¼¼°èÀÇ DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀå
DNA & RNA Banking Services
»óǰÄÚµå : 1786451
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 208 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,257,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,771,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀåÀº 2030³â±îÁö 115¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 86¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 4.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 115¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¿î¼Û ¼­ºñ½º´Â CAGR 3.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 33¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °¡°ø ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 6.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 23¾ï ´Þ·¯·Î ÃßÁ¤¡¤¿¹Ãø, Áß±¹Àº CAGR 4.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀåÀº 2024³â¿¡´Â 23¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 18¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.8%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 4.2%¿Í 4.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

À¯Àüü ¿¬±¸ÀÇ ±ÞÁõÀ¸·Î DNA ¹× RNA ¹ðÅ·¿¡ Çõ¸íÀÌ ÀϾ±î?

À¯Àüü ¿¬±¸ÀÇ ±Þ°ÝÇÑ ¼ºÀå°ú ¸ÂÃãÇü ÀÇ·áÀÇ ¿ªÇÒ È®´ë´Â DNA ¹× RNA ¹ðÅ· ¼­ºñ½º°¡ Àü ¼¼°è¿¡¼­ ºü¸£°Ô ¹ßÀüÇÏ´Â Ãʼ®ÀÌ µÇ°í ÀÖ½À´Ï´Ù. À¯ÀüüÇÐ, Àü»çüÇÐ, ¾à¹°À¯ÀüüÇÐ ºÐ¾ß°¡ Á¡Á¡ ´õ Ȱ¹ßÇØÁü¿¡ µû¶ó °íǰÁúÀÇ Àß º¸Á¸µÈ ÇÙ»ê »ùÇÿ¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ½Å¾à°³¹ß, Áúº´ ¸ðµ¨¸µ, ¹ÙÀÌ¿À¸¶Ä¿ ¹ß±¼À» À§ÇÑ ¿¬±¸±â°üµéÀº À¯Àü¹°ÁúÀ» ¾ÈÀüÇÏ°Ô Àå±â º¸°üÇÒ ¼ö ÀÖ´Â ¹ÙÀÌ¿À¹ðÅ©¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌó·³ DNA ¹× RNA ÀºÇà ¼­ºñ½º´Â ¿¬±¸ÀÚ, ÀÇ·á ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ, »ý¸í°øÇÐ ±â¾÷¿¡°Ô Áß¿äÇÑ Áö¿ø ÀÎÇÁ¶ó·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÞÁõÀº ¾Ï, ½ÉÇ÷°üÁúȯ, ½Å°æÅðÇ༺ Áúȯ µî ¸¸¼ºÁúȯ¿¡ ´ëÇÑ À¯ÀüÀû ¼ÒÀÎÀ» ±Ô¸íÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â Áý´Ü ±Ô¸ðÀÇ À¯Àüü µ¥ÀÌÅͺ£À̽º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡µµ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. Á¤ºÎµµ ¹Î°£´Üüµµ ¸¶Âù°¡Áö·Î ´Ù¾çÇÑ Áý´ÜÀÇ À¯ÀüÁ¤º¸¸¦ ¼öÁýÇÏ°í ºÐ¼®Çϱâ À§ÇÑ ´ë±Ô¸ð ¹ÙÀÌ¿À¹ðÅ© »ç¾÷¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¼­ºñ½ºµéÀº ½Ã·áÀÇ ¼öÁý, ó¸®, º¸°ü, °Ë»öÀ» À§ÇÑ Ç¥ÁØÈ­µÈ ÇÁ·ÎÅäÄÝÀ» Á¦°øÇÏ¿© ¿¬±¸ °á°úÀÇ ¹«°á¼º°ú ÀçÇö¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ COVID-19 ÆÒµ¥¹ÍÀº ½Å¼ÓÇÑ À¯Àüü °¨½ÃÀÇ Á߿伺À» °­Á¶Çϰí, °ß°íÇÑ RNA º¸Á¸ ½Ã½ºÅÛÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ±× °á°ú, ÇöÀç ¹ÙÀÌ¿À¹ðÅ© ½Ã¼³Àº ¼Óµµ, ¾ÈÀü¼º, È®À强¿¡ ´ëÇÑ ³ôÀº ±â´ëÄ¡¸¦ ÃæÁ·½Ã۱â À§ÇØ Ã·´Ü ÀÚµ¿È­, Àú¿Â ÀúÀå ±â´É, µðÁöÅÐ Àç°í °ü¸® ½Ã½ºÅÛÀ» °®Ãá ¼³°è°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Á¤¹ÐÀÇ·á, ÀΰøÁö´É, À¯ÀüüÇÐÀÇ À¶ÇÕÀº µ¥ÀÌÅͺ£À̽º ÇコÄɾîÀÇ ÇѰ踦 °è¼Ó ³ÐÇô°¡°í ÀÖÀ¸¸ç, DNA ¹× RNA ¹ðÅ·Àº ¹ÙÀÌ¿À¸ÞµðÄà Çõ½Å »ýŰèÀÇ Áß½ÉÃàÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ º¸¾È ±Ô¹ü°ú À±¸®Àû °í·Á°¡ ¼­ºñ½º ¸ðµ¨À» À籸¼ºÇÑ´Ù?

