¼¼°èÀÇ mRNA ÇÕ¼º ¿ø·á ½ÃÀå
mRNA Synthesis Raw Materials
»óǰÄÚµå : 1787189
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 278 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ mRNA ÇÕ¼º ¿ø·á ½ÃÀåÀº 2030³â±îÁö 20¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 17¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â mRNA ÇÕ¼º ¿ø·á ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 2.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 20¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠĸÇÎÁ¦´Â CAGR 3.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 7¾ï 1,130¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´ºÅ¬·¹¿ÀƼµå ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 2.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 6,780¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR4.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ mRNA ÇÕ¼º ¿ø·á ½ÃÀåÀº 2024³â¿¡ 4¾ï 6,780¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 3¾ï 8,030¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.7%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.0%¿Í 2.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.5%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è mRNA ÇÕ¼º ¿ø·á ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

mRNA ÇÕ¼º ¿ø·á´Â ¾î¶»°Ô Ä¡·áÁ¦ÀÇ ´ÙÀ½ °æÁö¸¦ ÃËÁøÇÒ ¼ö ÀÖÀ»±î?

mRNA ±â¹Ý ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¸Þ½ÅÀú RNA(mRNA) ÇÕ¼º¿¡ ÇʼöÀûÀÎ °í¼øµµ ¹× È®Àå °¡´ÉÇÑ ¿ø·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ø·á¿¡´Â ´ºÅ¬·¹¿ÀƼµå, È¿¼Ò, ĸÇÎ ½Ã¾à, ÁöÁú ³ª³ëÀÔÀÚ(LNP) µîÀÌ Æ÷ÇԵǸç, À̵éÀº ¸ðµÎ mRNA Ä¡·áÁ¦ ¹× ¹é½ÅÀÇ ¾ÈÁ¤¼º, À¯È¿¼º, Á¦Á¶°¡´É¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. mRNA ¹é½Å Äڷγª19ÀÇ Àü·Ê ¾ø´Â ¼º°øÀº mRNA ±â¼úÀÇ Çõ½Å °¡´É¼ºÀ» º¸¿©ÁÖ¸ç ¾Ï, À¯Àüº´, °¨¿°¼º Áúȯ Ä¡·á¹ý °³¹ß¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ »ý¹°ÇÐÀû Á¦Á¦¿Í ´Þ¸® mRNA ±â¹Ý ÀǾàǰÀº ÇÕ¼º ¿ø·á¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ º¹ÀâÇÑ ¼¼Æ÷ ¹è¾ç ½Ã½ºÅÛÀ» ÇÊ¿ä·Î ÇÏÁö ¾Ê°í ºü¸¥ È®ÀåÀÌ °¡´ÉÇÕ´Ï´Ù. °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿Í