¼¼°èÀÇ GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå
GaN & SiC Power Semiconductor
»óǰÄÚµå : 1780846
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 293 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀåÀº 2030³â±îÁö 48¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ ¼¼°è ½ÃÀåÀº2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 21.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 48¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ SIC ÆÄ¿ö ¸ðµâÀº CAGR 19.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 22¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. GaN ÆÄ¿ö ¸ðµâ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 24.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 4¾ï 1,300¸¸ ´Þ·¯, Áß±¹Àº CAGR 28.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀåÀº 2024³â¿¡ 4¾ï 1,300¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³â CAGR 28.1%·Î, 2030³â¿¡´Â ½ÃÀå ±Ô¸ð 11¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 17.3%¿Í 18.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 17.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼°¡ Àü·Â ÀüÀÚ°øÇÐÀ» º¯È­½ÃŰ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ÁúÈ­°¥·ý(GaN) ¹× źȭ±Ô¼Ò(SiC) ÆÄ¿ö ¹ÝµµÃ¼´Â ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý Àü·Â ¼ÒÀÚ¿¡ ºñÇØ ¶Ù¾î³­ È¿À², ³ôÀº µ¿ÀÛ Á֯ļö, ¿ì¼öÇÑ ¿­ ¾ÈÁ¤¼ºÀ» Á¦°øÇÏ¿© Àü·Â ÀüÀÚ°øÇÐÀÇ ÆÇµµ¸¦ ¹Ù²Ù´Â ±â¼ú·Î µîÀåÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ±¤´ë¿ª°¸(WBG) ¹ÝµµÃ¼´Â Àü±âÀÚµ¿Â÷(EV), Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, µ¥ÀÌÅͼ¾ÅÍ, °íÁÖÆÄ Åë½Å µî °íÀü·Â ¿ëµµÀÇ ¹ßÀüÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ´õ ÀÛ°í ¿¡³ÊÁö È¿À²ÀûÀÌ¸ç °í¼º´ÉÀÇ Àü·Â ¼Ö·ç¼ÇÀ» ¿ä±¸ÇÔ¿¡ µû¶ó GaN ¹× SiC ¹ÝµµÃ¼´Â Â÷¼¼´ë Àü·Â °ü¸® ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ ºÎǰÀÌ µÇ°í ÀÖ½À´Ï´Ù.

GaN ¹× SiC ¹ÝµµÃ¼ÀÇ ÁÖ¿ä ÀåÁ¡ Áß Çϳª´Â ¿¡³ÊÁö ¼Õ½ÇÀ» Å©°Ô ÁÙÀ̸鼭 ´õ ³ôÀº Àü¾Ð°ú ¿Âµµ¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. µû¶ó¼­ ±Þ¼Ó ÃæÀü EV ÀÎÇÁ¶ó, ž籤 ÀιöÅÍ, »ê¾÷¿ë ¸ðÅÍ µå¶óÀÌºê µî ³ôÀº Àü·Â ¹Ðµµ°¡ ¿ä±¸µÇ´Â ¿ëµµ¿¡¼­ ƯÈ÷ À¯¿ëÇÏ°Ô »ç¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ Àç·á°¡ ´õ ³ôÀº Á֯ļö¿¡¼­ ½ºÀ§ÄªÇÒ ¼ö ÀÖ´Â ´É·ÂÀº Àü·Â º¯È¯ ½Ã½ºÅÛÀÇ ¼ÒÇüÈ­¸¦ °¡´ÉÇÏ°Ô Çϰí, Àü·Â ¸ðµâÀÇ Å©±â¿Í ¹«°Ô¸¦ ÁÙÀ̸鼭 È¿À²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±â¾÷ÀÌ Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö Àý¾àÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, GaN°ú SiC ÆÄ¿ö ¹ÝµµÃ¼ ¼ö¿ä´Â È®´ëµÇ¾î Àü±âÈ­ ¹× Àü·Â °ü¸®ÀÇ Çõ½ÅÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

GaN°ú SiC´Â ¾î¶»°Ô ÆÄ¿ö ¹ÝµµÃ¼ ±â¼úÀ» ¹ßÀü½Ã۰í Àִ°¡?