ÀúÀåµÇ´Â À¯Àü¹°ÁúÀÇ ¾ç°ú ¹Î°¨µµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ º¸¾È, À±¸®Àû °Å¹ö³Í½º, ȯÀÚ µ¿ÀÇ¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö¸é¼­ DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ¿î¿µ ¹æ½ÄÀÌ ÀçÆíµÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ µ¥ÀÌÅÍ´Â º»ÁúÀûÀ¸·Î °³ÀÎÀûÀÌ°í ºÒº¯ÀÇ ¼º°ÝÀ» °¡Áö°í ÀÖÀ¸¹Ç·Î ÇÁ¶óÀ̹ö½Ã, ¼ÒÀ¯±Ç, ¿À¿ë¿¡ ´ëÇÑ ½É°¢ÇÑ Àǹ®ÀÌ Á¦±âµÇ°í ÀÖÀ¸¸ç, Àü ¼¼°è ±ÔÁ¦ ´ç±¹ÀÌ ±ÔÁ¤ Áؼö ÇÁ·¹ÀÓ¿öÅ©¸¦ °­È­Çϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â ÀÏ¹Ý µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤(GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)), ¹Ì±¹¿¡¼­´Â HIPAA¿Í °°Àº ¹ý·üÀÌ À¯Àü¹°ÁúÀÇ ¼öÁý, ÀúÀå, »ç¿ë¿¡ ´ëÇÑ ¾ö°ÝÇÑ °¡À̵å¶óÀÎÀ» ºÎ°úÇϰí ÀÖÀ¸¸ç, ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ´Â °­·ÂÇÑ µ¥ÀÌÅÍ ¾Ïȣȭ, Á¢±Ù Á¦¾î, ÃßÀû¼º ÇÁ·ÎÅäÄÝÀ» µµÀÔÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ À±¸®Àû ¹ÙÀÌ¿À¹ðÅ©Àº Âü¿©ÀÚ°¡ ÀÚ½ÅÀÇ »ùÇÃÀÌ ¾î¶»°Ô »ç¿ëµÇ´ÂÁö Áö¼ÓÀûÀ¸·Î ¾Ë·ÁÁÖ°í Æ¯Á¤ ¿¬±¸ ±¸»ó¿¡ ´ëÇØ ¿ÉÆ®ÀÎ ¶Ç´Â ¿ÉÆ®¾Æ¿ôÇÒ ¼ö ÀÖ´Â ¿ªµ¿ÀûÀÎ µ¿ÀÇ ¸ðµ¨À» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ½Ã·áÀÇ Ãâó¸¦ º¸ÀåÇÏ°í ¹«´Ü ¾×¼¼½º·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ ºí·ÏüÀÎ ±â¹Ý µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ ¹× »ýüÀÎ½Ä ÀÎÁõÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ´Â ½Ã·áÀÇ ¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÃÄ À±¸® ±âÁØÀ» ÅëÇÕÇϱâ À§ÇØ Á÷¿ø ±³À° ¹× ±â°ü½ÉÀÇÀ§¿øÈ¸(IRB)¿ÍÀÇ Çù·Â¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯È÷ ¿øÁÖ¹ÎÀ̳ª »çȸÀû ÁöÀ§°¡ ³·Àº »ç¶÷µé·ÎºÎÅÍ Ç¥º»À» ¼öÁýÇÒ ¶§, Áö¿ª»çȸÀÇ Âü¿©¿Í Á¶»ç °á°úÀÇ Åõ¸í¼ºÀ» ¿ä±¸ÇÏ´Â °æÇâÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À±¸®Àû ÁøÈ­´Â ´Ü¼øÇÑ ÄÄÇöóÀ̾𽺰¡ ¾Æ´Ñ Àü·«Àû Çʼö »çÇ×ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿ªÇÐÀº ¼­ºñ½º Á¦°ø ¸ðµ¨À» º¯È­½Ãų »Ó¸¸ ¾Æ´Ï¶ó ±¤¹üÀ§ÇÑ Á¶»ç ¹× Áø´Ü °ø±Þ¸Á¿¡¼­ DNA ¹× RNA ¹ðÅ· ¼­ºñ½ºÀÇ Àü·«Àû °¡Ä¡¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

