenience, and personalized experiences is encouraging automakers to adopt predictive features that offer tangible day-to-day benefits. Increasing reliance on over-the-air software updates is accelerating the delivery of predictive functionalities, making them more accessible and continually refined without the need for hardware changes. The transition toward connected and autonomous vehicles is also acting as a catalyst, as predictive technology is essential for enabling vehicles to anticipate and react to dynamic environments without human input. Furthermore, the cost of sensor and telematics hardware has decreased significantly, making predictive systems more affordable across vehicle categories, including mid-range models. Fleet management platforms are incorporating predictive tools as standard offerings to improve operational efficiency and competitive differentiation. Electrification trends are enhancing the importance of predictive battery management, especially as users demand accurate range forecasts and adaptive energy-saving features. Additionally, growing environmental concerns and regulatory pressure to reduce emissions are pushing manufacturers to adopt predictive driving systems that optimize fuel use and minimize idle time. These interconnected forces are collectively propelling the automotive predictive technology market toward widespread adoption and continuous innovation across both consumer and commercial segments.

SCOPE OF STUDY:

The report analyzes the Automotive Predictive Technology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Vehicle Type (Passenger Cars, Commercial Vehicles); Component (Software Component, Hardware Component); Application (Safety & Security Application, Vehicle Maintenance Application, Predictive Smart Parking Application, Other Applications); End-User (Fleet Owners End-User, Insurers End-User, Other End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â