¼¼°èÀÇ ¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ½ÃÀå
Digital Twin in Logistics
»óǰÄÚµå : 1791832
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 484 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ½ÃÀåÀº 2030³â±îÁö 51¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 23.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 51¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ '¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ®'´Â CAGR 21.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 11¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸Å´ÏÁöµå ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR 26.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 9,870¸¸ ´Þ·¯, Áß±¹Àº CAGR 30.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ½ÃÀåÀº 2024³â¿¡ 3¾ï 9,870¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 30.2%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 18.7%¿Í 20.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 19.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

µðÁöÅÐ Æ®À© ±â¼úÀÌ °ø±Þ¸Á °¡½Ã¼º°ú È¿À²¼ºÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖÀ»±î?

¹°·ù¿¡ µðÁöÅÐ Æ®À© ±â¼úÀ» ÅëÇÕÇÏ¿© ½Ç½Ã°£ °¡½Ã¼º, ¿¹Ãø ºÐ¼®, ¿î¿µ ÃÖÀûÈ­¸¦ Á¦°øÇÔÀ¸·Î½á °ø±Þ¸Á °ü¸®¸¦ Çõ½ÅÀûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. µðÁöÅÐ Æ®À©Àº â°í, ¿î¼Û ³×Æ®¿öÅ©, ¹°·ù ÇãºêÀÇ °¡»ó º¹Á¦º»À» ¸¸µé¾î ¹°·ù ±â¾÷ÀÌ ´Ù¾çÇÑ ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇϰí, ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­Çϰí, ºñÈ¿À²À» ÁÙÀÏ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. µðÁöÅÐ Æ®À©Àº IoT ¼¾¼­, GPS ÃßÀû, RFID ű×ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© Â÷·® Â÷·®ÀÇ ¿¹Ãø À¯Áöº¸¼ö¸¦ °¡´ÉÇÏ°Ô Çϰí, ´Ù¿îŸÀÓ°ú ¿î¿µ Áß´ÜÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¹°·ù ±â¾÷µéÀº AI¸¦ Ȱ¿ëÇÑ µðÁöÅÐ Æ®À©À» ÅëÇØ ¼ö¿ä º¯µ¿À» ¿¹ÃøÇϰí, Àç°í ¼öÁØÀ» ÃÖÀûÈ­Çϸç, ¶ó½ºÆ®¸¶ÀÏ ¹è¼Û ¾÷¹«ÀÇ ³¶ºñ¸¦ ÃÖ¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¹°·ù ºÐ¾ß¿¡¼­ µðÁöÅÐ Æ®À©ÀÇ ±¤¹üÀ§ÇÑ µµÀÔÀº ³ôÀº µµÀÔ ºñ¿ë, µ¥ÀÌÅÍ ÅëÇÕÀÇ º¹À⼺, »çÀ̹ö º¸¾È Ãë¾à¼º µîÀÇ ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°¿¡µµ ºÒ±¸Çϰí, ¹°·ù ¾÷°è°¡ È¿À²¼º°ú ȸº¹·ÂÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, µðÁöÅÐ Æ®À© ±â¼úÀº °ø±Þ¸Á ¿î¿µÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

AI¿Í IoT´Â ¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ¿ëµµ¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

