¼¼°èÀÇ ÇØ±º ¼±¹Ú¿ë ¹è±â°¡½º ±ÔÁ¦ ½Ã½ºÅÛ ½ÃÀå
Navy Marine Emission Control Systems
»óǰÄÚµå : 1787217
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 277 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,229,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,687,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇØ±º ¼±¹Ú¿ë ¹è±â°¡½º ±ÔÁ¦ ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 45¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 30¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÇØ±º ¼±¹Ú¿ë ¹è±â°¡½º ±ÔÁ¦ ½Ã½ºÅÛ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 6.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 45¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ SCR ±â¼úÀº CAGR 9.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 19¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ºÅ©·¯¹ö ±â¼ú ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 4.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 3,020¸¸ ´Þ·¯, Áß±¹Àº CAGR 11.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇØ±º ¼±¹Ú¿ë ¹è±â°¡½º ±ÔÁ¦ ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 8¾ï 3,020¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀ» 11.1%·Î, 2030³â±îÁö 9¾ï 6,220¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 3.2%¿Í 6.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÇØ±º ¼±¹Ú¿ë ¹è±â°¡½º ±ÔÁ¦ ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇØ¿î¾÷°è´Â ¹è±â°¡½º ¹èÃâ¿¡ ¾î¶»°Ô ´ëóÇϰí Àִ°¡? ÷´Ü Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÇØ¿î ºÎ¹®Àº ¿À·§µ¿¾È ¼¼°è ¹«¿ªÀÇ ÇÙ½ÉÀ̾úÁö¸¸, ÃÖ±Ù ¼ö½Ê³â°£ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ ½Ã±ÞÇÑ °úÁ¦·Î ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ¿Â½Ç°¡½º(GHG) ¹èÃâ °¨Ãà¿¡ ´ëÇÑ ±¹Á¦ÀûÀÎ ¾Ð·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÇØ±º ¹× ÇØ¾ç »ê¾÷Àº ¹èÃâ Á¦¾î ½Ã½ºÅÛÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ±¹Á¦ÇØ»ç±â±¸(IMO)¿Í °°Àº ±ÔÁ¦±â°üÀº ¼±¹Ú¿ë ¿¬·áÀÇ È² ÇÔÀ¯·®À» ±âÁ¸ 3.5%¿¡¼­ 0.5%·Î Á¦ÇÑÇÏ´Â IMO 2020 ±ÔÁ¦¸¦ Æ÷ÇÔÇÏ¿© ¾ö°ÝÇÑ ÁöħÀ» ¼³Á¤Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ÇÔÁ¤ ¹× »ó¾÷¿ë ¼±¹Ú ¿î¿µ¾÷üµéÀº ÃÖ÷´Ü ¹è±â°¡½º ±ÔÁ¦ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¾Æ³¢Áö ¾Ê°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¾÷°è ÁÖ¿ä ±â¾÷Àº ½ºÅ©·¯¹ö ½Ã½ºÅÛ, ¹è±â°¡½º Àç¼øÈ¯(EGR), ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ±â¼ú µî º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇØ ¿¬±¸°³¹ß(R& D) ³ë·ÂÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±âÁ¸ ÁßÀ¯(HFO)¿¡ ÀÇÁ¸ÇÏ´ø ÇØ±º ÇÔÁ¤ ¹× ¹æ»ê¼±¹ÚÀº ÇöÀç ¾×ȭõ¿¬°¡½º(LNG) ¹× ¹ÙÀÌ¿À¿¬·á¿Í °°Àº ûÁ¤ ´ëü ¿¬·á·Î ÀüȯÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¹è±â°¡½º ±ÔÁ¦ ¸ÞÄ¿´ÏÁòÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº ¿¬·á ¼Òºñ¸¦ ÃÖÀûÈ­ÇÏ°í ¹è±â°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ ±âÁ¸ ¿£Áø°ú Àü±â ÃßÁø·ÂÀ» ÅëÇÕÇÑ ÇÏÀ̺긮µå ÃßÁø ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â Ãß¼¼¿Í ÀÏÄ¡ÇÕ´Ï´Ù. µ¿½Ã¿¡, µðÁöÅÐÈ­ ¹× ÀΰøÁö´É(AI) Áö¿ø ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀº ¹èÃâ°¡½ºÀÇ ½Ç½Ã°£ ÃßÀûÀ» °¡´ÉÇÏ°Ô Çϰí, ÁøÈ­ÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è ÇØ±º ¹æÀ§ ±â°üÀº ½Å±Ô ¹× ±âÁ¸ ÇÔ´ë ¸ðµÎ¿¡ ¸ðµâ½Ä ¹èÃâ Á¦¾î ÀåÄ¡¸¦ ÅëÇÕÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸¸ç, °³Á¶ ¼Ö·ç¼ÇÀº ½ÃÀåÀÇ Áß¿äÇÑ ÃÊÁ¡ ºÐ¾ß°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀÇ À¶ÇÕÀº ±â¼ú ¹ßÀü°ú ±ÔÁ¦ »óȲÀÌ Áö¼Ó°¡´ÉÇÑ ÇØ¾ç ¿î¿µÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â ÇØ±ºÀÇ ÇØ¾ç ¹èÃâ°¡½º Á¦¾î »óȲÀÇ º¯È­ÀÇ ½Ã±â¸¦ °­Á¶ÇÕ´Ï´Ù.