À¯ÀüÀÚ ÆíÁý Ä¡·áÀÇ ±ÞÁõÀº ¿¬±¸ÀÚµéÀÌ ´Ü¹éÁú ¹ßÇö°ú ¸é¿ª ¹ÝÀÀ Á¶ÀýÀ» °­È­Çϱâ À§ÇØ mRNA ±¸Á¶¹°À» ÃÖÀûÈ­Çϱâ À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó °íǰÁú ¿ø·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÁõÆø½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, mRNA ±â¹Ý ¿¬±¸°¡ ¹é½Å»Ó¸¸ ¾Æ´Ï¶ó ´Ü¹éÁú ´ëü¿ä¹ý, Àç»ýÀÇ·á±îÁö È®´ëµÇ¸é¼­ Àû¿ë ¹üÀ§°¡ ³Ð¾îÁ³°í, ¾ö°ÝÇÑ Ç°Áú°ü¸®¿Í ±ÔÁ¦¿¡ ºÎÇÕÇÏ´Â Á¦Á¶ °øÁ¤ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. »ý¸í°øÇÐ ±â¾÷ ¹× CDMO(À§Å¹°³¹ß ¹× Á¦Á¶¼öʱâ°ü)µéÀÌ ºñ¿ë È¿À²¼º°ú ¼öÀ² ³ôÀº mRNA »ý»ê ÃÖÀûÈ­¸¦ À§ÇØ °æÀïÇÏ´Â °¡¿îµ¥, ¿ø·áÀÇ Çõ½Å, ¼øµµ ±âÁØ, °ø±Þ¸Á ź·Â¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ±× ¾î´À ¶§º¸´Ù Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú Çõ½ÅÀÌ mRNA ÇÕ¼º °ø±Þ¸ÁÀ» À籸¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº mRNA »ý»ê¿¡ ÇÊ¿äÇÑ ¿ø·áÀÇ ÇÕ¼º°ú ÃÖÀûÈ­¸¦ Å©°Ô º¯È­½ÃÄÑ È¿À²¼º, È®À强, ±ÔÁ¦ Áؼö¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ µ¹ÆÄ±¸ Áß Çϳª´Â ü¿Ü Àü»ç(IVT) °øÁ¤ÀÇ ÃÖÀûÈ­À̸ç, ¹ÚÅ׸®¿ÀÆÄÁö RNA ÁßÇÕÈ¿¼Ò¸¦ ÀÌ¿ëÇÑ È¿¼Ò ÇÕ¼ºÀº ÀÌÁß°¡´Ú RNA(dsRNA)ÀÇ È¥ÀÔÀ» ÃÖ¼ÒÈ­ÇÏ°í ´õ ³ôÀº mRNA ¼øµµ¸¦ ¾òÀ» ¼ö ÀÖµµ·Ï ¹Ì¼¼ Á¶Á¤µÇ¾î ¿Ô½À´Ï´Ù. È¿¼ÒÀû ĸÇÎ ¹× CleanCap(R) ±â¼úÀ» ÀÌ¿ëÇÑ °øµ¿ Àü»ç ĸÇΰú °°Àº °³¼±µÈ ĸÇÎ Àü·«À¸·Î mRNAÀÇ ¾ÈÁ¤¼º°ú ¹ø¿ª È¿À²À» Çâ»ó½ÃÄ×½À´Ï´Ù. ¶ÇÇÑ, N1-¸ÞÆ¿½´µµ¿ì¸®µò°ú °°Àº È­ÇÐÀû º¯Çü ´ºÅ¬·¹¿ÀƼµåÀÇ ±â¼ú Çõ½ÅÀº Ä¡·á È¿°ú¸¦ Çâ»ó½ÃŰ´Â µ¿½Ã¿¡ ¸é¿ª¿ø¼ºÀ» ÇöÀúÈ÷ °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù. ÁöÁú ³ª³ëÀÔÀÚ(LNP) Àü´Þ ½Ã½ºÅÛµµ Å« ÁøÀüÀ» ÀÌ·ç¾úÀ¸¸ç, ÀÌ¿ÂÈ­ °¡´ÉÇÑ ÁöÁúÀº ´õ ³ôÀº »ýüÀûÇÕ¼º, Ç¥Àû Á¶Á÷À¸·ÎÀÇ Àü´Þ, Ç¥Àû ¿Ü ¿µÇâ °¨¼Ò¸¦ À§ÇØ ¼³°èµÇ¾ú½À´Ï´Ù. ´ºÅ¬·¹¿À½Ãµå »ïÀλê(NTP) ÇÕ¼º ¹× Á¤Á¦ÀÇ ÀÚµ¿È­´Â ¹èÄ¡ °£ Àϰü¼ºÀ» °³¼±ÇÏ°í »ý»ê º´¸ñÇö»óÀ» ÁÙ¿© ´ë±Ô¸ð mRNA »ý»êÀ» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ¶ÇÇÑ, Á¦Çü ¼³°è¿¡ AI ±â¹Ý ¿¹Ãø ¸ðµ¨¸µÀ» ÅëÇÕÇÔÀ¸·Î½á ´Ù¾çÇÑ Ä¡·á ¿ëµµ¸¦ À§ÇÑ mRNA ±¸Á¶¹°ÀÇ ½Å¼ÓÇÑ ÃÖÀûÈ­°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû °³¼±À¸·Î mRNAÀÇ ¼öÀ², ¾ÈÁ¤¼º, Àü´ÞÀÌ ÇÑ ¹ø¿¡ °³¼±µÇ¾î ¿¬±¸±â°ü°ú Á¦¾à»ç ¸ðµÎ Áõ°¡ÇÏ´Â ¼ö¿ä¿¡ ¿ø·á°¡ ¾ÈÁ¤ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

