¼¼°èÀÇ RNA ±â¹Ý Ä¡·áÁ¦ ½ÃÀå
RNA-based Therapeutics
»óǰÄÚµå : 1794703
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 274 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License)
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries)


Çѱ۸ñÂ÷

RNA ±â¹Ý Ä¡·áÁ¦ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 56¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 42¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â RNA ±â¹Ý Ä¡·áÁ¦ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 4.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 56¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ mRNA Ä¡·áÁ¦´Â CAGR 5.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 24¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå Ä¡·áÁ¦ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 5.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 11¾ï ´Þ·¯, Áß±¹Àº CAGR 8.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ RNA ±â¹Ý Ä¡·áÁ¦ ½ÃÀåÀº 2024³â¿¡ 11¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.0%¿Í 3.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ RNA ±â¹Ý Ä¡·áÁ¦ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Äڵ忡¼­ Ä¡·á·Î: RNA Ä¡·áÁ¦°¡ Á¤¹ÐÀÇ·áÀÇ °æ°è¸¦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

Ä¡·áÁ¦·Î¼­ RNAÀÇ ÃâÇöÀ» ÃËÁøÇÏ´Â °úÇÐÀû Áøº¸´Â ¹«¾ùÀΰ¡?

RNA ±â¹Ý Ä¡·áÁ¦´Â ´Ü¹éÁú ¼öÁØÀÌ ¾Æ´Ñ À¯ÀüÀÚ ¹× Àü»çü ¼öÁØ¿¡¼­ Áúº´ °æ·Î¸¦ Á¶ÀýÇÒ ¼ö ÀÖ´Â Á¤¹ÐÀÇ·áÀÇ »õ·Î¿î ½Ã´ë¸¦ ÀǹÌÇÕ´Ï´Ù. ¸Þ½ÅÀú RNA(mRNA), small interfering RNA(siRNA), ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå(ASO), RNA ¾ÛŸ¸Ó µî RNAÀÇ Ä¡·áÁ¦·Î¼­ÀÇ ´Ù¾ç¼ºÀ¸·Î ÀÎÇØ RNA´Â ¹ÌÃæÁ· ÀÓ»ó ¼ö¿ä°¡ ³ôÀº Áúº´À» Ÿ°ÙÆÃÇϱâ À§ÇÑ °¡Àå À¯¸ÁÇÑ Ç÷§Æû Áß Çϳª°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀúºÐÀÚ ¾à¹°À̳ª ´ÜŬ·ÐÇ×ü¿Í ´Þ¸® RNA ±â¹Ý Ä¡·á¹ýÀº À¯ÀüÀÚ ¹ßÇöÀ» Á÷Á¢ Á¶ÀÛÇÒ ¼ö Àֱ⠶§¹®¿¡ ƯÁ¤ À¯ÀüÁúȯ, ¾Ï, °¨¿°¼º Áúȯ µî °ú°Å¿¡´Â Ä¡·á°¡ ºÒ°¡´ÉÇÏ´Ù°í ¿©°ÜÁ³´ø Áúº´¿¡ ´ëÇÑ °³ÀÔÀÌ °¡´ÉÇÕ´Ï´Ù.

ÃÖ±Ù RNAÀÇ ¾ÈÁ¤¼º, ¼¼Æ÷ ³» Àü´Þ ¹× È­ÇÐÀû º¯Çü¿¡ ´ëÇÑ °úÇÐÀû Çõ½ÅÀº ºü¸¥ ºÐÇØ ¹× ¿ÀÇÁ Ÿ°Ù È¿°ú¿Í °ü·ÃµÈ Ãʱ⠹®Á¦¸¦ ¸¹ÀÌ ÇØ°áÇß½À´Ï´Ù. º¯ÇüµÈ ´ºÅ¬·¹¿À½Ãµå, ÁöÁú³ª³ëÀÔÀÚ(LNP), ÄÁÁê°ÔÀÌ¼Ç ±â¼úÀ» ÅëÇØ RNA ¾à¹°ÀÇ ¾àµ¿ÇÐÀû ÇÁ·ÎÆÄÀÏÀÌ Å©°Ô °³¼±µÇ¾î Àü½Å Åõ¿© ¹× °£, ±ÙÀ°, ÁßÃ߽Űæ°è µîÀÇ Á¶Á÷¿¡ Ç¥Àû Àü´ÞÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. COVID-19 ÆÒµ¥¹Í »óȲ¿¡¼­ mRNA ¹é½ÅÀÇ ¼º°øÀº RNA ±â¹Ý Ä¡·áÁ¦ÀÇ È®À强, ¾ÈÀü¼º, °³¹ß ¼Óµµ¸¦ ÀÔÁõÇÏ¸ç ¿©·¯ Ä¡·á ºÐ¾ß¿¡ °ÉÃÄ ÆÄÀÌÇÁ¶óÀÎÀÌ Æø¹ßÀûÀ¸·Î Áõ°¡Çß½À´Ï´Ù.