½ºÅ©·¯¹ö¿Í LNG´Â ¿©ÀüÈ÷ ¼±µÎ¸¦ ´Þ¸®°í Àִ°¡? ÁøÈ­ÇÏ´Â ¹è±â°¡½º Àú°¨ ±â¼úÀÇ Àü¸Á

ÀϹÝÀûÀ¸·Î ½ºÅ©·¯¹ö·Î ¾Ë·ÁÁø ¹è±â°¡½º Á¤È­ ½Ã½ºÅÛ(EGCS)ÀÌ À¯·ÂÇÑ ¼Ö·ç¼ÇÀ¸·Î ¶°¿À¸£¸é¼­ ÇØ±º ÇØ¾ç ºÎ¹®ÀÇ ¹è±â°¡½º ±ÔÁ¦ ±â¼úÀº Å« º¯È­¸¦ °Þ¾ú½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ´ë±â ÁßÀ¸·Î ¹èÃâµÇ±â Àü¿¡ ¹è±â°¡½º¿¡¼­ Ȳ ¼ººÐÀ» Á¦°ÅÇÏ¿© Ȳ»êÈ­¹°(SOx)ÀÇ ¹èÃâÀ» È¿°úÀûÀ¸·Î ÁÙÀÔ´Ï´Ù. ±×·¯³ª ½ºÅ©·¯¹ö´Â ³ôÀº ¼³Ä¡ ¹× À¯Áöº¸¼ö ºñ¿ëÀ¸·Î ÀÎÇØ LNG ÃßÁø ½Ã½ºÅÛ µî ´ëü ¼Ö·ç¼ÇÀ¸·Î ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. LNG´Â ±âÁ¸ ¼±¹Ú¿ë ¿¬·á¿¡ ºñÇØ Áú¼Ò»êÈ­¹°(NOx), ÀÔÀÚ»ó ¹°Áú(PM), ÀÌ»êȭź¼Ò(CO2) ¹èÃâÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, Àú¹èÃâ ¿¬·á·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº LNG º¡Ä¿¸µ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, LNG´Â ±âÁ¸ ¿¬·á¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ ¿¬·á°¡ µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª LNG´Â ȯ°æÀû ÀåÁ¡¿¡µµ ºÒ±¸ÇÏ°í ¿¬¼Ò½Ã ¹ß»ýÇÏ´Â ¸Þź ½½¸³(¹Ì¿¬¼Ò ¸Þź)À¸·Î ÀÎÇØ Àå±âÀûÀÎ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á°¡ ³²¾ÆÀÖÀ¸¹Ç·Î ¿©ÀüÈ÷ °úµµ±âÀû ¿¬·áÀÔ´Ï´Ù. ÀÌ¿¡ µû¶ó ¼ö¼Ò, ¾Ï¸ð´Ï¾Æ, ¸Þź¿Ã µî Â÷¼¼´ë ¿¬·á¿¡ ´ëÇÑ ¿¬±¸°¡ ´õ¿í Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖÀ¸¸ç, À̵éÀº ÀáÀçÀûÀÎ Á¦·Î ź¼Ò ´ëü ¿¬·á·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¬·áÀüÁö ±â¼ú, ƯÈ÷ °íü »êÈ­¹° ¿¬·áÀüÁö³ª °íü°íºÐÀÚ ¿¬·áÀüÁö´Â °íÈ¿À²¿¡ ¹èÃâ°¡½º°¡ °ÅÀÇ ¾ø½À´Ï´Ù´Â Á¡¿¡¼­ ÇØ±º¿¡ ´ëÇÑ Àû¿ëÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »õ·Î¿î ¼Ö·ç¼ÇÀº ¹èÃâ·® °¨ÃàÀ» À§ÇÑ À¯¸Á °æ·Î¸¦ Á¦°øÇÏÁö¸¸, ´ë±Ô¸ð ÀÎÇÁ¶ó ±¸ÃàÀÇ Çʿ伺°ú »õ·Î¿î À¯ÇüÀÇ ¿¬·á Ãë±Þ¿¡ µû¸¥ ¾ÈÀü ¹®Á¦ µî ±â¼úÀû, °æÁ¦Àû À庮À¸·Î ÀÎÇØ º¸±ÞÀ» °¡·Î¸·°í ÀÖ½À´Ï´Ù. ¹è±â°¡½º ±ÔÁ¦ÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ Ãß¼¼´Â ¹è±â°ü¿¡¼­ ¹èÃâµÇ±â Àü¿¡ ¿À¿°¹°ÁúÀ» ÁßÈ­½ÃŰ´Â °í±Þ ¿©°ú ½Ã½ºÅÛ°ú »êÈ­ Ã˸ÅÀÇ ÅëÇÕÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ Á¶ÇÕÀº ÇöÀç ÁøÇà ÁßÀÎ ´ëü ÃßÁø ½Ã½ºÅÛ ¿¬±¸°³¹ß ³ë·Â°ú ÇÔ²² ÇØ±º ¼±¹Ú ¹è±â°¡½º ±ÔÁ¦ ½ÃÀåÀÇ ´ÙÀ½ ´Ü°è¸¦ Çü¼ºÇÏ°í º¸´Ù ģȯ°æÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ÇØ±º ÇÔ´ë·ÎÀÇ ÀüȯÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

µðÁöÅÐÈ­¿Í AI°¡ ¹èÃâ°¡½º ±ÔÁ¦¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö Àִ°¡? ½º¸¶Æ® ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ ¿ªÇÒ