mRNA ¿ø·á »ý»ê¿¡ ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã¿Í °ø±Þ¸Á °­°Ç¼ºÀÌ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

mRNA Ä¡·áÁ¦ »ê¾÷ÀÇ ±Þ¼ÓÇÑ È®ÀåÀ¸·Î ¿ø·á Á¶´Þ ¹× »ý»ê¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ °¨µ¶°ú °ø±Þ¸Á ¾ÈÁ¤¼ºÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. FDA, EMA µî ±ÔÁ¦±â°üÀº mRNA ÇÕ¼º¿¡ »ç¿ëµÇ´Â ¿ø·áÀÇ ¼øµµ, Àϰü¼º, ÃßÀû¼º¿¡ ´ëÇÑ °¡À̵å¶óÀÎÀ» ¾ö°ÝÇÏ°Ô Àû¿ëÇϰí ÀÖÀ¸¸ç, GMP(Good Manufacturing Practice)¸¦ öÀúÈ÷ ÁؼöÇϵµ·Ï Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ƯÈ÷ ´ºÅ¬·¹¿ÀƼµå, ĸÇÎ ½Ã¾à, ÁöÁú ºÎÇüÁ¦ÀÇ Á¶´Þ ¹× Á¤Á¦¿¡¼­ ¾ö°ÝÇÑ Ç°Áú °ü¸® ´ëÃ¥ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÏȸ¿ë ¹ÙÀÌ¿ÀÇÁ·Î¼¼½Ì ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶ ¿öÅ©Ç÷ο찡 °£¼ÒÈ­µÇ°í, ±³Â÷ ¿À¿°ÀÇ À§ÇèÀÌ °¨¼ÒÇϸç, °í󸮷® mRNA »ý»êÀÇ È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª mRNA ¿ø·áÀÇ ¼¼°è °ø±Þ¸ÁÀº Äڷγª19 ÆÒµ¥¹Í ±â°£ µ¿¾È ÁÖ¿ä ½Ã¾à°ú ÁöÁú ºÎÁ·À¸·Î ¹é½Å »ý»êÀÌ Áö¿¬µÈ °Íó·³ ¿©ÀüÈ÷ È¥¶õ¿¡ Ãë¾àÇÑ »óÅÂÀÔ´Ï´Ù. ÀÌ¿¡ Á¦¾à»çµéÀº ÁöÁ¤ÇÐÀû ¸®½ºÅ©¿Í ¹°·ù º´¸ñÇö»óÀ» ¿ÏÈ­Çϱâ À§ÇØ ¼öÁ÷ÅëÇÕÇü °ø±Þ¸Á¿¡ ´ëÇÑ ÅõÀÚ ¹× Áö¿ª Á¦Á¶Çãºê ¼³¸³À» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý¸í°øÇÐ ±â¾÷°ú È­Çй°Áú °ø±Þ¾÷ü¿ÍÀÇ Á¦ÈÞ°¡ °­È­µÇ¾î °íǰÁú mRNA Àü±¸Ã¼ Àü¿ë »ý»ê½Ã¼³ ¼³¸³À¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. mRNA ±â¹Ý ¹é½Å ¹× Ä¡·áÁ¦¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÏ´Â °¡¿îµ¥, ÀÌ È¹±âÀûÀÎ ±â¼úÀÇ ¸ð¸àÅÒÀ» Áö¼ÓÇϱâ À§Çؼ­´Â ź·ÂÀûÀÌ°í ±ÔÁ¤À» ÁؼöÇÏ´Â °ø±Þ¸ÁÀ» È®º¸ÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù.

