¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀå
Gene Editing
»óǰÄÚµå : 1780865
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 383 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À¯ÀüÀÚ ÆíÁý ¼¼°è ½ÃÀåÀº 2030³â±îÁö 185¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 81¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯ÀüÀÚ ÆíÁý ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 185¾ï ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 14.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ CRISPR/CAS9 ±â¼úÀº CAGR 12.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 69¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¡ũ ÇΰŠ´ºÅ¬·¹¾ÆÁ¦ ±â¼ú ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 16.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 22¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 19.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀåÀº 2024³â¿¡ 22¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 39¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 19.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 11.1%¿Í 13.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ À¯ÀüÀÚ ÆíÁý ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

À¯ÀüÀÚ ÆíÁýÀº »ý¸í°øÇаú ÀǷḦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

À¯ÀüÀÚ ÆíÁýÀº »ý¸í°øÇÐÀÇ °¡Àå Çõ¸íÀûÀÎ ¹ßÀü Áß Çϳª·Î, À¯ÀüÀû °áÇÔ ¼öÁ¤, ÇüÁú °­È­, Áúº´ ÅðÄ¡¸¦ À§ÇØ »ý¹°ÀÇ DNA¿¡ Á¤È®ÇÑ ¼öÁ¤À» °¡ÇÒ ¼ö ÀÖ°Ô Çß½À´Ï´Ù. CRISPR-Cas9, TALEN(Transcription Activator-Like Effector Nucleases), ZFN(Zinc Finger Nucleases) µîÀÇ ±â¼úÀº À¯ÀüÀÚ º¯ÇüÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ȹ±âÀûÀ¸·Î Çâ»ó½ÃÄÑ À¯ÀüÀÚ ÆíÁýÀ» ¿¬±¸, ³ó¾÷, ÀÇ·á ¿¬±¸, ³ó¾÷, ÀÇ·á¿¡ Àû¿ëµÇ¾î º¸´Ù Ä£¼÷ÇØÁ³½À´Ï´Ù. DNA ¼öÁØ¿¡¼­ Ç¥ÀûÈ­µÈ º¯È­¸¦ °¡Á®¿Ã ¼ö ÀÖ´Â ÀÌ ´É·ÂÀ¸·Î ÀÎÇØ À¯ÀüÀÚ ÆíÁýÀº ¸ÂÃãÇü ÀÇ·á, À¯ÀüÀÚ Áúȯ Ä¡·á, ÷´Ü ¹ÙÀÌ¿ÀÀǾàǰ °³¹ßÀÇ ÃÖÀü¼±¿¡ ¼­°Ô µÇ¾ú½À´Ï´Ù.

À¯ÀüÀÚ Ä¡·á¿Í Àç»ýÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 À¯ÀüÀÚ ÆíÁý¿¡ ´ëÇÑ ¿¬±¸¿Í ÅõÀÚ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. °â»ó ÀûÇ÷±¸ ºóÇ÷, ³¶Æ÷¼º¼¶À¯Áõ, ÀϺΠ¾Ï µîÀÇ Ä¡·á°¡ CRISPRÀ» ÀÌ¿ëÇÑ Ä¡·áÀÇ Ç¥ÀûÀÌ µÇ°í ÀÖÀ¸¸ç, ÀÓ»ó½ÃÇè¿¡¼­ À¯¸ÁÇÑ °á°ú¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÇ·á»Ó¸¸ ¾Æ´Ï¶ó À¯ÀüÀÚ ÆíÁýÀº ³ó¾÷ÀÇ ¹æ½ÄÀ» ¹Ù²Ù°í ÀÖÀ¸¸ç, ÇØÃæ, °¡¹³, Áúº´¿¡ ´ëÇÑ ³»¼ºÀ» Çâ»ó½ÃŲ À¯ÀüÀÚ º¯Çü ÀÛ¹° °³¹ßÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÕ¼º»ý¹°ÇÐÀÇ È¹±âÀûÀÎ ¹ßÀüÀ¸·Î ¿¬±¸ÀÚµéÀº Áö¼Ó°¡´ÉÇÑ ¹ÙÀÌ¿À¿¬·á¿Í ÀǾàǰ »ý»êÀ» À§ÇØ ¹ÚÅ׸®¾Æ¿Í È¿¸ð ±ÕÁÖ¸¦ °øÇÐÀûÀ¸·Î °³·®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ ÁøÈ­Çϰí À±¸®Àû °í·Á°¡ ÀÌ·ç¾îÁü¿¡ µû¶ó À¯ÀüÀÚ ÆíÁýÀº °Ç°­ °úÇаú ½Ä·® ¾Èº¸¸¦ ÃËÁøÇÏ´Â Áß¿äÇÑ µµ±¸°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â »ê¾÷Àº?

