¼¼°èÀÇ ½ºÆ÷ÀÏ °¨Áö ±â¹Ý ½º¸¶Æ® ¶óº§ ½ÃÀå
Spoil Detection-based Smart Labels
»óǰÄÚµå : 1793847
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 294 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,245,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,736,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ½ºÆ÷ÀÏ °¨Áö ±â¹Ý ½º¸¶Æ® ¶óº§ ½ÃÀåÀº 2030³â±îÁö 32¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ½ºÆ÷ÀÏ °¨Áö ±â¹Ý ½º¸¶Æ® ¶óº§ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 11.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 32¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ½Ã°£ ¿Âµµ ÀεðÄÉÀÌÅÍ À¯ÇüÀº CAGR 13.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 20¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ê¼Ò ÀεðÄÉÀÌÅÍ À¯ÇüÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 8.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 4,410¸¸ ´Þ·¯, Áß±¹Àº CAGR 16.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½ºÆ÷ÀÏ °¨Áö ±â¹Ý ½º¸¶Æ® ¶óº§ ½ÃÀåÀº 2024³â¿¡ 4¾ï 4,410¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 6¾ï 6,900¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 16.1%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 8.3%¿Í 10.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ºÎÆÐ ŽÁö ±â¹Ý ½º¸¶Æ® ¶óº§ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ºÎÆÐ °¨Áö ½º¸¶Æ® ¶óº§·Î ÀüȯÇÏ°ÔµÈ °è±â´Â?

È­ÇÐÀû Ç¥½Ã±â, ºñ»ö Ç¥½Ã±â, ¹ÙÀÌ¿À¼¾¼­ Ç¥½Ã±â¸¦ °®Ãá ºÎÆÐ °¨Áö ½º¸¶Æ® ¶óº§Àº ½ÄǰÀÇ ½Å¼±µµ ¹× ¿À¿°À» ½Ç½Ã°£À¸·Î ¾Ë·ÁÁÖ´Â Áö´ÉÇü Æ÷Àå ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. À°·ù, ÇØ»ê¹°, À¯Á¦Ç°, ½Å¼±½Äǰ µî ºÎÆÐÇϱ⠽¬¿î Á¦Ç°¿¡ ºÎÂøÇÏ¿© ºÎÆÐ ÀÓ°èÄ¡¸¦ ÃʰúÇÏ¸é ´«¿¡ º¸ÀÌ´Â »ö»ó º¯È­ ¹× µðÁöÅРǥ½Ã°¡ ÀÌ·ç¾îÁý´Ï´Ù. ÀÌ ¶óº§Àº ¼Ò¸Å¾÷ü, À¯Åë¾÷ü, ¼ÒºñÀÚ°¡ ´õ ³ªÀº ¼Òºñ ÆÇ´ÜÀ» ³»¸± ¼ö ÀÖµµ·Ï µ½°í, Æó±â¹°À» ÁÙÀ̸ç, ¾ÈÀüÀ» º¸ÀåÇÕ´Ï´Ù.

³ª³ëÅ×Å©³î·¯Áö°ú ÇÁ¸°Åͺí ÀüÀÚ°øÇÐÀÇ ¹ß´Þ·Î pH ¼¾¼­, VOC/¾Ï¸ð´Ï¾Æ °¡½º °¨Áö Çʸ§, È¿¼Ò ¿¬µ¿ ¾î·¹ÀÌ¿Í °°Àº ºÎÆÐ Ç¥½Ã±â¸¦ À¯¿¬ÇÑ ÅÂ±×¿Í Á¢ÂøÁ¦¿¡ Àú·ÅÇÑ ºñ¿ëÀ¸·Î ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¸¹Àº ¼Ö·ç¼ÇÀº ÄݵåüÀο¡¼­ °¡½Ã¼ºÀ» °í·ÁÇÏ¿© ¼³°èµÇ¾úÀ¸¸ç, ¿Âµµ ³²¿ëÀ̳ª ¹Ì»ý¹° Áõ½Ä¿¡ µû¶ó »ö»óÀÌ º¯ÇÕ´Ï´Ù. ½Äǰ °¡°ø¾÷ü¿Í Æ÷Àå¾÷üµéÀº Àç°í °ü¸®, ¸®ÄÝ ¹æÁö, ǰÁú º¸ÁõÀ» À§ÇØ ÀÌ ¼¾¼­¸¦ ½ÃÇèÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù.