mRNA ÇÕ¼º ¿ø·á ½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?

mRNA ÇÕ¼º ¿ø·á ½ÃÀåÀÇ ¼ºÀåÀº mRNA ±â¹Ý Ä¡·áÁ¦ÀÇ È®´ë, »ý¸í°øÇÐ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ¿ø·á Á¤Á¦ ¹× Á¦ÇüÈ­ ±â¼úÀÇ ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. mRNA ¹é½ÅÀÇ ¼º°øÀº ¾Ï ¸é¿ªÄ¡·á, Èñ±ÍÁúȯ Ä¡·á, ´Ü¹éÁú ´ëü¿ä¹ý µî »õ·Î¿î ¿ëµµ ¿¬±¸¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, ÀÌ ¸ðµç ºÐ¾ß¿¡¼­ ¹ßÇö°ú ¾ÈÁ¤¼ºÀ» ÃÖÀûÈ­ÇÒ ¼ö Àִ Ư¼öÇÑ ¿ø·á°¡ ÇÊ¿äÇÕ´Ï´Ù. mRNA ±â¹Ý ¾à¹°À» Æ÷ÇÔÇÑ ÀÓ»ó½ÃÇèÀÇ ±ÞÁõÀ¸·Î °í¼øµµ ´ºÅ¬·¹¿ÀƼµå, È¿¼Ò ½Ã¾à, ÁöÁú ij¸®¾î¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, °ø±Þ¾÷üµéÀº »ý»ê ´É·ÂÀ» È®´ëÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚ°¡ ÁõÆø mRNA(saRNA) ¹× ¼øÈ¯ RNA(circRNA) ±â¼úÀÇ ÃâÇöÀº ±â¼ú Çõ½ÅÀÇ »õ·Î¿î ±æÀ» ¿­¾î »õ·Î¿î ¿ø·á ±¸¼ºÀÇ Çʿ伺À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. mRNA Á¦Á¦ °³¹ß¿¡¼­ AI ±â¹Ý ¾à¹° ¼³°è¿Í ÇÏÀ̽º·çDz ½ºÅ©¸®´×ÀÇ Ã¤ÅÃÀÌ È®´ëµÇ¸é¼­ Á¤¹Ð ¿£Áö´Ï¾î¸µ ¿ø·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹é½Å Á¦Á¶ÀÇ ¼¼°è ºÐ»êÈ­¿Í ÇÙ»ê Ä¡·áÁ¦ Àü¹® CDMOÀÇ µîÀåÀ¸·Î °ø±Þ¸ÁÀÌ °­È­µÇ¾î mRNA Àü±¸Ã¼ÀÇ ½Å¼ÓÇÑ »ý»ê°ú °ø±ÞÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. mRNA Ä¡·á¸¦ ȯÀÚ °³°³Àο¡ ¸ÂÃá ¸ÂÃã ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­, º¯ÇüµÈ ´ºÅ¬·¹¿ÀƼµå¿Í ÁöÁú ij¸®¾îÀÇ ¸ÂÃãÇü ÇÕ¼ºÀÌ ¿ä±¸µÇ°í ÀÖ´Â °Íµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× Á¦¾àȸ»ç°¡ ÆÒµ¥¹Í ´ëÀÀ ¹× Â÷¼¼´ë ¹é½Å¿¡ ´ëÇÑ ÅõÀÚ¸¦ Áö¼ÓÇÏ´Â °¡¿îµ¥, °íǰÁú, È®À强, ±ÔÁ¦ Áؼö mRNA ¿ø·á¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, Çö´ë ¹ÙÀÌ¿ÀÅ×Å©³î·¯ÁöÀÇ ÇÙ½É ¿ªÇÒÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(ĸÇÎÁ¦, ´ºÅ¬·¹¿ÀƼµå, Çö󽺹̵å DNA, È¿¼Ò, ±âŸ À¯Çü), ¿ëµµ(¹é½Å Á¦Á¶ ¿ëµµ, Ä¡·áÁ¦ Á¦Á¶ ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(¹ÙÀÌ¿ÀÀǾàǰ ¹× Á¦¾à ±â¾÷ ÃÖÁ¾ ¿ëµµ, CRO ¹× CMO ÃÖÁ¾ ¿ëµµ, Çмú±â°ü ¹× ¿¬±¸±â°ü ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global mRNA Synthesis Raw Materials Market to Reach US$2.0 Billion by 2030