ÇコÄÉ¾î ¹× Á¦¾à »ê¾÷Àº À¯ÀüÀÚ Ä¡·á, Á¤¹ÐÀÇ·á, Áٱ⼼Æ÷ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, À¯ÀüÀÚ ÆíÁý ÀÀ¿ëÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. CRISPR ±â¹Ý Ä¡·á¹ýÀº Èñ±Í À¯ÀüÁúȯ, °¨¿°¼º Áúȯ, ³ëÈ­ °ü·Ã ÁúȯÀÇ Ä¡·á¸¦ À§ÇØ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À Á¦¾à»çµéÀº À¯ÀüÀÚ ÆíÁýÀ» Ȱ¿ëÇÏ¿© ¾Ï Ä¡·á¿ë Àΰø T¼¼Æ÷ Ä¡·áÁ¦(CAR-T)¸¦ Æ÷ÇÔÇÑ Â÷¼¼´ë ¹ÙÀÌ¿ÀÀǾàǰÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, in vivo À¯ÀüÀÚ ÆíÁýÀÇ ¹ßÀüÀº ex vivo Á¶ÀÛÀÌ ÇÊ¿ä ¾øÀÌ È¯ÀÚÀÇ DNA¸¦ Á÷Á¢ÀûÀ¸·Î º¯ÇüÇÏ´Â Ä¡·áÀÇ °¡´É¼ºÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

³ó¾÷ ºÐ¾ß¿¡¼­ À¯ÀüÀÚ ÆíÁýÀº ¿Ü·¡ DNA¸¦ µµÀÔÇÏÁö ¾Ê°íµµ ½Ä¹° À¯Àüü¸¦ Á¤È®ÇÏ°Ô º¯ÇüÇÒ ¼ö ÀÖ¾î ±âÁ¸ÀÇ À¯ÀüÀÚ º¯ÇüÀÛ¹°(GMO)°ú´Â ´Þ¸® ÀÛ¹° °³·®¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿µ¾ç°¡ Çâ»ó, ¼öÈ®·® Áõ°¡, È­Çгó¾à ÀÇÁ¸µµ °¨¼Ò, ±âÈĺ¯È­¿¡ °­ÇÑ ÀÛ¹°ÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¡ÃàÀÇ À°Á¾ ÇÁ·Î±×·¥¿¡µµ À¯ÀüÀÚ ÆíÁýÀÌ µµÀÔµÇ¾î ³»º´¼º °­È­¿Í »ý»ê¼º Çâ»óÀ» µµ¸ðÇϰí ÀÖ½À´Ï´Ù. ȯ°æ ºÐ¾ß¿¡¼­´Â ¿À¿°¹°ÁúÀ» ºÐÇØÇÏ°í ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ ¹Ì»ý¹°À» °øÇÐÀûÀ¸·Î °³·®ÇÏ´Â µî ¹ÙÀÌ¿À¸®¸ÞµðÄÉÀ̼ǿ¡ÀÇ Àû¿ëµµ À¯ÀüÀÚ ÆíÁýÀ¸·Î °ËÅäµÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ÆíÁýÀÌ ±× ¿µ¿ªÀ» °è¼Ó È®ÀåÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ¼ö¿ä´Â È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À¯ÀüÀÚ ÆíÁýÀÇ Ãֽбâ¼ú ¹ßÀüÀº?