¶ÇÇÑ, CRISPR-Cas13, ½ºÇöóÀ̽º º¯Çü ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå, °í¸®Çü RNA µîÀÇ RNA ÆíÁý ¹× º¯Çü µµ±¸´Â À¯ÀüÀÚ ³ì´Ù¿îÀ̳ª ´Ü¹éÁú ¹ßÇöÀ» ³Ñ¾î »õ·Î¿î Ä¡·á Àü·«À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù¹ýÀº ¿ì¼º À½¼º µ¹¿¬º¯ÀÌ Ä¡·á, ½ºÇöóÀÌ½Ì °áÇÔ ±³Á¤, ¶Ç´Â À¯Àüü¸¦ ¿µ±¸ÀûÀ¸·Î º¯°æÇÏÁö ¾Ê°íµµ ¾ÈÁ¤ÀûÀÎ ´Ü¹éÁú ¹ßÇöÀ» »ý¼ºÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» ¿­¾îÁÖ¸ç, À¯ÀüÀÚ ÆíÁý¿¡ ºñÇØ ´õ ¾ÈÀüÇÏ°í °¡¿ªÀûÀÎ ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

äÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÓ»ó ÆÄÀÌÇÁ¶óÀÎÀÌ È®´ëµÇ°í ÀÖ´Â Ä¡·á ºÐ¾ß´Â?

RNA ±â¹Ý Ä¡·áÁ¦´Â ´Ù¾çÇÑ Ä¡·á ¿µ¿ªÀ¸·Î ºü¸£°Ô È®´ëµÇ°í ÀÖÀ¸¸ç, Ãʱ⠽ÂÀÎ ¹× ÈÄ±â ÆÄÀÌÇÁ¶óÀÎÀº Èñ±Í À¯ÀüÁúȯ, Á¾¾çÇÐ, ½É´ë»çÁúȯ, °¨¿°Áúȯ¿¡ ÁýÁߵǾî ÀÖ½À´Ï´Ù. Èñ±ÍÁúȯ ºÐ¾ß¿¡¼­´Â ½ºÇɶóÀÚ(Spinraza, ´©½Ã³Ú¼¾)¿Í Á¹°Õ½º¸¶(Zolgensma)¿Í °°Àº ¾à¹°ÀÌ Ã´¼ö¼º ±ÙÀ§ÃàÁõÀ» Ç¥ÀûÀ¸·Î ÇÏ´Â ASO ¹× À¯ÀüÀÚ Ä¡·áÀÇ ±æÀ» ¿­¾ú°í, ¿ÂÆÄÆ®·Î(Onpattro, ÆÐƼ½Ç¶õ)¿Í ±âºí¶ó¸®(Givlaari, µðº¸½Ç¶õ)¿Í °°Àº siRNA ±â¹Ý Ä¡·áÁ¦°¡ °¢°¢ Æ®·£½º½Ã·¹Æ¾¾Æ¹Ð·ÎÀ̵åÁõ°ú ±Þ¼º °£ Æ÷¸£ÇǸ°Áõ Ä¡·á¿¡¼­ ÀÓ»óÀû È¿°ú¸¦ ÀÔÁõÇϰí ÀÖ½À´Ï´Ù.