The global market for mRNA Synthesis Raw Materials estimated at US$1.7 Billion in the year 2024, is expected to reach US$2.0 Billion by 2030, growing at a CAGR of 2.5% over the analysis period 2024-2030. Capping Agents, one of the segments analyzed in the report, is expected to record a 3.1% CAGR and reach US$711.3 Million by the end of the analysis period. Growth in the Nucleotides segment is estimated at 2.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$467.8 Million While China is Forecast to Grow at 4.7% CAGR

The mRNA Synthesis Raw Materials market in the U.S. is estimated at US$467.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$380.3 Million by the year 2030 trailing a CAGR of 4.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.0% and 2.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.5% CAGR.

Global mRNA Synthesis Raw Materials Market - Key Trends & Drivers Summarized

How Are mRNA Synthesis Raw Materials Powering the Next Frontier of Therapeutics?

The rapid advancement of mRNA-based technologies has propelled the demand for high-purity and scalable raw materials essential for the synthesis of messenger RNA (mRNA). These raw materials include nucleotides, enzymes, capping reagents, and lipid nanoparticles (LNPs), all of which play a crucial role in ensuring the stability, efficacy, and manufacturability of mRNA therapeutics and vaccines. The unprecedented success of mRNA COVID-19 vaccines demonstrated the transformative potential of mRNA technology, spurring investments in developing treatments for cancer, genetic disorders, and infectious diseases. Unlike traditional biologics, mRNA-based drugs rely on synthetic raw materials, eliminating the need for complex cell culture systems and enabling rapid scalability. The surge in personalized medicine and gene editing therapies has further amplified the demand for high-quality raw materials, as researchers strive to optimize mRNA constructs for enhanced protein expression and immune response modulation. Additionally, the expansion of mRNA-based research beyond vaccines into protein replacement therapies and regenerative medicine has broadened the scope of applications, necessitating stringent quality controls and regulatory-compliant manufacturing processes. As biotechnology companies and CDMOs (Contract Development and Manufacturing Organizations) race to optimize cost-effective and high-yield mRNA production, the focus on raw material innovation, purity standards, and supply chain resilience has become more critical than ever.

What Technological Innovations Are Reshaping the mRNA Synthesis Supply Chain?

Technological advancements have significantly transformed the synthesis and optimization of raw materials required for mRNA production, paving the way for increased efficiency, scalability, and regulatory compliance. One of the most critical breakthroughs has been the optimization of in vitro transcription (IVT) processes, where enzymatic synthesis using bacteriophage RNA polymerases has been fine-tuned to yield higher mRNA purity with minimal double-stranded RNA (dsRNA) contaminants. Improved capping strategies, such as enzymatic capping and co-transcriptional capping using CleanCap® technology, have enhanced mRNA stability and translational efficiency. Additionally, innovations in chemically modified nucleotides, such as N1-methylpseudouridine, have significantly reduced immunogenicity while improving therapeutic efficacy. The lipid nanoparticle (LNP) delivery system has also undergone significant advancements, with ionizable lipids being engineered for greater biocompatibility, targeted tissue delivery, and reduced off-target effects. The automation of nucleoside triphosphate (NTP) synthesis and purification has improved batch-to-batch consistency, reducing production bottlenecks and enabling large-scale mRNA manufacturing. Furthermore, the integration of AI-driven predictive modeling in formulation design has facilitated rapid optimization of mRNA constructs for different therapeutic applications. These technological improvements have collectively enhanced mRNA yield, stability, and delivery, ensuring that raw materials meet the growing demands of both research institutions and pharmaceutical manufacturers.