Àç·á °úÇÐ, Á¦Á¶ ±â¼ú, Àü·Â ¸ðµâ ¼³°èÀÇ ±â¼ú ¹ßÀüÀ¸·Î GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ÀÇ ¼º´É°ú È®À强ÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ¿¡ÇÇÅÃ¼È ¼ºÀå, ƯÈ÷ SiC ¿þÀÌÆÛ Á¦Á¶ÀÇ Çõ½ÅÀº SiC ±âÆÇÀÇ Ç°Áú°ú ¼öÀ²À» Çâ»ó½ÃÄÑ °íÃâ·Â ¿ëµµ¿¡ ´ëÇÑ »ó¾÷Àû Ȱ¿ëÀ» ´õ¿í Çö½ÇÈ­½Ã۰í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î GaN-on-Si(GaN-on-Si) ¹× GaN-on-GaN Á¦Á¶ ¹æ¹ýÀÇ °³¼±Àº ¼ÒÀÚ È¿À² Çâ»ó°ú ºñ¿ë Àý°¨À» °¡Á®¿Í GaN ÆÄ¿ö ¹ÝµµÃ¼¸¦ ´ëÁß ½ÃÀå ¿ëµµ¿¡ º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.

MOSFET, ¼îƮŰ ´ÙÀÌ¿Àµå, ÆÄ¿ö ¸ðµâ°ú °°Àº °íÀü·Â ½ºÀ§Äª µð¹ÙÀ̽º¿¡ GaN°ú SiC¸¦ ÅëÇÕÇÏ¿© °íÀü¾Ð ¿ëµµ¿¡¼­ ½Ã½ºÅÛ ¼º´ÉÀ» ´õ¿í Çâ»ó½ÃÄ×½À´Ï´Ù. ¶ÇÇÑ Ä¨ ½ºÄÉÀÏ Æ÷Àå(CSP) ¹× ÷´Ü ¿­ °ü¸® ¼Ö·ç¼Ç°ú °°Àº Æ÷Àå ±â¼úÀÇ ¹ßÀüÀ¸·Î GaN ¹× SiC Àü·Â ºÎǰÀÇ ½Å·Ú¼º°ú ³»±¸¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. AI ±â¹Ý Àü·Â °ü¸® ¾Ë°í¸®ÁòÀ» °³¹ßÇÏ¿© GaN ¹× SiC ±â¹Ý Àü·Â ½Ã½ºÅÛÀÇ È¿À²À» ÃÖÀûÈ­Çϰí, ½Ç½Ã°£ Àü·Â ÃÖÀûÈ­ ¹× ¿¹Áöº¸ÀüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ÝµµÃ¼ ±â¼ú¿¡ ´ëÇÑ ¿¬±¸°¡ ÁøÇàµÊ¿¡ µû¶ó Â÷¼¼´ë Àü·Â ¿ëµµ¿¡ ´ëÇÑ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ ¼ö¿ä¸¦ ÁÖµµÇÏ´Â »ê¾÷ ¹× ½ÃÀå ¼¼ºÐÈ­´Â ¹«¾ùÀΰ¡?

Àü±âÀÚµ¿Â÷(EV) »ê¾÷Àº GaN°ú SiC ÆÄ¿ö ¹ÝµµÃ¼ÀÇ °¡Àå Å« äÅÃó Áß ÇϳªÀ̸ç, EV ÀιöÅÍ, Â÷·®¿ë ÃæÀü±â, DC-DC ÄÁ¹öÅÍ¿¡ °íÈ¿À² ¹× °í¼Ó ½ºÀ§Äª ±â´ÉÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. SiC ÀιöÅÍ´Â ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý Àü·Â ÀåÄ¡¿¡ ºñÇØ EV ¹èÅ͸®ÀÇ È¿À²À» Å©°Ô Çâ»ó½ÃÄÑ ÁÖÇà°Å¸®¸¦ ¿¬ÀåÇϰí ÃæÀü ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î GaN Àü·Â Æ®·£Áö½ºÅÍ´Â EV¿ë ¼ÒÇü ¹× °æ·® ±Þ¼Ó ÃæÀü ¼Ö·ç¼Ç¿¡ »ç¿ëµÇ¾î Áö¼Ó°¡´ÉÇÑ ±³Åë¼ö´ÜÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