»ó¾÷È­´Â ¹ÙÀÌ¿À¹ðÅ© ¼­ºñ½ºÀÇ Çõ½Å°ú Á¢±Ù¼ºÀ» ÃËÁøÇϴ°¡?

DNA ¹× RNA ¹ðÅ· ½ÃÀåÀº Çаè Áß½ÉÀÇ Çй®Àû ±â°ü¿¡¼­ º¸´Ù »ó¾÷ÀûÀÌ°í ¼­ºñ½º ÁöÇâÀûÀÎ ¸ðµ¨·Î Å©°Ô º¯È­Çϰí ÀÖÀ¸¸ç, ¹ÙÀÌ¿À ¹ðÅ·À» º¸´Ù Ä£¼÷ÇÏ°í ¿ªµ¿ÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¿ª»çÀûÀ¸·Î ¹ÙÀÌ¿À¹ðÅ©´Â ÁÖ·Î Çмú¿¬±¸¼¾Åͳª Á¤ºÎ ±â°ü¿¡ ¼ÓÇØ ÀÖ¾úÁö¸¸, À¯ÀüÀÚ µ¥ÀÌÅÍ¿¡ ´ëÇÑ »ó¾÷Àû °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ È®Àå °¡´ÉÇÑ ¿Âµð¸Çµå º¸°ü ¼­ºñ½º¸¦ Á¦°øÇÏ´Â ºñ»óÀå ¹ÙÀÌ¿À¹ðÅ© ȸ»ç°¡ µîÀåÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼­ºñ½º´Â Á¦¾àȸ»ç, CRO(ÀǾàǰ °³¹ß ¼öʱâ°ü), ºÒÀÓŬ¸®´Ð, DTC(¼ÒºñÀÚ Á÷Á¢ °Å·¡) À¯ÀüÀÚ °Ë»ç ¾÷ü µî ´Ù¾çÇÑ °í°´À» ´ë»óÀ¸·Î Á¶Á¤µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ó¾÷È­ÀÇ ¹°°áÀº ±âü ¾×ü Áú¼Ò ½Ã½ºÅÛ, ÀÚµ¿ ½Ã·á ȸ¼ö ·Îº¿, ÅëÇÕ ½ÇÇè½Ç Á¤º¸ °ü¸® ½Ã½ºÅÛ(LIMS)°ú °°Àº ÃÖ÷´Ü º¸°ü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹ÙÀÌ¿À¹ðÅ© ¼­ºñ½º´Â ÇÙ»ê ÃßÃâ, ǰÁú°ü¸® ºÐ¼®, µ¥ÀÌÅÍ ºÐ¼®, »ùÇà ¹°·ù °ü¸® µî ºÎ°¡°¡Ä¡ ¼Ö·ç¼Ç°ú