IoT¿Í µðÁöÅÐ ÅëÇÕÀ¸·Î ÀÌ¿ë »ç·Ê È®´ë?

Â÷¼¼´ë ¶óº§¿¡´Â ŸÀÓ½ºÅÆÇÁ°¡ ÂïÈù ½Å¼±µµ µ¥ÀÌÅÍ, ¿Âµµ ÀÌ·Â, ¼Òºñ Á¶¾ðÀ» Á¦°øÇÏ´Â ¾Û°ú ¿¬°áµÈ RFID ¶Ç´Â NFC ĨÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ´ë½Ãº¸µå¸¦ ÅëÇØ °ø±Þ¸Á ÀÌÇØ°ü°èÀÚµéÀº À¯Åë °æ·Î Àü¹ÝÀÇ ºÎÆÐ À§ÇèÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù. AI ±â¹Ý ½Å¼±µµ ¿¹Ãø ¸ðµ¨(¼¾¼­ µ¥ÀÌÅÍ¿Í È¯°æ ¸ÞŸµ¥ÀÌÅ͸¦ »ç¿ë)Àº ºÎÆÐ ½Ã°£À» ¿¹ÃøÇϰí ÀçÁÖ¹®À̳ª ¸¶Å©´Ù¿î Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀϺΠ½º¸¶Æ® ¶óº§Àº ºÎÆÐ Ç¥½Ã±â¸¦ QRÄÚµå¿Í °áÇÕÇÏ¿© ¼ÒºñÀÚ¿¡°Ô ·¹½ÃÇÇ, ÀûÀýÇÑ º¸°ü ¹æ¹ý, Á¦Ç° ¿ø»êÁö Á¤º¸¸¦ Á¦°øÇÏ¿© Âü¿©¿Í ½Å·Ú¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÅëÇÕ ¼Ö·ç¼ÇÀº ÀûÀçÀå ¹× ¼Ò¸Å Â÷¼±¿¡¼­ ºÎÆÐÇÑ ¹èÄ¡¸¦ Ç¥½ÃÇÒ ¼ö ÀÖÀ¸¸ç, Ã¥ÀÓ°ú ³¶ºñ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¿Ö ½Äǰ¾÷°è´Â ÀÌ·± ¶óº§À» äÅÃÇÏ´Â °ÍÀϱî?

À¯Åë±âÇÑ ¹× Æó±â¹° ó¸®¿Í °°Àº ½Äǰ ¾ÈÀü ±ÔÁ¦, ƯÈ÷ °í°¡ÀÇ ½Å¼±½Äǰ Ä«Å×°í¸®¿¡¼­ÀÇ Ã¤Åÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷üµéÀº °¡°Ý ÀÎÇÏ ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ¶óº§ Çǵå¹éÀ» ±â¹ÝÀ¸·Î ÇÑ µ¿Àû °¡°Ý Ã¥Á¤À» Á¡Á¡ ´õ ¸¹ÀÌ ½ÃµµÇϰí ÀÖ½À´Ï´Ù. ÄݵåüÀÎ ¹°·ù ÇÁ·Î¹ÙÀÌ´õ´Â ¿î¼Û Áß ¸ð´ÏÅ͸µÀ» À§ÇØ ºÎÆÐ ű׸¦ »ç¿ëÇÏ¿© À°·ù, »ý¼±, ½Å¼± À¯Á¦Ç°ÀÇ ¹è¼Û¿¡ ´ëÇÑ Ã¥ÀÓ ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. E-Commerce ½Ä·áǰÁ¡Àº ½º¸¶Æ® ű׸¦ µµÀÔÇÏ¿© ½Å¼±ÇÑ »óǰÀÇ µµÂøÀ» º¸ÀåÇÏ°í ¹ÝǰÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù.