µðÁöÅÐÈ­, ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML)ÀÇ µîÀåÀ¸·Î ÇØ±ºÀÇ ÇØ¾ç ¹èÃâ°¡½º ±ÔÁ¦´Â ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ¿¹Ãø ºÐ¼®À¸·Î ÆÐ·¯´ÙÀÓÀÇ ÀüȯÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ¹è±â°¡½º Á¦¾î ½Ã½ºÅÛÀº ÇöÀç AI ±â¹Ý ¼¾¼­¿Í »ç¹°ÀÎÅͳÝ(IoT) ±â¼úÀ» ÅëÇÕÇÏ¿© ¹è±â°¡½º, ¿¬ºñ, ÄÄÇöóÀ̾𽺠ÆÄ¶ó¹ÌÅ͸¦ ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» ÅëÇØ ¹èÃâ°¡½º ¼öÁØÀÇ ÆíÂ÷¸¦ ÀÌÀü°ú´Â ºñ±³ÇÒ ¼ö ¾øÀ» Á¤µµ·Î Á¤È®ÇÏ°Ô ÆÄ¾ÇÇÏ¿© ¿£Áø ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ°í ¿À¿°¹°Áú ¹èÃâÀ» ÁÙÀ̱â À§ÇÑ »çÀü ¿¹¹æÀû ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ±â¹Ý ÀÚµ¿È­´Â ¿¬·á ºÐ»ç ¸Å°³º¯¼ö Á¶Á¤, ¿¬¼Ò ÇÁ·Î¼¼½º ÃÖÀûÈ­, µ¥ÀÌÅÍ ºÐ¼®¿¡ ±â¹ÝÇÑ À¯Áöº¸¼ö Çʿ伺 ¿¹ÃøÀ» ÅëÇØ ¹è±â°¡½º Á¦¾î¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¾ö°ÝÇÑ ±ÔÁ¦ °¨µ¶ ÇÏ¿¡ ¿î¿µµÇ´Â ÇØ±º ÇÔ´ë¿¡ ƯÈ÷ Áß¿äÇϸç, ¿î¿µÀÇ È¥¶õÀ» ÃÖ¼ÒÈ­Çϸ鼭 ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºí·ÏüÀÎ ±â¼úÀº ÄÄÇöóÀ̾𽺠º¸°íÀÇ Åõ¸í¼º°ú ÃßÀû¼ºÀ» °­È­Çϰí, ¾ÈÀüÇÏ°í º¯Á¶ ¹æÁöµÈ ¹èÃâ°¡½º µ¥ÀÌÅÍ ·Î±ëÀ» À§ÇØ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¿ä ¹ßÀüÀº µðÁöÅÐ Æ®À© ±â¼úÀÇ ÅëÇÕÀ¸·Î, ¼±¹Ú¿ë ¿£ÁøÀÇ °¡»ó ¸ðµ¨ÀÌ ½ÇÁ¦ ÀÛµ¿À» ½Ã¹Ä·¹À̼ÇÇÏ¿© ¿¹Áöº¸Àü ¹× È¿À²¼º Çâ»óÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀÔ´Ï´Ù. ¿ø°Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ Ã¤Åõµ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ±¹¹æ ºÐ¾ß¿¡¼­´Â ÇØ±º ÇÔÁ¤ÀÌ ÀÛÀü Áغñż¼¸¦ ¼Õ»ó½ÃŰÁö ¾Ê°í ¹è±â°¡½º ±ÔÁ¦¸¦ ÁؼöÇϱâ À§ÇØ Áö¼ÓÀûÀÎ ÃßÀûÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀº Àü ¼¼°è ¼±¹ÚÀÇ ¹èÃâ µ¥ÀÌÅ͸¦ Áß¾Ó ÁýÁßÈ­ÇÏ¿© ±ÔÁ¦±â°ü°ú ¼±¹Ú ¿î¿µ»ç°¡ µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ Á¤Ã¥ °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. AI¿Í ÀÚµ¿È­°¡ °è¼Ó ÁøÈ­Çϸ鼭 ¹èÃâ°¡½º Á¦¾î ½Ã½ºÅÛÀº ´õ¿í Á¤±³ÇØÁ® ÇØ¾ç ¿À¿° ¹æÁö¸¦ À§ÇÑ ºñ¿ë È¿À²ÀûÀÌ°í °íÈ¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ Çõ½ÅÀº ±ÔÁ¦ Áؼö¸¦ °­È­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÇâÈÄ ¼ö³â°£ º¸´Ù ź·ÂÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ÇØ±º ¿î¿µÀÇ ±æÀ» ¿­¾îÁÙ °ÍÀÔ´Ï´Ù.

½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡? ¹èÃâ°¡½º ±ÔÁ¦ ½Ã½ºÅÛÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä ¿äÀεé