ÇÔ²² Á¦°øµÇ¾î °í°´¿¡°Ô Àüü ½ºÆåÆ®·³ÀÇ ¼­ºñ½º »ýŰ踦 Á¦°øÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ½Ã·á ÃßÀû Ç÷§ÆûÀº ½Ç½Ã°£ Àç°í Á¢±ÙÀ» °¡´ÉÇÏ°Ô Çϰí, ¿¬±¸ µ¥ÀÌÅͺ£À̽º ¹× ÀüÀڰǰ­±â·Ï(EHR)°úÀÇ »óÈ£ ¿î¿ë¼ºÀ» ÅëÇØ ÀÓ»ó Àû¿ë¿¡¼­ ½Ã·áÀÇ À¯¿ë¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ±¹°æÀ» ÃÊ¿ùÇÑ °øµ¿¿¬±¸¿Í Áß¾ÓÁýÁßÇü ¹ÙÀÌ¿À¹ðÅ© ³×Æ®¿öÅ©µµ ÁöÁö¹Þ°í ÀÖÀ¸¸ç, ¿¬±¸ÀÚµéÀº Áö¿ªÀû, ÀÎÁ¾ÀûÀ¸·Î ´Ù¾çÇÑ À¯ÀüÀÚ º¸Á¸ ½Ã¼³¿¡ ¹°·ùÀû À庮 ¾øÀÌ Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °æÀï ȯ°æÀº Á¡Á¡ ´õ Çõ½Å ÁÖµµÇüÀ¸·Î º¯È­Çϰí ÀÖÀ¸¸ç, ½ÃÀå ¾÷üµéÀº ´õ ºü¸¥ ³³±â, ´õ ³ôÀº »ùÇà ǰÁú º¸Áõ, ¸ÂÃãÇü ¼­ºñ½º ¸ðµ¨À» ÅëÇØ Â÷º°È­¸¦ ½ÃµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â °íǰÁú ¹ÙÀÌ¿À¹ðÅ© ¼­ºñ½º¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» ¹ÎÁÖÈ­ÇÏ¿© ¼Ò±Ô¸ð ¿¬±¸¼Ò³ª ½ºÅ¸Æ®¾÷µµ ÀÚü º¸°ü ÀÎÇÁ¶ó¿¡ ÅõÀÚÇÏÁö ¾Ê°íµµ ÃÖ÷´Ü À¯Àüü ¿¬±¸¿¡ Âü¿©ÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀåÀ» Áö¿øÇÏ´Â ÁøÁ¤ÇÑ ¼ºÀå Ã˸ÅÁ¦´Â ¹«¾ùÀΰ¡?

DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀåÀÇ ¼ºÀåÀº °úÇÐÀÇ ¹ßÀü, ÁøÈ­ÇÏ´Â ÃÖÁ¾»ç¿ëÀÚ ¿ä±¸, ±â¼ú ÀÎÇÁ¶ó¸¦ ±â¹ÝÀ¸·Î ÇÑ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Çмú, ÀÓ»ó, »ó¾÷ ºÐ¾ß¿¡¼­ÀÇ À¯Àüü ¹× Àü»çü ¿¬±¸ÀÇ ±ÞÁõÀº ¾ÈÀüÇϰí È®Àå °¡´ÉÇÑ ÇÙ»ê ÀúÀå¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä´Â Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS) ¹× Àå±â º¸°üÀÌ ÇÊ¿äÇÑ ¹æ´ëÇÑ ¾çÀÇ À¯Àü ¹°ÁúÀ» »ý¼ºÇÏ´Â ±âŸ °í󸮷® ºÐÀÚ»ý¹°ÇÐ ±â¼úÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ¸·Î ÀÎÇØ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦¾à»ç ¹× »ý¸í°øÇÐ ±â¾÷Àº ÀÌ·¯ÇÑ ¼­ºñ½º¸¦ Ȱ¿ëÇÏ¿© Ç¥Àû ¾à¹° °³¹ß ¹× °³ÀÎ ¸ÂÃãÇü Ä¡·á Á¢±Ù¹ýÀ» Áö¿øÇÏ´Â Á¾ÇÕÀûÀÎ À¯ÀüÀÚ µ¥ÀÌÅͼ¼Æ®¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº Áý´Ü ÀüüÀÇ À¯ÀüÀû ´Ù¾ç¼º°ú °Ç°­ ÆÐÅÏÀ» ÇØµ¶Çϱâ À§ÇÑ ´ë±Ô¸ð ¿ªÇÐ ¿¬±¸¿Í ±¹°¡ À¯Àüü ÇÁ·ÎÁ§Æ®¿¡¼­ ¹ÙÀÌ¿À¹ðÅ© »ùÇÿ¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ mRNA ¹é½Å °³¹ß, Àü»çü ÇÁ·ÎÆÄÀϸµ µî RNA ±â¹Ý ¿ëµµÀÇ È°¿ëÀÌ È®´ëµÊ¿¡ µû¶ó RNAÀÇ ¹«°á¼ºÀ» ¾ö°ÝÇÏ°Ô À¯ÁöÇÏ´Â ÃÊÀú¿Â º¸Á¸ ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ÇൿÀÇ º¯È­µµ ÇѸòÀ» Çϰí ÀÖ½À´Ï´Ù. °¡Á¤¿ë À¯ÀüÀÚ °Ë»ç ŰƮÀÇ Àαâ´Â ¾ÈÀüÇϰí Àå±â°£ º¸°üÇÒ ¼ö ÀÖ´Â ¿É¼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â ¼ÒºñÀÚ »ý¼º »ùÇÃÀÇ ±ÞÁõÀ¸·Î À̾îÁ® ¹ÙÀÌ¿À¹ðÅ© ¼­ºñ½º¿¡ »õ·Î¿î ±æÀ» ¿­¾ú½À´Ï´Ù. ±â¼úÀûÀ¸·Î´Â AI¿Í ¸Ó½Å·¯´×ÀÌ ¹ÙÀÌ¿À¹ðÅ©ÀÇ µ¥ÀÌÅÍ °ü¸®¿¡ ÅëÇյǸ鼭 ¿¹Ãø ºÐ¼®°ú º¸´Ù ½º¸¶Æ®ÇÑ ÀÚ¿ø ¹èºÐÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¸¶Áö¸·À¸·Î °øÁß º¸°Ç ±â°ü, ¹Î°£ ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ, Çмú±â°ü °£ÀÇ Àü·«Àû Çù·Â °ü°è´Â Ç¥ÁØÈ­µÈ ¾÷¹«¸¦ ÃËÁøÇϰí, º¸Á¸µÈ À¯Àü ¹°Áú¿¡ ´ëÇÑ Àü ¼¼°è Á¢±Ù¼ºÀ» ³ÐÈ÷°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃËÁø¿äÀÎÀÌ °áÇյǾî DNA ¹× RNA ¹ðÅ· ¼­ºñ½º ½ÃÀåÀº ȸº¹·ÂÀÌ °­ÇÏ°í ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, Â÷¼¼´ë ÇコÄÉ¾î ¹× »ý¹° ÀÇÇÐ Çõ½Å¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