¾Ï ºÐ¾ß ÆÄÀÌÇÁ¶óÀÎÀº Á¡Á¡ ´õ °ß°íÇØÁö°í ÀÖÀ¸¸ç, mRNA ±â¹Ý ¾Ï ¹é½Å, ¸é¿ªÁ¶ÀýÁ¦, ½ÅÇ׿ø Ç¥Àû Ä¡·áÁ¦°¡ ÃÊ±â ¹× Áß±â ÀÓ»ó½ÃÇè¿¡ ÁøÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ RNA Ä¡·áÁ¦´Â Ç׿ø ƯÀÌÀû ¸é¿ª¹ÝÀÀÀ» ÀÚ±ØÇϰí, Á¾¾çÀÇ ¹Ì¼¼È¯°æÀ» ±³Á¤Çϰųª ¹ß¾Ï À¯¹ßÀÎÀÚ¸¦ ħ¹¬½ÃŰ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. Á¾¾ç ƯÀÌÀû µ¹¿¬º¯ÀÌ ÇÁ·ÎÆÄÀÏÀ» ÀÌ¿ëÇÏ¿© ¸ÂÃãÇü mRNA ÆäÀ̷ε带 »ý¼ºÇÏ´Â ¸ÂÃãÇü ¾Ï ¹é½ÅÀº ƯÈ÷ üũÆ÷ÀÎÆ® ¾ïÁ¦Á¦¿Í º´¿ëÇÒ °æ¿ì À¯¸ÁÇÑ ¸é¿ª¿ø¼ºÀ» º¸À̰í ÀÖ½À´Ï´Ù.

RNA °£¼·À̳ª ASO´Â ÄÝ·¹½ºÅ×·Ñ, Áß¼ºÁö¹æ, Áö´Ü¹éÁú ¼öÄ¡¸¦ Á¶ÀýÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. PCSK9À» Ç¥ÀûÀ¸·Î ÇÏ´Â siRNAÀÎ InclisiranÀº ¿¬ 2ȸ Åõ¿©·Î LDL ÄÝ·¹½ºÅ×·ÑÀ» °¨¼Ò½ÃÄÑ ´ÜŬ·ÐÇ×ü¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ¼øÀÀµµ ³ôÀº Ä¡·á¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ºñ¸¸, ºñ¾ËÄڿüº Áö¹æ°£¿°(NASH), Á¦2Çü ´ç´¢º´À» Ä¡·áÇϱâ À§ÇÑ RNA ±â¹Ý Á¢±Ù¹ýµµ ƯÈ÷ Á¶Á÷ Ç¥ÀûÈ­ °¡´É¼º°ú ÀÌÀü¿¡´Â Á¢±ÙÇϱ⠾î·Á¿ü´ø ¼¼Æ÷ ³» ´Ü¹éÁúÀ» Á¶ÀýÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ Ȱ¹ßÈ÷ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù.

°¨¿°º´ ºÐ¾ß¿¡¼­´Â COVID-19 ¿Ü¿¡µµ RNA Ç÷§ÆûÀÌ µ¶°¨, RSV, CMV, HIV, ½ÉÁö¾î ¸»¶ó¸®¾Æ ¹é½Å¿¡µµ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. RNA Ä¡·áÁ¦´Â ½Å¼ÓÇÑ ¼³°è À¯¿¬¼º°ú º¹ÀâÇÑ Ç׿øÀ» ÄÚµùÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ Àü¿°º´ ´ëÀÀ ¹× ¹ßº´ ´ëÀÀ ÇÁ·¹ÀÓ¿öÅ©¿¡¼­ Áß¿äÇÑ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹è´Þ ±â¼ú°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀåÀÇ °¡´É¼ºÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

RNA Ä¡·áÁ¦¿¡¼­ Àü´ÞÀº ¿©ÀüÈ÷ °¡Àå Áß¿äÇÑ ±â¼úÀû À庮ÀÌÀÚ ±â¼ú Çõ½ÅÀÇ ¿µ¿ªÀÔ´Ï´Ù. È¿°úÀûÀ̰í Á¶Á÷ ƯÀÌÀûÀÎ Àü´Þ ½Ã½ºÅÛÀº Ä¡·á ÁöÇ¥»Ó¸¸ ¾Æ´Ï¶ó ¾ÈÀü¼º, Åõ¿© Ƚ¼ö, ºñ¿ëµµ °áÁ¤ÇÕ´Ï´Ù. °¡Àå Àß ¾Ë·ÁÁø Àü´Þ ¼ö´ÜÀÎ ÁöÁú ³ª³ëÀÔÀÚ´Â »õ·Î¿î ÀÌ¿ÂÈ­ °¡´ÉÇÑ ÁöÁú, »ýºÐÇØ¼º ij¸®¾î, Ç¥Àû¼ºÀ» ³ôÀÌ°í µ¶¼ºÀ» ÁÙÀ̱â À§ÇÑ Ç¥¸é °³ÁúÀ» ÅëÇØ ÃÖÀûÈ­µÇ°í ÀÖ½À´Ï´Ù. LNP´Â °£¼¼Æ÷ Àü´Þ¿¡ ƯÈ÷ È¿°úÀûÀÌÁö¸¸, ±ÙÀ°, Æó, ÁßÃ߽Űæ°è µî ´Ù¸¥ Á¶Á÷¿¡´Â GalNAc ÄÁÁê°ÔÀÌÆ®, ¿¢¼ÒÁ», Æú¸®¸Ó ±â¹Ý ½Ã½ºÅÛ µî Ư¼öÇÑ ºñÈ÷ŬÀÌ ÇÊ¿äÇÕ´Ï´Ù.