ÇØ±º ¼±¹Ú¿ë ¹è±â°¡½º ±ÔÁ¦ ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, ±â¼ú ¹ßÀü, ÇØ¾ç »ê¾÷ÀÇ ¿¡³ÊÁö ¼±È£µµ º¯È­ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ±¹Á¦ÇØ»ç±â±¸(IMO)ÀÇ ¹è±â°¡½º ±ÔÁ¦ °­È­¿Í À¯·´¿¬ÇÕ(EU)ÀÇ Fit for 55 ÆÐŰÁö ¹× ¹Ì±¹ ȯ°æº¸È£Ã»(EPA)ÀÇ Tier 4 ±âÁذú °°Àº Áö¿ª Á¤Ã¥°ú °áÇÕÇÏ¿© ÇØ±º°ú »ó¾÷ »ç¾÷ÀÚµéÀÌ Ã»Á¤ ±â¼úÀ» äÅÃÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ LNG, ¼ö¼Ò, ¾Ï¸ð´Ï¾Æ, ¸Þź¿Ã°ú °°Àº ´ëü ¿¬·áÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ȣȯ °¡´ÉÇÑ ¹èÃâ°¡½º Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯È÷ ½ÅÈï °æÁ¦±¹µéÀÇ ÇØ±º ³ì»öÈ­ ±¸»óÀÇ ºÎ»óµµ ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ Á¤ºÎ°¡ ´õ ¸¹Àº ¿¹»êÀ» ¹èÁ¤ÇÔ¿¡ µû¶ó ½ÃÀå °³¹ß¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯È÷ ¹Ì±¹, Áß±¹, Àεµ µîÀÇ ±¹°¡¿¡¼­ ÇØ±º Çö´ëÈ­ °èȹ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ÃÖ÷´Ü ¹èÃâ°¡½º Àú°¨ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¼ºÀå ¿äÀÎÀº LNG º¡Ä¿¸µ ½Ã¼³ÀÇ ³×Æ®¿öÅ©°¡ È®´ëµÇ°í, ûÁ¤ ´ëü ¿¬·áÀÇ °¡°ÝÀÌ »ó½ÂÇϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ ±â¾÷ ÀÌÇØ°ü°èÀÚµéÀÌ ÇØ±º »ç¾÷ÀÇ È¯°æÀû Ã¥ÀÓÀ» °­È­ÇÏ´Â °¡¿îµ¥, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¼ÒºñÀÚ ¹× ÅõÀÚÀÚµéÀÇ ÀνÄÀÌ ³ô¾ÆÁø °Íµµ ÀÌ ½ÃÀåÀÇ È£Àç·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁöÁ¤ÇÐÀû ±äÀåÀÇ Áõ°¡¿Í ¿¡³ÊÁö ¾Èº¸ÀÇ Çʿ伺Àº ÇØ±ºÀÇ ¿¬·á¿ø ´Ùº¯È­¸¦ ÃËÁøÇϰí, ÇÏÀ̺긮µå ÃßÁø ¹× ¹è±â°¡½º Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ È®´ë·Î À̾îÁö°í ÀÖ½À´Ï´Ù. AI¸¦ ÅëÇÑ ÀÚµ¿È­, ¿¹Ãø ºÐ¼® µî µðÁöÅÐ ÀüȯÀÇ °¡¼ÓÈ­´Â Â÷¼¼´ë ¹èÃâ°¡½º ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÄÄÇöóÀ̾𽺠ÃßÀûÀ» À§ÇÑ ºí·ÏüÀÎ ÅëÇÕ°ú AI °­È­ ÇÊÅ͸µ ½Ã½ºÅÛ °³¹ßµµ ½ÃÀå È®´ë¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ ÃßÁø ±â¼ú°ú ´ëü ¿¬·á¿¡ ÃÊÁ¡À» ¸ÂÃá Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß ³ë·ÂÀ¸·Î ÇØ±º ÇØ¾ç ¹èÃâ°¡½º ±ÔÁ¦ ½ÃÀåÀº Áö¼Ó°¡´ÉÇÑ ¼ºÀå ż¼¸¦ °®Ãß°í ÀÖÀ¸¸ç, ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾÷°èÀÇ Á¢±Ù ¹æ½Ä¿¡ ¸Å¿ì Áß¿äÇÑ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(SCR ±â¼ú, ½ºÅ©·¯¹ö ±â¼ú, ESP ±â¼ú, ±âŸ ±â¼ú), ¿¬·á À¯Çü(MDO ¿¬·á, MGO ¿¬·á, ÇÏÀ̺긮µå ¿¬·á, ±âŸ ¿¬·á À¯Çü)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Navy Marine Emission Control Systems Market to Reach US$4.5 Billion by 2030