¼­ºñ½º(¿î¼Û ¼­ºñ½º, ó¸® ¼­ºñ½º, º¸°ü ¼­ºñ½º, ǰÁú°ü¸® ¼­ºñ½º, µ¥ÀÌÅÍ º¸°ü, ±âŸ ¼­ºñ½º), °Ëü(Ç÷¾×, ±¸°­ ½º¿Ò¡¤¸ð³¶, ±âŸ), ¿ëµµ(Ä¡·á, Drug Discovery¡¤ÀÓ»ó ¿¬±¸, ÀÓ»ó Áø´Ü, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Çмú¿¬±¸, Á¦¾à¡¤¹ÙÀÌ¿À ±â¾÷, º´¿ø¡¤Áø´Ü ¼¾ÅÍ, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global DNA & RNA Banking Services Market to Reach US$11.5 Billion by 2030

The global market for DNA & RNA Banking Services estimated at US$8.6 Billion in the year 2024, is expected to reach US$11.5 Billion by 2030, growing at a CAGR of 4.9% over the analysis period 2024-2030. Transportation Service, one of the segments analyzed in the report, is expected to record a 3.8% CAGR and reach US$3.3 Billion by the end of the analysis period. Growth in the Processing Service segment is estimated at 6.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.3 Billion While China is Forecast to Grow at 4.8% CAGR

The DNA & RNA Banking Services market in the U.S. is estimated at US$2.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.8 Billion by the year 2030 trailing a CAGR of 4.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.2% and 4.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Global DNA & RNA Banking Services Market - Key Trends & Drivers Summarized

Is the Surge in Genomic Research Revolutionizing the DNA & RNA Banking Landscape?

The exponential growth in genomic research and its expanding role in personalized medicine have become the cornerstone driving the rapid evolution of DNA and RNA banking services globally. As the fields of genomics, transcriptomics, and pharmacogenomics continue to flourish, the demand for high-quality, well-preserved nucleic acid samples has surged. Institutions involved in drug discovery, disease modeling, and biomarker identification rely heavily on biobanks that offer secure, long-term storage of genetic material. DNA and RNA banking services have thus emerged as a critical support infrastructure for researchers, healthcare providers, and biotechnology firms. This surge is also influenced by the increasing need for population-scale genomic databases that help identify genetic predispositions to chronic diseases such as cancer, cardiovascular disorders, and neurodegenerative conditions. Governments and private organizations alike are investing in large-scale biobanking initiatives to collect and analyze genetic information across diverse populations. These services provide standardized protocols for sample collection, processing, storage, and retrieval-ensuring the integrity and reproducibility of research findings. Additionally, the COVID-19 pandemic underscored the importance of rapid genomic surveillance and highlighted the need for robust RNA preservation systems, further emphasizing the critical role these services play. As a result, biobanking facilities are now being designed with advanced automation, cryogenic storage capabilities, and digital inventory management systems to meet the rising expectations for speed, security, and scalability. The convergence of precision medicine, artificial intelligence, and genomics continues to push the boundaries of data-driven healthcare, making DNA and RNA banking a central pillar in the biomedical innovation ecosystem.

Are Evolving Data Security Norms and Ethical Considerations Reshaping Service Models?

As the volume and sensitivity of stored genetic material increase, so do concerns around data security, ethical governance, and patient consent-factors that are reshaping how DNA and RNA banking services operate. The inherently personal and immutable nature of genetic data raises significant questions about privacy, ownership, and misuse, prompting regulatory authorities worldwide to strengthen compliance frameworks. Legislation such as the General Data Protection Regulation (GDPR) in Europe and HIPAA in the U.S. impose strict guidelines on the collection, storage, and usage of genetic material, requiring service providers to implement robust data encryption, access controls, and traceability protocols. Moreover, ethical biobanking now demands dynamic consent models, where participants are continually informed about how their samples are being used, and can opt in or out of specific research initiatives. These changes are encouraging the adoption of blockchain-based data management systems and biometric authentication to ensure sample provenance and protect against unauthorized access. Service providers are also investing in staff training and institutional review board (IRB) collaborations to ensure that ethical standards are embedded throughout the sample life cycle. Additionally, there's a rising trend toward community engagement and transparency in research outcomes, especially when collecting samples from indigenous or underrepresented populations. This ethical evolution is not merely a compliance exercise but a strategic imperative-institutions that prioritize ethical integrity and data security are increasingly viewed as more credible and desirable partners for international research collaborations and funding opportunities. These dynamics are not only transforming service delivery models but are also elevating the strategic value of DNA and RNA banking services in the broader research and diagnostics supply chain.