ÇÙ»êÀÇ ¾ÈÁ¤¼º°ú ¸é¿ª¿ø¼ºÀº 2′:-O-¸ÞÆ¿ ¹× Æ÷½ºÆ÷·ÎƼ¿À¿¡ÀÌÆ® °áÇÕ°ú °°Àº È­ÇÐÀû º¯ÇüÀ» ÅëÇØ ´ºÅ¬·¹¾ÆÁ¦ ³»¼ºÀ» Çâ»ó½Ã۰í ÀÚ¿¬¸é¿ªÀÇ È°¼ºÈ­¸¦ ¾ïÁ¦ÇÏ´Â ¹æ½ÄÀ¸·Î ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ´Ü¹éÁú ´ëü ¿ä¹ýÀ» À§ÇØ ´Ü¹éÁúÀÇ Àå½Ã°£ ¾ÈÁ¤µÈ ¹ßÇöÀ» ´Þ¼ºÇϱâ À§ÇØ ÀÚÀ¯ ¸»´ÜÀÌ ¾ø´Â °í¸®Çü RNA ±¸Á¶¹°µµ °³¹ßµÇ°í ÀÖ½À´Ï´Ù.

±ÔÁ¦ Ãø¸é¿¡¼­ ¹Ì±¹ FDA ¹× EMA¿Í °°Àº ±â°üÀº RNA ±â¹Ý ÀǾàǰÀÇ °³¹ß ¹× ½ÂÀÎÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ½Å¼ÓÇÑ °æ·Î ¹× Áöħ ÇÁ·¹ÀÓ ¿öÅ©¸¦ ±¸ÃàÇß½À´Ï´Ù. COVID-19 »çÅ·ΠÀÎÇØ RNA ¹é½ÅÀÇ ½ÂÀÎ ¼Óµµ°¡ »¡¶óÁö¸é¼­ ±ÔÁ¦ ´ç±¹Àº RNA Ç÷§Æû¿¡ ´ëÇÑ ÀÌÇØµµ°¡ ³ô¾ÆÁ³°í, ½É»ç °¡¼ÓÈ­, Èñ±ÍÁúȯ Ä¡·áÁ¦ ÁöÁ¤, ȹ±âÀû Ä¡·áÁ¦·Î ÁöÁ¤µÇ´Â µî ´Ù¾çÇÑ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ±×·¯³ª ±â¼úÀÇ ±Ô¸ð°¡ È®´ëµÊ¿¡ µû¶ó ¸é¿ª¿ø¼º, »ýü ³» ºÐÆ÷, Á¦Á¶ Àϰü¼º¿¡ ´ëÇÑ ¾ÈÀü¼º ¿ì·Á·Î ÀÎÇØ ¾ö°ÝÇÑ ½ÃÆÇ ÈÄ Á¶»ç¿Í °ß°íÇÑ CMC(È­ÇÐ, Á¦Á¶, °ü¸®) ÇÁ·¹ÀÓ¿öÅ©°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù.

RNA ±â¹Ý Ä¡·áÁ¦ ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀå µ¿·ÂÀº?