The global market for Navy Marine Emission Control Systems estimated at US$3.0 Billion in the year 2024, is expected to reach US$4.5 Billion by 2030, growing at a CAGR of 6.8% over the analysis period 2024-2030. SCR Technology, one of the segments analyzed in the report, is expected to record a 9.1% CAGR and reach US$1.9 Billion by the end of the analysis period. Growth in the Scrubber Technology segment is estimated at 4.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$830.2 Million While China is Forecast to Grow at 11.1% CAGR

The Navy Marine Emission Control Systems market in the U.S. is estimated at US$830.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$962.2 Million by the year 2030 trailing a CAGR of 11.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.2% and 6.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.5% CAGR.

Global Navy Marine Emission Control Systems Market - Key Trends & Drivers Summarized

How Is The Maritime Industry Tackling Emissions? The Rising Demand for Advanced Control Systems

The maritime sector has long been a cornerstone of global trade, but its environmental impact has become a pressing concern in recent decades. With increasing international pressure to reduce greenhouse gas (GHG) emissions, the Navy and marine industry are witnessing a paradigm shift in emission control systems. Regulatory bodies such as the International Maritime Organization (IMO) have set stringent mandates, including the IMO 2020 regulation, which limits sulfur content in marine fuels to 0.5% from the previous 3.5%. This has forced naval fleets and commercial marine operators to invest in cutting-edge emission control technologies. In response, key players in the industry have ramped up research and development (R&D) efforts to create more efficient and cost-effective solutions, such as scrubber systems, exhaust gas recirculation (EGR), and selective catalytic reduction (SCR) technologies. Moreover, naval ships and defense vessels, which have traditionally relied on heavy fuel oil (HFO), are now transitioning to cleaner alternatives such as liquefied natural gas (LNG) and biofuels, driving further innovation in emission control mechanisms. These technological advancements align with the rising adoption of hybrid propulsion systems that integrate conventional engines with electric propulsion to optimize fuel consumption and reduce emissions. At the same time, the shift toward digitalization and artificial intelligence (AI)-enabled monitoring systems allows real-time tracking of emissions, ensuring compliance with evolving regulatory frameworks. Furthermore, naval defense organizations worldwide are working on integrating modular emission control units into both new and existing fleets, making retrofitting solutions a key area of focus in the market. The convergence of these factors underscores a transformative era in the Navy marine emission control landscape, where technological advancements and regulatory mandates shape the future of sustainable maritime operations.

Are Scrubbers & LNG Still Leading? The Evolving Landscape of Emission Reduction Technologies

Emission control technologies in the Navy marine sector have undergone significant transformations, with exhaust gas cleaning systems (EGCS), commonly known as scrubbers, emerging as a dominant solution. These systems effectively reduce sulfur oxide (SOx) emissions by removing sulfur content from exhaust gases before they are released into the atmosphere. However, the high installation and maintenance costs associated with scrubbers have led to a growing shift toward alternative solutions, including LNG-powered propulsion systems. LNG has gained traction as a low-emission fuel, as it significantly reduces nitrogen oxides (NOx), particulate matter (PM), and carbon dioxide (CO2) emissions compared to traditional marine fuels. This transition has been further accelerated by increased investments in LNG bunkering infrastructure, making it a viable alternative to conventional fuels. However, despite its environmental benefits, LNG remains a transitional fuel, as long-term sustainability concerns persist due to methane slip-unburned methane released during combustion. This has prompted further research into next-generation fuels such as hydrogen, ammonia, and methanol, which are gaining traction as potential zero-carbon alternatives. Additionally, fuel cell technology, particularly solid oxide and proton exchange membrane fuel cells, is being explored for naval applications due to their high efficiency and near-zero emissions. While these emerging solutions offer promising pathways for emission reduction, their widespread adoption is still hindered by technical and economic barriers, including the need for substantial infrastructure development and safety concerns associated with handling new fuel types. Another significant trend in emission control is the integration of advanced filtration systems and oxidation catalysts, which help neutralize pollutants before they exit the exhaust stack. The combination of these technologies, along with ongoing R&D efforts in alternative propulsion systems, is shaping the next phase of the Navy marine emission control market, driving a transition toward a greener and more sustainable naval fleet.