ÀΰøÁö´É(AI)°ú »ç¹°ÀÎÅͳÝ(IoT)Àº ¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À©ÀÇ ÇÙ½É ±¸¼º ¿ä¼Ò·Î ½Ç½Ã°£ ÃßÀû, ÀÚµ¿È­µÈ ÀÇ»ç°áÁ¤, °ø±Þ¸Á ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¿¹Ãø ºÐ¼®Àº ¹°·ùȸ»ç°¡ ¿î¼Û º´¸ñÇö»óÀ» ¿¹ÃøÇϰí, Áö¿¬ÀÌ ¹ß»ýÇÒ °æ¿ì ¹è¼ÛÀ» ¿ìȸÇϰí, ¿¬·á È¿À²À» ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. IoT¿¡ ¿¬°áµÈ µðÁöÅÐ Æ®À©Àº ¿Âµµ¿¡ ¹Î°¨ÇÑ »óǰ ¸ð´ÏÅ͸µ, ÀÚ»ê Ȱ¿ëµµ ÃßÀû, ¿¡³ÊÁö ¼Òºñ ÃÖ¼ÒÈ­¸¦ ÅëÇØ â°íÀÇ ÀÚµ¿È­¸¦ °­È­ÇÕ´Ï´Ù. ¶ÇÇÑ, ºí·ÏüÀΰú µðÁöÅÐ Æ®À©ÀÇ ÅëÇÕÀº ¾ÈÀüÇÏ°í ºÒº¯ÀÇ ¹è¼Û ±â·ÏÀ» º¸ÀåÇÔÀ¸·Î½á ¹°·ùÀÇ Åõ¸í¼ºÀ» Çâ»ó½ÃŰ°í ºÎÁ¤ÇàÀ§ÀÇ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ º¸¾È Ä§ÇØ¿Í ¼­·Î ´Ù¸¥ µðÁöÅÐ Æ®À© Ç÷§ÆûÀÇ »óÈ£ ¿î¿ë¼º¿¡ ´ëÇÑ ¿ì·Á´Â ¿©ÀüÈ÷ ¹°·ù Á¦°ø¾÷ü¿¡ ´ëÇÑ °úÁ¦·Î ³²¾ÆÀÖ½À´Ï´Ù. AI¿Í IoT ±â¼úÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó µðÁöÅÐ Æ®À©°úÀÇ ÅëÇÕÀº ¹°·ù °ü¸®¿¡ Çõ¸íÀ» °¡Á®¿Í º¸´Ù ºü¸£°í ºñ¿ë È¿À²ÀûÀÌ¸ç ½Å·ÚÇÒ ¼ö ÀÖ´Â °ø±Þ¸Á ¿î¿µÀ» ½ÇÇöÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

µðÁöÅÐ Æ®À© ±â¼úÀÌ ¶ó½ºÆ®¸¶ÀÏ ¹è¼Û°ú µµ½Ã ¹°·ùÀÇ °³¼±ÀÌ °¡´ÉÇÒ±î?

ÀüÀÚ»ó°Å·¡¿Í ¿Âµð¸Çµå ¹è¼Û ¼­ºñ½ºÀÇ ºÎ»óÀ¸·Î ¹°·ù±â¾÷Àº ¶ó½ºÆ®¸¶ÀÏ ¹è¼ÛÀÇ È¿À²¼ºÀ» ³ô¿©¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀ» ¹Þ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ Æ®À©Àº ±³Åë »óȲ, ¹è¼Û °æ·Î, ¼ÒºñÀÚ ¼ö¿ä ÆÐÅÏÀ» ½Ç½Ã°£À¸·Î ½Ã¹Ä·¹À̼ÇÇÏ¿© µµ½Ã ¹°·ù ÃÖÀûÈ­¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ °æ·Î ÃÖÀûÈ­¸¦ ÅëÇØ ¹è¼Û ½Ã°£°ú ¿¬·áºñ¸¦ Àý°¨Çϰí, Â÷·® Àüü ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷ü¿Í ¹°·ù Á¦°ø¾÷üµéÀº µðÁöÅÐ Æ®À©À» Ȱ¿ëÇÏ¿© ¸¶ÀÌÅ©·Î Ç®ÇÊ¸ÕÆ® ¼¾ÅÍ, µå·Ð ¹è¼Û µî ´ëü Ç®ÇÊ¸ÕÆ® Àü·«À» ¸ðµ¨¸µÇÏ°í °í°´ °æÇèÀ» °³¼±Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÚÀ²ÁÖÇà ¹è¼Û¿¡ ´ëÇÑ ±ÔÁ¦ Á¦ÇѰú µµ½Ã ±³Åë ¸ðµ¨¸µÀÇ º¹À⼺ µîÀÇ °úÁ¦°¡ º¸±ÞÀÇ À庮À¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµÀü¿¡µµ ºÒ±¸ÇÏ°í ½Å¼ÓÇϰí È¿À²ÀûÀ̸ç Áö¼Ó °¡´ÉÇÑ ¹è¼Û ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¶ó½ºÆ®¸¶ÀÏ ¹°·ù¿¡ µðÁöÅÐ Æ®À© ±â¼úÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