¼ÒºñÀÚ, ƯÈ÷ ¹Ð·¹´Ï¾ó ¼¼´ë¿Í Z¼¼´ë´Â Åõ¸í¼ºÀ» Áß½ÃÇÏ°í ½Ç½Ã°£ ½Å¼±µµ º¸ÀåÀ» À§ÇØ Àû´çÇÑ ÇÁ¸®¹Ì¾öÀ» ÁöºÒÇÒ ÀÇÇâÀÌ ÀÖ½À´Ï´Ù. À½½Ä¹° ¾²·¹±â¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á´Â ½Å·Ú¸¦ °­È­ÇÏ°í ºê·£µå ÀÚ»êÀ» Áö¿øÇÕ´Ï´Ù.

½º¸¶Æ® ¶óº§ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

ºÎÆÐ °¨Áö ±â¹Ý ½º¸¶Æ® ¶óº§ ½ÃÀåÀÇ ¼ºÀåÀº ¼¾¼­ÀÇ ¼ÒÇüÈ­, °ø±Þ¸ÁÀÇ µðÁöÅÐÈ­, ±ÔÁ¦ °­È­¿Í °ü·ÃµÈ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. Àμ⠹ÙÀÌ¿À ¼¾¼­, ºñ»ö Å×½ºÆ® ½ºÆ®¸³, ÀúÀü·Â ¹«¼± ¿¬°áÀÇ ¹ßÀüÀ¸·Î ½º¸¶Æ® ű×ÀÇ Àú·ÅÇÑ ´ë·® »ý»êÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ Æ÷Àå ¹× ½Äǰ Æó±â¹° °¨¼Ò ¸ñÇ¥¿¡ ´ëÇÑ Á¤ºÎ ¹× ¼Ò¸Å¾÷üµéÀÇ ¿ä±¸´Â ÆÄÀÏ·µ ÇÁ·Î±×·¥ ¹× ´ë±Ô¸ð ¹èÆ÷¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÄݵåüÀÎ IoT Ç÷§Æû°ú AI¸¦ Ȱ¿ëÇÑ ÃßÀû ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀ» ÅëÇØ »çÀü ¿¹¹æÀû ½Å¼±µµ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÕ´Ï´Ù. ½º¸¶Æ® ¶óº§À» Ȱ¿ëÇÏ´Â ºê·£µå´Â ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ³ôÀÌ°í °í±Þ ½Äǰ ºÎ¹®¿¡¼­ ½ÃÀå Á¡À¯À²À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯Åë±âÇÑ ±ÔÁ¦ °³¼±°ú ±â¾÷ÀÇ ESG ¸ñÇ¥¿¡ µû¶ó ¼Ò¸Å ¹× ¹°·ù »ýŰè Àü¹Ý¿¡ °ÉÃÄ ½º¸¶Æ® ¶óº§ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(½Ã°£ ¿Âµµ ÀεðÄÉÀÌÅÍ À¯Çü, »ê¼Ò ÀεðÄÉÀÌÅÍ À¯Çü, ÀÌ»êȭź¼Ò ÀεðÄÉÀÌÅÍ À¯Çü), ¾ÖÇø®ÄÉÀ̼Ç(»ý¼± ¾ÖÇø®ÄÉÀ̼Ç, °í±â ¾ÖÇø®ÄÉÀ̼Ç, ä¼Ò ¾ÖÇø®ÄÉÀ̼Ç, À¯Á¦Ç° ¾ÖÇø®ÄÉÀ̼Ç, °¡°ø½Äǰ ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Spoil Detection-based Smart Labels Market to Reach US$3.2 Billion by 2030