Can Digitalization & AI Revolutionize Emission Control? The Role of Smart Monitoring Systems

With the rise of digitalization, artificial intelligence (AI), and machine learning (ML), the Navy marine emission control landscape is witnessing a paradigm shift toward real-time monitoring and predictive analytics. Advanced emission control systems are now integrating AI-powered sensors and Internet of Things (IoT) technology to track exhaust emissions, fuel efficiency, and compliance parameters in real time. These smart monitoring systems offer unprecedented precision in identifying deviations in emission levels, enabling proactive decision-making to optimize engine performance and reduce pollutant output. Furthermore, AI-driven automation is streamlining emission control by adjusting fuel injection parameters, optimizing combustion processes, and predicting maintenance needs based on data analytics. These advancements are particularly crucial for naval fleets operating under strict regulatory scrutiny, as they ensure compliance while minimizing operational disruptions. Additionally, blockchain technology is being explored for secure, tamper-proof emissions data logging, enhancing transparency and traceability in compliance reporting. Another key development is the integration of digital twin technology, where virtual models of marine engines simulate real-world operations, allowing for predictive maintenance and efficiency improvements. The adoption of remote monitoring systems has also surged, particularly in defense applications, where naval vessels require continuous tracking to ensure adherence to emission norms without compromising operational readiness. Furthermore, cloud-based platforms are being leveraged to centralize emission data from global naval fleets, allowing regulatory bodies and fleet operators to make data-driven policy decisions. As AI and automation continue to evolve, emission control systems are becoming more sophisticated, offering cost-effective and highly efficient solutions to combat marine pollution. This digital transformation is not only enhancing regulatory compliance but also paving the way for more resilient and sustainable naval operations in the coming years.

What Is Driving Market Growth? Key Forces Shaping the Future of Emission Control Systems

The growth in the Navy marine emission control systems market is driven by several factors, including stringent environmental regulations, technological advancements, and shifting energy preferences within the maritime industry. The International Maritime Organization’s (IMO) increasingly stringent emission norms, coupled with regional policies such as the European Union’s Fit for 55 package and the United States Environmental Protection Agency’s (EPA) Tier 4 standards, have compelled naval and commercial operators to adopt cleaner technologies. Furthermore, the growing adoption of alternative fuels such as LNG, hydrogen, ammonia, and methanol is accelerating the demand for compatible emission control systems. The rise of green naval initiatives, particularly in developed economies, is also influencing market growth, as governments allocate higher budgets to ensure compliance with global sustainability goals. Additionally, increased investment in naval modernization programs, particularly in countries like the United States, China, and India, is driving demand for state-of-the-art emission reduction technologies. Another critical growth driver is the expanding network of LNG bunkering facilities and the increasing affordability of clean fuel alternatives, which are making low-emission operations more accessible to naval and marine operators. The market is also benefiting from growing consumer and investor awareness regarding sustainability, as corporate stakeholders push for greater environmental responsibility in naval operations. Furthermore, rising geopolitical tensions and the need for energy security have prompted naval forces to diversify their fuel sources, leading to greater investment in hybrid propulsion and emission control systems. The accelerating pace of digital transformation, including AI-driven automation and predictive analytics, is further fueling the demand for next-generation emission monitoring solutions. The integration of blockchain for compliance tracking and the development of AI-enhanced filtration systems are also shaping market expansion. With ongoing research and development efforts focused on breakthrough propulsion technologies and fuel alternatives, the Navy marine emission control market is poised for sustained growth, marking a pivotal shift in the industry’s approach to environmental sustainability.

SCOPE OF STUDY:

The report analyzes the Navy Marine Emission Control Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (SCR Technology, Scrubber Technology, ESP Technology, Other Technologies); Fuel Type (MDO Fuel, MGO Fuel, Hybrid Fuel, Other Fuel Types)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â