¹°·ù ºÐ¾ß µðÁöÅÐ Æ®À© ½ÃÀåÀÇ ¼ºÀåÀº °ø±Þ¸Á °¡½Ã¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, AI¿Í IoT¸¦ Ȱ¿ëÇÑ ¹°·ù ¼Ö·ç¼ÇÀÇ ºÎ»ó, ÀüÀÚ»ó°Å·¡ Áß½ÉÀÇ ¹è¼Û ³×Æ®¿öÅ© È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¿î¼Û °ü¸®¿¡¼­ ¿¹Ãø ºÐ¼®ÀÇ Çʿ伺Àº Â÷·® ÀÌ¿ë°ú â°í ÀÚµ¿È­¸¦ ÃÖÀûÈ­ÇÏ´Â µðÁöÅÐ Æ®À©ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º°ú ź¼Ò ¹ßÀÚ±¹ °¨¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¹°·ù ±â¾÷µéÀº ¿¡³ÊÁö È¿À²ÀûÀÎ ¿î¿µÀ» À§ÇØ µðÁöÅÐ Æ®À© ½Ã¹Ä·¹À̼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¾ÈÀüÇϰí Åõ¸íÇÑ °ø±Þ¸Á °ü¸®¸¦ À§ÇÑ ºí·ÏüÀÎÀÇ ÅëÇÕÀº ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ®½ÃƼ¿Í Ä¿³ØÆ¼µå ¹°·ù ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ µµ½Ã ¹°·ù °èȹ¿¡¼­ µðÁöÅÐ Æ®À©ÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ³ôÀº µµÀÔ ºñ¿ë°ú µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á¿¡µµ ºÒ±¸Çϰí, µðÁöÅÐ Æ®À© ±â¼úÀº ¹°·ù¸¦ Çõ½ÅÇÏ°í º¸´Ù ½º¸¶Æ®ÇÏ°í ¹ÎøÇϸç È¿À²ÀûÀÎ °ø±Þ¸Á »ýŰ踦 ±¸ÇöÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼ÒÇÁÆ®¿þ¾î¡¤ÄÄÆ÷³ÍÆ®, ¸Å´ÏÁöµå¡¤¼­ºñ½º, Àü¹®¡¤¼­ºñ½º, ÄÁ¼³ÆÃ¡¤¼­ºñ½º, ÅëÇÕ¡¤±¸Çö ¼­ºñ½º, Áö¿ø£¦À¯Áö°ü¸®¡¤¼­ºñ½º), Àü°³(Ŭ¶ó¿ìµå ±â¹Ý¡¤Àü°³, On-Premise¡¤Àü°³), ¿ëµµ(·çÆ® ÃÖÀûÈ­ ¿ëµµ, â°í¡¤Àç°í °ü¸® ¿ëµµ, ¿¹Áöº¸Àü ¿ëµµ, ÀÚ»ê ÃßÀû ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(ÀÚµ¿Â÷ ÃÖÁ¾»ç¿ëÀÚ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ÃÖÁ¾»ç¿ëÀÚ, Á¦Á¶ ÃÖÁ¾»ç¿ëÀÚ, ¼Ò¸Å ¹× E-Commerce ÃÖÁ¾»ç¿ëÀÚ, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Digital Twin in Logistics Market to Reach US$5.1 Billion by 2030

The global market for Digital Twin in Logistics estimated at US$1.5 Billion in the year 2024, is expected to reach US$5.1 Billion by 2030, growing at a CAGR of 23.0% over the analysis period 2024-2030. Software Component, one of the segments analyzed in the report, is expected to record a 21.1% CAGR and reach US$1.1 Billion by the end of the analysis period. Growth in the Managed Services segment is estimated at 26.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$398.7 Million While China is Forecast to Grow at 30.2% CAGR

The Digital Twin in Logistics market in the U.S. is estimated at US$398.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 30.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.7% and 20.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 19.3% CAGR.

Global Digital Twin in Logistics Market - Key Trends & Drivers Summarized

Can Digital Twin Technology Optimize Supply Chain Visibility and Efficiency?