RNA ±â¹Ý Ä¡·áÁ¦ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ±â¼úÀû ¼º¼÷, ÀÓ»óÀû ¼º°ø, ¹ÙÀÌ¿ÀÀǾàǰÀÇ °¡Ä¡»ç½½ Àü¹Ý¿¡ °ÉÄ£ ÅõÀÚ Áõ°¡¿¡ µû¸¥ °ÍÀÔ´Ï´Ù. ÇÙ½É ¼ºÀå ¿äÀÎ Áß Çϳª´Â RNA °íÀ¯ÀÇ ÇÁ·Î±×·¥ °¡´É¼ºÀÔ´Ï´Ù. ±âÁ¸ ¹ÙÀÌ¿ÀÀǾàǰ°ú ´Þ¸® RNA Ä¡·áÁ¦´Â ´ºÅ¬·¹¿ÀƼµå ¼­¿­À» º¯°æÇÏ¿© ½Å¼ÓÇÏ°Ô Àç¼³°èÇÒ ¼ö Àֱ⠶§¹®¿¡ Àü´Þ ½Ã½ºÅÛ°ú ¹éº»ÀÌ ÀûÀÀÁõ °£¿¡ Àç»ç¿ëµÇ´Â Ç÷§Æû ±â¹Ý °³¹ß ¸ðµ¨À» ÅëÇØ Ž»ö ±â°£°ú ¿¬±¸°³¹ß ºñ¿ëÀ» ȹ±âÀûÀ¸·Î ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

RNA ¹é½Å°ú À¯ÀüÀÚ Ä§¹¬ ¾à¹°ÀÇ ¼º°øÀº »ý¸í°øÇÐ ½ºÅ¸Æ®¾÷, ´ëÇü Á¦¾à»ç, °è¾à »ý»ê¾÷ü¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù. ´ëÇü Á¦¾à»çµéÀº ÆÄÀÌÇÁ¶óÀÎ ¿ª·®À» È®´ëÇϱâ À§ÇØ RNA Àü¹® ¹ÙÀÌ¿ÀÅØ ±â¾÷µé°ú Àü·«Àû Á¦ÈÞ¸¦ ¸Î°Å³ª ÀμöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÕ¼º»ý¹°ÇÐ, RNA ÇÁ¸°ÆÃ, ¸ðµâÇü LNP ¶óÀ̺귯¸®ÀÇ °³¼±À¸·Î Á¦Á¶ÀÇ È®À强°ú ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÇ¾î º¸´Ù ±¤¹üÀ§ÇÑ »ó¾÷Àû ¹èÆ÷°¡ °¡´ÉÇØÁ³½À´Ï´Ù.

ƯÈ÷ »õ·Î¿î Àü´Þ ½Ã½ºÅÛÀ» ÅëÇØ Åõ¿© ºóµµ¿Í ħ½À¼ºÀÌ °¨¼ÒÇÔ¿¡ µû¶ó ȯÀÚ¿Í ÀÇ»çÀÇ ¼ö¿ë¼ºµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, GalNAc¸¦ °áÇÕ½ÃŲ siRNA´Â 6°³¿ù¿¡ ÇÑ ¹ø¾¿ ÇÇÇÏÅõ¿©°¡ °¡´ÉÇÏ¿© ¸¸¼ºÁúȯ °ü¸®ÀÇ ¼øÀÀµµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ÂÃãÇü mRNA ¾Ï ¹é½Å°ú ´Ù°¡¼º °¨¿° ¹é½ÅÀº ÇコÄÉ¾î »ê¾÷ÀÇ Á¤¹ÐÈ­, ¿¹¹æ ¹× °³ÀÎÈ­·ÎÀÇ Àüȯ°ú ÀÏÄ¡ÇÏ´Â À¯¸Á¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, Àå¼â ºñ¾Ïȣȭ RNA, ¸¶ÀÌÅ©·Î RNA, RNA ÆíÁý¿¡ À̸£±â±îÁö RNA »ý¹°Çп¡ ´ëÇÑ ÀÌÇØÀÇ È®ÀåÀº »õ·Î¿î Ç¥Àû°ú ¸ÞÄ¿´ÏÁòÀÇ Áö¼ÓÀûÀÎ ÆÄÀÌÇÁ¶óÀÎÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. RNA Ä¡·áÁ¦°¡ Æ´»õÄ¡·áÁ¦¿¡¼­ ´Ù¾çÇÑ Áúȯ¿¡ ´ëÇÑ ÁÖ·ù Ä¡·áÁ¦·Î ÁøÈ­ÇÔ¿¡ µû¶ó, ±â¼ú Çõ½Å, ±ÔÁ¦, ¼ö¿äÀÇ ¼ö·ÅÀ¸·Î 21¼¼±â ÀÇ·áÀÇ Áß½ÉÃàÀ¸·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(mRNA Ä¡·áÁ¦, ¾ÈƼ¼¾½º¡¤¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå Ä¡·áÁ¦, RNA °£¼· Ä¡·áÁ¦, ±âŸ Ä¡·áÁ¦ À¯Çü), Åõ¿© °æ·Î(Á¤¸Æ³» ·çÆ®, ÇÇÇÏ ·çÆ®, ±ÙÀ°³» ·çÆ®)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global RNA-based Therapeutics Market to Reach US$5.6 Billion by 2030