ÃÖ±Ù À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ È¹±âÀûÀÎ ¹ßÀüÀ¸·Î Á¤È®¼º, È¿À²¼º, È®À强ÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ¿°±â±³Á¤ ¹× ÇÁ¶óÀÓ ÆíÁýÀ» Æ÷ÇÔÇÑ CRISPR ±â¹ÝÀÇ ¹ßÀüÀ¸·Î °úÇÐÀÚµéÀº ÀÌÁß °¡´Ú Àý´Ü ¾øÀÌ Á¤È®ÇÑ DNA ¼öÁ¤À» ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀǵµÇÏÁö ¾ÊÀº µ¹¿¬º¯ÀÌÀÇ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤±³ÇÑ ±â¼úÀ» ÅëÇØ º¸´Ù ¾ÈÀüÇϰí Á¤È®ÇÏ°Ô ºÐÀÚ ¼öÁØ¿¡¼­ À¯ÀüÀÚ ÁúȯÀ» ±³Á¤ÇÒ ¼ö ÀÖ´Â »õ·Î¿î °¡´É¼ºÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç¥ÀûÈ­ ´É·ÂÀÌ È®´ëµÈ CRISPR-Cas º¯ÀÌüÀÇ °³¹ß·Î ÆíÁý °¡´ÉÇÑ À¯Àüü ¿µ¿ªÀÇ ¹üÀ§°¡ ³Ð¾îÁö¸é¼­ À¯ÀüÀÚ ÆíÁý µµ±¸ÀÇ ¹ü¿ë¼ºÀÌ ´õ¿í ³ô¾ÆÁ³½À´Ï´Ù.

CRISPR ¿Ü¿¡µµ ÇÕ¼º»ý¹°Çаú AI¸¦ Ȱ¿ëÇÑ À¯ÀüÀÚ ¿¹Ãø ¸ðµ¨ÀÌ »õ·Î¿î À¯ÀüÀÚ ÆíÁý Ÿ°ÙÀÇ ¹ß°ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. AI ±â¹Ý ¾Ë°í¸®ÁòÀº °¡À̵å RNA ¼³°è¸¦ ÃÖÀûÈ­Çϰí, ÆíÁý È¿À²À» Çâ»ó½Ã۸ç, ÀáÀçÀûÀÎ ¿ÀÇÁ Ÿ°Ù È¿°ú¸¦ ¿¹ÃøÇÕ´Ï´Ù. ¶ÇÇÑ, À¯ÀüÀÚ ÆíÁý°ú ´ÜÀÏ ¼¼Æ÷ ½ÃÄö½Ì ±â¼ú°úÀÇ ÅëÇÕÀ¸·Î À¯ÀüÀÚ º¯Çü¿¡ ´ëÇÑ º¸´Ù »ó¼¼ÇÑ ºÐ¼®ÀÌ °¡´ÉÇØÁ® À¯ÀüÀÚ ¹ßÇö°ú ¼¼Æ÷ °Åµ¿À» º¸´Ù Àß Á¦¾îÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº »ý¸í°øÇÐÀÇ ´ÙÀ½ Çõ½ÅÀÇ ¹°°áÀ» ÃËÁøÇÏ°í »õ·Î¿î Ä¡·á ±âȸ¸¦ ¿­¾îÁÖ¸ç À¯ÀüÀÚ ÆíÁýÀÇ Àû¿ë ¹üÀ§¸¦ ±âÁ¸ÀÇ Æ²À» ³Ñ¾î È®ÀåÇϰí ÀÖ½À´Ï´Ù.