The integration of digital twin technology in logistics is transforming supply chain management by providing real-time visibility, predictive analytics, and operational optimization. Digital twins create virtual replicas of warehouses, transportation networks, and distribution hubs, allowing logistics companies to simulate different scenarios, optimize workflows, and reduce inefficiencies. By leveraging real-time data from IoT sensors, GPS tracking, and RFID tags, digital twins enable predictive maintenance of fleet vehicles, reducing downtime and operational disruptions. Logistics firms are using AI-powered digital twins to forecast demand fluctuations, optimize inventory levels, and minimize waste in last-mile delivery operations. However, the widespread implementation of digital twins in logistics faces challenges such as high implementation costs, data integration complexities, and cybersecurity vulnerabilities. Despite these obstacles, as the logistics industry prioritizes efficiency and resilience, digital twin technology is expected to play a crucial role in shaping the future of supply chain operations.

How Is AI and IoT Revolutionizing Digital Twin Applications in Logistics?

Artificial intelligence (AI) and the Internet of Things (IoT) are critical components of digital twins in logistics, enabling real-time tracking, automated decision-making, and supply chain optimization. AI-powered predictive analytics help logistics firms anticipate transportation bottlenecks, reroute shipments in case of delays, and optimize fuel efficiency. IoT-connected digital twins enhance warehouse automation by monitoring temperature-sensitive goods, tracking asset utilization, and minimizing energy consumption. Additionally, blockchain integration with digital twins is improving logistics transparency by ensuring secure, immutable records of shipments, reducing fraud risks. However, concerns related to data security breaches and the interoperability of different digital twin platforms remain challenges for logistics providers. As AI and IoT technologies continue to mature, their integration with digital twins is expected to revolutionize logistics management, ensuring faster, cost-efficient, and more reliable supply chain operations.

Can Digital Twin Technology Improve Last-Mile Delivery and Urban Logistics?

The rise of e-commerce and on-demand delivery services has increased pressure on logistics firms to enhance last-mile delivery efficiency. Digital twins are being used to optimize urban logistics by simulating traffic conditions, delivery routes, and consumer demand patterns in real time. AI-powered route optimization helps reduce delivery times and fuel costs, improving overall fleet performance. Retailers and logistics providers are leveraging digital twins to model alternative fulfillment strategies, including micro-fulfillment centers and drone deliveries, enhancing customer experience. However, challenges such as regulatory restrictions on autonomous delivery and the complexity of urban traffic modeling pose barriers to widespread adoption. Despite these challenges, the growing demand for fast, efficient, and sustainable delivery solutions is expected to drive the adoption of digital twin technology in last-mile logistics.

What Is Driving the Growth of the Digital Twin in Logistics Market?

The growth in the digital twin in logistics market is driven by several factors, including the increasing demand for supply chain visibility, the rise of AI and IoT-driven logistics solutions, and the expansion of e-commerce-driven delivery networks. The need for predictive analytics in transportation management is fueling the adoption of digital twins to optimize fleet utilization and warehouse automation. The growing focus on sustainability and carbon footprint reduction is pushing logistics firms to adopt digital twin simulations for energy-efficient operations. The integration of blockchain for secure and transparent supply chain management is further enhancing market expansion. Additionally, investments in smart cities and connected logistics infrastructure are accelerating the adoption of digital twins in urban logistics planning. Despite challenges such as high implementation costs and data privacy concerns, digital twin technology is poised to transform logistics, enabling smarter, more agile, and efficient supply chain ecosystems.

SCOPE OF STUDY:

The report analyzes the Digital Twin in Logistics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software Component, Managed Services, Professional Services, Consulting Services, Integration & Implementation Services, Support & Maintenance Services); Deployment (Cloud-based Deployment, On-Premise Deployment); Application (Route Optimization Application, Warehouse & Inventory Management Application, Predictive Maintenance Application, Asset Tracking Application, Other Application); End-User (Automotive End-User, Aerospace & Defense End-User, Manufacturing End-User, Retail & E-commerce End-User, Energy & Utilities End-User, Other End-User)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â