The global market for RNA-based Therapeutics estimated at US$4.2 Billion in the year 2024, is expected to reach US$5.6 Billion by 2030, growing at a CAGR of 4.8% over the analysis period 2024-2030. mRNA Therapeutics, one of the segments analyzed in the report, is expected to record a 5.3% CAGR and reach US$2.4 Billion by the end of the analysis period. Growth in the Antisense Oligonucleotide Therapeutics segment is estimated at 5.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.1 Billion While China is Forecast to Grow at 8.8% CAGR

The RNA-based Therapeutics market in the U.S. is estimated at US$1.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 8.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.0% and 3.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.8% CAGR.

Global RNA-Based Therapeutics Market - Key Trends & Drivers Summarized

From Code to Cure: How RNA Therapeutics Are Transforming the Precision Medicine Frontier

What Scientific Advances Are Catalyzing the Emergence of RNA as a Therapeutic Modality?

RNA-based therapeutics represent a new era in precision medicine, where disease pathways can be modulated at the genetic and transcriptomic level rather than the protein level. The versatility of RNA as a therapeutic class-encompassing messenger RNA (mRNA), small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and RNA aptamers-has made it one of the most promising platforms for targeting diseases with high unmet clinical needs. Unlike small-molecule drugs or monoclonal antibodies, RNA-based modalities enable direct manipulation of gene expression, offering interventions for diseases once considered undruggable, including certain genetic disorders, cancers, and infectious diseases.

Recent scientific breakthroughs in RNA stability, intracellular delivery, and chemical modification have resolved many of the early challenges associated with rapid degradation and off-target effects. Modified nucleosides, lipid nanoparticles (LNPs), and conjugation techniques have significantly improved the pharmacokinetic profiles of RNA drugs, allowing for systemic administration and targeted delivery to tissues such as the liver, muscle, or even the central nervous system. The success of mRNA vaccines during the COVID-19 pandemic validated the scalability, safety, and speed of development of RNA-based modalities, triggering a pipeline explosion across multiple therapeutic areas.

Moreover, RNA editing and modulation tools-such as CRISPR-Cas13, splice-modifying oligonucleotides, and circular RNA-are enabling new therapeutic strategies beyond gene knockdown or protein expression. These approaches open the door to treating dominant-negative mutations, correcting splicing defects, or generating stable protein expression without permanent genomic changes, offering safer and more reversible options compared to gene editing.

Which Therapeutic Areas Are Seeing Accelerated Adoption and Clinical Pipeline Expansion?

RNA-based therapies are rapidly expanding into diverse therapeutic domains, with early approvals and late-stage pipelines concentrated in rare genetic disorders, oncology, cardiometabolic diseases, and infectious diseases. In the rare disease space, drugs like Spinraza (nusinersen) and Zolgensma have paved the way for ASO and gene therapies targeting spinal muscular atrophy, while siRNA-based treatments like Onpattro (patisiran) and Givlaari (givosiran) have demonstrated clinical efficacy in treating transthyretin amyloidosis and acute hepatic porphyria, respectively.

The oncology pipeline is becoming increasingly robust, with mRNA-based cancer vaccines, immune modulators, and neoantigen-targeted therapeutics entering early and mid-stage clinical trials. These RNA therapeutics aim to stimulate antigen-specific immune responses, modify tumor microenvironments, or silence oncogenic drivers. Personalized cancer vaccines using tumor-specific mutation profiles to create individualized mRNA payloads are showing promising immunogenicity, especially when combined with checkpoint inhibitors.