Is Commercialization Driving Innovation and Accessibility in Biobanking Services?

The DNA and RNA banking market is undergoing a profound shift from academic and institutional dominance toward a more commercial, service-oriented model that is making biobanking more accessible and dynamic. Historically, biobanks were primarily affiliated with academic research centers and government institutions, but the growing commercial interest in genetic data has led to the emergence of private biobanking companies offering scalable and on-demand storage services. These services are increasingly tailored for a broad array of clients-including pharmaceutical companies, contract research organizations (CROs), fertility clinics, and even direct-to-consumer (DTC) genetic testing firms. This commercialization wave is driving investments into state-of-the-art storage technologies such as vapor-phase liquid nitrogen systems, automated sample retrieval robotics, and integrated laboratory information management systems (LIMS). Moreover, biobanking services are being bundled with value-added solutions like nucleic acid extraction, quality control assays, data analytics, and even sample logistics management, offering a full-spectrum service ecosystem to clients. Cloud-based sample tracking platforms now enable real-time inventory access, while interoperability with research databases and electronic health records (EHRs) is improving sample utility in clinical applications. Cross-border collaborations and centralized biobanking networks are also gaining traction, allowing researchers to access geographically and ethnically diverse genetic repositories without logistical barriers. The competitive landscape is becoming increasingly innovation-driven, with market players differentiating through faster turnaround times, higher sample quality assurance, and customizable service models. This shift is democratizing access to high-quality biobanking services, enabling even small labs and startups to participate in cutting-edge genomic research without having to invest in their own storage infrastructure.

What Are the True Growth Catalysts Behind the DNA & RNA Banking Services Market?

The growth in the DNA and RNA banking services market is driven by several factors grounded in scientific advancements, evolving end-user needs, and technological infrastructure. Foremost, the surge in genomic and transcriptomic research across academic, clinical, and commercial settings is creating consistent demand for secure and scalable storage of nucleic acids. This demand is magnified by the widespread adoption of next-generation sequencing (NGS) and other high-throughput molecular biology techniques that generate vast volumes of genetic material requiring long-term preservation. Additionally, pharmaceutical and biotech companies are leveraging these services to build comprehensive genetic datasets that support targeted drug development and personalized therapy approaches. Another crucial driver is the increasing reliance on biobanked samples in large-scale epidemiological studies and national genome initiatives that aim to decode genetic diversity and health patterns across populations. Furthermore, the growing use of RNA-based applications-such as mRNA vaccine development and transcriptomic profiling-has underscored the need for ultra-low temperature storage systems with strict RNA integrity preservation. Changing consumer behavior is also playing a role; the popularity of at-home genetic testing kits has led to a proliferation of consumer-generated samples requiring safe, long-term storage options, which has opened new avenues for biobanking services. At the technological level, the integration of AI and machine learning into biobank data management is enabling predictive analytics and smarter resource allocation. Finally, strategic collaborations between public health organizations, private service providers, and academic institutions are fostering standardized practices and broader global accessibility to stored genetic materials. These converging drivers are collectively shaping a resilient and fast-expanding market for DNA and RNA banking services, positioning it as a critical enabler of the next generation of healthcare and biomedical innovation.

SCOPE OF STUDY:

The report analyzes the DNA & RNA Banking Services market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Service (Transportation Service, Processing Service, Storage Service, Quality Control Service, Data Storage, Other Services); Specimen (Blood Specimen, Buccal Swabs & Hair Follicles Specimen, Other Specimens); Application (Therapeutics Application, Drug Discovery & Clinical Research Application, Clinical Diagnostics Application, Other Applications); End-Use (Academic Research End-Use, Pharma & Biotech Companies End-Use, Hospitals & Diagnostic Centers End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â