À¯ÀüÀÚ ÆíÁý ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

À¯ÀüÀÚ ÆíÁý ½ÃÀåÀÇ ¼ºÀåÀº »ý¸í°øÇÐ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, À¯ÀüÀÚ Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, À¯Àüü °øÇÐÀÇ ±â¼úÀû Áøº¸ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)°ú °°Àº ±â°ü°ú ¹Î°£ »ý¸í°øÇÐ ±â¾÷µéÀº À¯ÀüÀÚ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎÀÇ ³ë·Â°ú ÀÚ±Ý Áö¿øÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, À¯ÀüÀÚ ÆíÁý ±â¼ú Çõ½Å¿¡ ¸·´ëÇÑ ÀÚ¿øÀ» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. CRISPR ±â¹Ý Ä¡·á¹ý¿¡ ´ëÇÑ ÀÓ»ó½ÃÇèÀÇ ¼Óµµ°¡ »¡¶óÁö¸é¼­ ¸ÂÃãÇü ÀÇ·á¿¡¼­ À¯ÀüÀÚ ÆíÁýÀÇ ÀáÀç·ÂÀÌ ´õ¿í °ËÁõµÇ°í ÀÖÀ¸¸ç, ±ÔÁ¦ ´ç±¹ÀÌ À¯ÀüÀÚ °³ÀÔ¿¡ ´ëÇÑ ½ÂÀÎ °æ·Î¸¦ °³¼±Çϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Áö¼Ó°¡´ÉÇϰí ȸº¹·Â ÀÖ´Â ÀÛ¹°¿¡ ´ëÇÑ ³ó¾÷ ºÎ¹®ÀÇ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼­ À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼¼°è ½Ä·® ¾Èº¸¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ CRISPR ¹× ±âŸ À¯ÀüÀÚ ÆíÁý µµ±¸·Î °¡´ÉÇØÁø Á¤¹Ð À°Á¾¹ýÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. AI ±â¹Ý À¯ÀüÀÚ ÆíÁý Ç÷§Æû, °­È­µÈ »ý¹°Á¤º¸ÇÐ µµ±¸, ±â°èÇнÀ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ÃâÇöµµ ÆíÁýÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» ÃÖÀûÈ­ÇÏ¿© ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. À±¸®Àû °¡À̵å¶óÀÎÀÌ ÁøÈ­ÇÏ°í ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀÌ °£¼ÒÈ­µÊ¿¡ µû¶ó À¯ÀüÀÚ ÆíÁýÀº °úÇаú ÀÇÇÐ ¹ßÀüÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÉ °ÍÀ̸ç, ÀÇ·á, ³ó¾÷, ȯ°æ Áö¼Ó°¡´É¼ºÀÇ ¹Ì·¡¸¦ Çü¼ºÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

ºÎ¹®

±â¼ú(CRISPR/CAS9 ±â¼ú, ¡ũ ÇΰŠ´ºÅ¬·¹¾ÆÁ¦ ±â¼ú, Talens ±â¼ú, ±âŸ ±â¼ú), ¿ëµµ(¼¼Æ÷ÁÖ °øÇÐ ¿ëµµ, µ¿¹° À¯ÀüÀÚ °øÇÐ ¿ëµµ, ½Ä¹° À¯ÀüÀÚ °øÇÐ ¿ëµµ, ±âŸ ¿ëµµ), ÃÖÁ¾»ç¿ëÀÚ(¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö¡¤Á¦¾à ±â¾÷ ÃÖÁ¾»ç¿ëÀÚ, °è¾à ¿¬±¸±â°ü ÃÖÁ¾»ç¿ëÀÚ, ¿¬±¸±â°ü ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡°¡ ¼±º°ÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Gene Editing Market to Reach US$18.5 Billion by 2030

The global market for Gene Editing estimated at US$8.1 Billion in the year 2024, is expected to reach US$18.5 Billion by 2030, growing at a CAGR of 14.8% over the analysis period 2024-2030. CRISPR / CAS9 Technology, one of the segments analyzed in the report, is expected to record a 12.8% CAGR and reach US$6.9 Billion by the end of the analysis period. Growth in the Zinc Finger Nucleases Technology segment is estimated at 16.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.2 Billion While China is Forecast to Grow at 19.4% CAGR

The Gene Editing market in the U.S. is estimated at US$2.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.9 Billion by the year 2030 trailing a CAGR of 19.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 11.1% and 13.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.7% CAGR.

Global Gene Editing Market - Key Trends & Drivers Summarized

How Is Gene Editing Transforming Biotechnology and Medicine?

Gene editing has emerged as one of the most revolutionary advancements in biotechnology, enabling precise modifications to an organism's DNA to correct genetic defects, enhance traits, or combat diseases. Technologies such as CRISPR-Cas9, TALENs (Transcription Activator-Like Effector Nucleases), and ZFNs (Zinc Finger Nucleases) have drastically improved the efficiency and accuracy of genetic modifications, making gene editing more accessible for research, agriculture, and medical applications. This ability to make targeted changes at the DNA level has positioned gene editing at the forefront of personalized medicine, genetic disease therapy, and advanced biopharmaceutical development.