Cardiometabolic diseases are another growth frontier, where RNA interference and ASOs are being used to modulate cholesterol, triglyceride, and lipoprotein levels. Inclisiran, an siRNA targeting PCSK9, has demonstrated LDL cholesterol reduction with biannual dosing, offering a compliance-friendly alternative to monoclonal antibodies. Similarly, RNA-based approaches to treat obesity, nonalcoholic steatohepatitis (NASH), and type 2 diabetes are under active exploration, particularly due to their tissue-targeting potential and ability to modulate previously inaccessible intracellular proteins.

In infectious diseases, beyond COVID-19, RNA platforms are being adapted for vaccines against influenza, RSV, CMV, HIV, and even malaria. Their rapid design flexibility and ability to encode complex antigens position RNA therapeutics as a valuable tool in pandemic preparedness and outbreak response frameworks.

How Are Delivery Technologies and Regulatory Frameworks Shaping Market Viability?

Delivery remains the most critical technical barrier and innovation area in RNA therapeutics. Effective, tissue-specific delivery systems determine not only the therapeutic index but also safety, dosing frequency, and cost. Lipid nanoparticles, the most established delivery vehicle, are being optimized with novel ionizable lipids, biodegradable carriers, and surface modifications to enhance targeting and reduce toxicity. LNPs are particularly effective in hepatocyte delivery, but other tissues-such as muscle, lungs, and CNS-require specialized vehicles like GalNAc conjugates, exosomes, or polymer-based systems.

Nucleic acid stability and immunogenicity are being addressed through chemical modifications such as 2′-O-methyl and phosphorothioate linkages, which improve nuclease resistance and reduce innate immune activation. Circular RNA constructs, which lack free ends, are also being developed to achieve prolonged and more stable protein expression, especially for protein replacement therapies.

From a regulatory perspective, agencies like the U.S. FDA and EMA have established expedited pathways and guidance frameworks to accelerate the development and approval of RNA-based drugs. The accelerated approval of RNA vaccines during the pandemic has enhanced regulator familiarity with RNA platforms, leading to faster reviews, orphan designations, and breakthrough therapy labels. However, as the technology scales, safety concerns around immunogenicity, biodistribution, and manufacturing consistency will require stringent post-marketing surveillance and robust CMC (chemistry, manufacturing, and controls) frameworks.

What’s Driving Long-Term Growth in the RNA-Based Therapeutics Market?

The growth in the RNA-based therapeutics market is driven by technological maturity, clinical success, and increased investment across the biopharmaceutical value chain. One of the core growth drivers is the inherent programmability of RNA. Unlike traditional biologics, RNA therapeutics can be rapidly redesigned by altering nucleotide sequences, allowing platform-based development models where delivery systems and backbones are reused across indications, dramatically reducing discovery timelines and R&D costs.

The success of RNA vaccines and gene silencing drugs has catalyzed investment across biotech startups, large pharma, and contract manufacturers. Big pharma companies are entering strategic collaborations or acquiring RNA-focused biotech firms to expand their pipeline capabilities. Additionally, improvements in synthetic biology, RNA printing, and modular LNP libraries are making manufacturing more scalable and cost-efficient, enabling a broader commercial rollout.

Patient and physician acceptance is also growing, particularly as newer delivery systems reduce the frequency and invasiveness of administration. For example, siRNAs with GalNAc conjugation offer subcutaneous dosing with semi-annual administration, enhancing compliance in chronic disease management. Moreover, the promise of individualized mRNA cancer vaccines and multi-valent infectious disease vaccines is aligning with the healthcare industry's shift toward precision, prevention, and personalization.

Finally, the expanding understanding of RNA biology-spanning long non-coding RNAs, microRNAs, and RNA editing-ensures a continuous pipeline of new targets and mechanisms. As RNA therapeutics evolve from niche treatments to mainstream interventions across diverse diseases, the convergence of innovation, regulation, and demand will solidify their position as a central pillar of 21st-century medicine.

SCOPE OF STUDY:

The report analyzes the RNA-based Therapeutics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (mRNA Therapeutics, Antisense Oligonucleotide Therapeutics, RNA Interference Therapeutics, Other Therapeutic Types); Administration Route (Intravenous Route, Subcutaneous Route, Intramuscular Route)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â