Why Is Regulatory Oversight and Supply Chain Resilience Critical for mRNA Raw Material Production?

The rapid expansion of the mRNA therapeutics industry has heightened the importance of regulatory oversight and supply chain stability in the procurement and production of raw materials. Regulatory agencies such as the FDA and EMA have tightened guidelines for the purity, consistency, and traceability of raw materials used in mRNA synthesis, ensuring compliance with Good Manufacturing Practices (GMP). This has necessitated rigorous quality control measures, particularly in the sourcing and purification of nucleotides, capping reagents, and lipid excipients. The increasing adoption of single-use bioprocessing technologies has streamlined production workflows, reducing the risk of cross-contamination and improving efficiency in high-throughput mRNA manufacturing. However, the global supply chain for mRNA raw materials remains vulnerable to disruptions, as seen during the COVID-19 pandemic, when shortages of key reagents and lipids delayed vaccine production. This has prompted pharmaceutical companies to invest in vertically integrated supply chains and establish regional manufacturing hubs to mitigate geopolitical risks and logistical bottlenecks. Additionally, partnerships between biotech firms and chemical suppliers have intensified, leading to the establishment of dedicated production facilities for high-quality mRNA precursors. As global demand for mRNA-based vaccines and therapies continues to grow, ensuring a resilient and compliant supply chain will be paramount in sustaining the momentum of this groundbreaking technology.

What Are the Key Growth Drivers Propelling the mRNA Synthesis Raw Materials Market?

The growth in the mRNA synthesis raw materials market is driven by several factors, including the expansion of mRNA-based therapeutics, increasing investments in biotechnology R&D, and advancements in raw material purification and formulation technologies. The success of mRNA vaccines has fueled research into new applications, including cancer immunotherapy, rare disease treatments, and protein replacement therapies, all of which require specialized raw materials for optimized expression and stability. The surge in clinical trials involving mRNA-based drugs has also heightened the demand for high-purity nucleotides, enzymatic reagents, and lipid carriers, prompting suppliers to scale up production capabilities. Additionally, the emergence of self-amplifying mRNA (saRNA) and circular RNA (circRNA) technologies has opened new avenues for innovation, driving the need for novel raw material compositions. The growing adoption of AI-driven drug design and high-throughput screening in mRNA formulation development has further accelerated the demand for precision-engineered raw materials. Moreover, the global shift toward decentralized vaccine manufacturing and the rise of CDMOs specializing in nucleic acid therapeutics have strengthened the supply chain, enabling faster production and delivery of mRNA precursors. The increasing focus on personalized medicine, where mRNA therapies are tailored to individual patients, has also contributed to market expansion, necessitating custom synthesis of modified nucleotides and lipid carriers. As governments and pharmaceutical companies continue to invest in pandemic preparedness and next-generation vaccines, the demand for high-quality, scalable, and regulatory-compliant mRNA raw materials is expected to witness sustained growth, solidifying their role as a cornerstone of modern biotechnology.

SCOPE OF STUDY:

The report analyzes the mRNA Synthesis Raw Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Capping Agents, Nucleotides, Plasmid DNA, Enzymes, Other Types); Application (Vaccine Production Application, Therapeutics Production Application, Other Applications); End-Use (Biopharmaceutical & Pharmaceutical Companies End-Use, CROs & CMOs End-Use, Academic & Research Institutes End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â