The growing demand for gene therapies and regenerative medicine has accelerated research and investment in gene editing. Diseases such as sickle cell anemia, cystic fibrosis, and certain types of cancers are being targeted for treatment using CRISPR-based therapies, with clinical trials demonstrating promising results. Beyond medicine, gene editing is also reshaping agriculture, allowing for the development of genetically modified crops with improved resistance to pests, drought, and diseases. Additionally, breakthroughs in synthetic biology have enabled researchers to engineer bacteria and yeast strains for sustainable biofuel and pharmaceutical production. As regulatory frameworks evolve and ethical considerations are addressed, gene editing is expected to become a critical tool for advancing health sciences and food security.

Which Industries Are Driving the Demand for Gene Editing Technologies?

The healthcare and pharmaceutical industries are at the forefront of gene editing applications, with increasing investments in gene therapy, precision medicine, and stem cell research. CRISPR-based therapies are being explored for treating rare genetic disorders, infectious diseases, and even age-related conditions. Biopharmaceutical companies are leveraging gene editing to develop next-generation biologics, including engineered T-cell therapies (CAR-T) for cancer treatment. Additionally, advancements in in vivo gene editing have paved the way for potential treatments that directly modify patient DNA without the need for ex vivo manipulation.

In agriculture, gene editing is revolutionizing crop improvement by enabling the precise alteration of plant genomes without introducing foreign DNA, making it distinct from traditional genetically modified organisms (GMOs). This has led to the development of climate-resilient crops with enhanced nutritional profiles, higher yields, and reduced reliance on chemical pesticides. Additionally, livestock breeding programs are incorporating gene editing to enhance disease resistance and improve productivity. The environmental sector is also exploring gene editing for bioremediation applications, such as engineering microorganisms to break down pollutants and reduce greenhouse gas emissions. As gene editing continues to expand its reach, demand across these diverse industries is expected to grow.

What Are the Latest Technological Advancements in Gene Editing?

Recent breakthroughs in gene editing technologies have significantly improved precision, efficiency, and scalability. CRISPR-based advancements, including base editing and prime editing, have enabled scientists to make precise DNA modifications without causing double-stranded breaks, reducing the risk of unintended mutations. These refined techniques are opening new possibilities for correcting genetic disorders at the molecular level with greater safety and accuracy. Additionally, the development of CRISPR-Cas variants with expanded targeting capabilities has broadened the range of editable genomic regions, further enhancing the versatility of gene editing tools.

Beyond CRISPR, synthetic biology and AI-powered gene prediction models are accelerating the discovery of novel gene editing targets. AI-driven algorithms are optimizing guide RNA designs, improving editing efficiency, and predicting potential off-target effects. Moreover, the integration of gene editing with single-cell sequencing technologies has enabled more detailed analysis of genetic modifications, leading to better control over gene expression and cellular behavior. These advancements are driving the next wave of innovation in biotechnology, unlocking new therapeutic opportunities and expanding gene editing applications beyond traditional boundaries.

What Factors Are Fueling the Growth of the Gene Editing Market?

The growth in the gene editing market is driven by several factors, including increasing investments in biotechnology research, rising demand for gene therapies, and technological advancements in genome engineering. Government initiatives and funding for genetic research have expanded, with agencies such as the National Institutes of Health (NIH) and private biotech firms committing substantial resources to gene editing innovation. The accelerating pace of clinical trials for CRISPR-based therapies has further validated the potential of gene editing in personalized medicine, prompting regulatory agencies to refine approval pathways for genetic interventions.

Additionally, the agriculture sector’s growing need for sustainable and resilient crops has boosted the adoption of gene editing technologies. As global food security concerns rise, precision breeding methods enabled by CRISPR and other gene editing tools are becoming increasingly important. The emergence of AI-driven gene editing platforms, enhanced bioinformatics tools, and machine learning applications has also contributed to market expansion by optimizing editing accuracy and efficiency. As ethical guidelines evolve and regulatory approvals streamline, gene editing is expected to become a key driver of scientific and medical advancements, shaping the future of healthcare, agriculture, and environmental sustainability.

SCOPE OF STUDY:

The report analyzes the Gene Editing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (CRISPR / CAS9 Technology, Zinc Finger Nucleases Technology, Talens Technology, Other Technologies); Application (Cell Line Engineering Application, Animal Genetic Engineering Application, Plant Genetic Engineering Application, Other Applications); End-User (Biotech & Pharma Companies End-User, Contract Research Organizations End-User, Research Institutes End-Users)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â