The global market for Spoil Detection-based Smart Labels estimated at US$1.6 Billion in the year 2024, is expected to reach US$3.2 Billion by 2030, growing at a CAGR of 11.7% over the analysis period 2024-2030. Time Temperature Indicator Type, one of the segments analyzed in the report, is expected to record a 13.3% CAGR and reach US$2.0 Billion by the end of the analysis period. Growth in the Oxygen Indicator Type segment is estimated at 8.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$444.1 Million While China is Forecast to Grow at 16.1% CAGR

The Spoil Detection-based Smart Labels market in the U.S. is estimated at US$444.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$669.0 Million by the year 2030 trailing a CAGR of 16.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.3% and 10.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.3% CAGR.

Global Spoil-Detection-Based Smart Labels Market - Key Trends & Drivers Summarized

What’s Triggering the Shift Toward Spoil-Detection Smart Labels?

Spoil-detection smart labels, equipped with chemical, colorimetric, or biosensor indicators, are emerging as intelligent packaging solutions that signal food freshness or contamination in real time. Deployed on perishable products-meats, seafood, dairy, fresh produce-they display visible color changes or digital readouts when spoilage thresholds are crossed. These labels empower retailers, distributors, and consumers to make better consumption decisions, reducing waste and ensuring safety.

Developments in nanotechnology and printable electronics are enabling low-cost integration of spoilage indicators-such as pH sensors, gas detection films for VOCs/ammonia, and enzyme-linked arrays-onto flexible tags or adhesives. Many solutions are designed for cold-chain visibility, changing color upon temperature abuse or microbial proliferation. Food processors and packagers are piloting these sensors for inventory management, recall prevention, and quality assurance.

Are IoT and Digital Integration Expanding Use Cases?

Next-gen labels include RFID or NFC chips linked to apps that provide time-stamped freshness data, temperature history, and consumption advice. Cloud-based dashboards enable supply-chain stakeholders to monitor spoilage risk across distribution routes in real time. AI-powered freshness prediction models-using sensor data plus environmental metadata-can provide time-to-spoilage estimates and trigger reorder or markdown actions.

Some smart labels are combining spoilage indicators with QR codes that direct consumers to recipes, proper storage tips, or product origin details, boosting engagement and trust. Integrated solutions can flag spoiled batches at loading docks or retail lanes, reducing liability and waste.

Why Are Food Industries Embracing These Labels?

Food safety regulations, such as those governing shelf life and refuse disposal, are incentivizing adoption-especially in high-value perishable categories. Retailers are increasingly experimenting with dynamic pricing based on label feedback to minimize markdown losses. Cold-chain logistics providers are using spoilage tags to monitor during transit, addressing liability issues in meat, fish, and fresh dairy deliveries. E-commerce grocers are deploying smart tags to ensure fresh arrival and reduce returns.

Consumers, particularly Millennials and Gen Z, value transparency-willing to pay modest premiums for real-time freshness assurance. Concerns about food waste and sustainability reinforce trust and underpin brand equity.

What’s Powering the Growth in the Smart Labels Market?

The growth in the spoil-detection-based smart labels market is driven by several factors related to sensor miniaturization, supply-chain digitalization, and regulatory emphasis. Advances in printed biosensors, colorimetric test strips, and low-power wireless connectivity allow affordable mass production of smart tags. Demand for sustainable packaging and food-waste reduction targets-from governments and retailers-is encouraging pilot programs and large-scale rollouts. Integration with cold-chain IoT platforms and AI-backed traceability systems enables proactive freshness monitoring. Brands leveraging smart labels boost consumer trust and capture market share in premium food segments. Additionally, improved shelf life regulations and corporate ESG goals are increasing investments in smart-label infrastructure across retail and logistics ecosystems.

SCOPE OF STUDY:

The report analyzes the Spoil Detection-based Smart Labels market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Time Temperature Indicator Type, Oxygen Indicator Type, Carbon Dioxide Indicator Type); Application (Fish Application, Meat Application, Vegetables Application, Dairy Products Application, Processed Foods Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â