Àç»ý¿¡³ÊÁö ºÎ¹®Àº GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ äÅÃÀÇ ¶Ç ´Ù¸¥ ÁÖ¿ä ¿øµ¿·ÂÀ̸ç, ƯÈ÷ ÅÂ¾ç ±¤ ÀιöÅÍ ¹× dz·Â¹ßÀü º¯È¯ ½Ã½ºÅÛ¿¡¼­ µÎµå·¯Áý´Ï´Ù. ÀÌ ¹ÝµµÃ¼´Â ´õ ³ôÀº ¿¡³ÊÁö º¯È¯ È¿À²À» °¡´ÉÇÏ°Ô Çϰí, ž籤¹ßÀü(PV) ¼³ºñ¿Í dz·Â ÅͺóÀÇ Àü·Â ¼Õ½ÇÀ» ÁÙÀÔ´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅͼ¾ÅÍ ¹× Åë½Å ÀÎÇÁ¶ó¿¡¼­´Â °íÁÖÆÄ Àü¿ø ½Ã½ºÅÛÀÇ Àü·Â È¿À²À» °³¼±ÇÏ°í ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̱â À§ÇØ GaN ¹× SiC µð¹ÙÀ̽ºÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©¿Í AI ±â¹Ý ÄÄÇ»ÆÃ ¿ëµµÀÇ È®´ë·Î °íÈ¿À² Àü·Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 GaN ¹× SiC ¹ÝµµÃ¼ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?

GaN ¹× SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀåÀÇ ¼ºÀåÀº °íÈ¿À² ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¹ßÀü, Àü±âÀÚµ¿Â÷ ¹× Àç»ý¿¡³ÊÁö ¼³ºñÀÇ È®´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ±³Åë ¹× »ê¾÷ ºÎ¹®ÀÇ Àüµ¿È­·ÎÀÇ ÀüȯÀº ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀÌ°í ½Ã½ºÅÛ ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â °í¼º´É ÆÄ¿ö µð¹ÙÀ̽ºÀÇ Çʿ伺À» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¡³ÊÁö È¿À²°ú ź¼Ò¹ßÀÚ±¹ °¨¼Ò¸¦ ÃËÁøÇÏ´Â ±ÔÁ¦´Â GaN ¹× SiC Àü·Â ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ ¹ÝµµÃ¼ Á¦Á¶ ´É·ÂÀÇ È®´ë¿Í GaN-on-Si ±â¼ú µî ºñ¿ë È¿À²ÀûÀÎ »ý»ê ±â¼úÀÇ °³¹ßµµ ÀÌ·¯ÇÑ ¹ÝµµÃ¼¸¦ º¸´Ù Àú·ÅÇÏ°Ô ¸¸µé¾î ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ±â¹Ý Àü·Â °ü¸® ¹× ½º¸¶Æ® ±×¸®µå ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó GaN ¹× SiC ±â¹Ý ½Ã½ºÅÛÀÇ È¿À²¼ºÀÌ Çâ»óµÇ¾î »ê¾÷ ¹× ÁÖ°Å¿ë ¿ëµµÀÇ ¿¡³ÊÁö ºÐ¹è°¡ ÃÖÀûÈ­µÇ°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Àü·Â ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇϰí ÀÖ´Â °¡¿îµ¥, GaN ¹× SiC ¹ÝµµÃ¼´Â °í¼º´É Àü·Â ÀüÀÚÁ¦Ç°ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

Á¦Ç°(SIC ÆÄ¿ö ¸ðµâ, GaN ÆÄ¿ö ¸ðµâ, µð½ºÅ©¸®Æ® SIC, µð½ºÅ©¸®Æ® GaN), ¾ÖÇø®ÄÉÀ̼Ç(Àü¿ø ¾ÖÇø®ÄÉÀ̼Ç, »ê¾÷¿ë ¸ðÅÍ µå¶óÀ̺ê, ÇÏÀ̺긮µå/Àü±âÀÚµ¿Â÷, ž籤¹ßÀü ÀιöÅÍ, Æ®·¢¼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global GaN & SiC Power Semiconductor Market to Reach US$4.8 Billion by 2030

The global market for GaN & SiC Power Semiconductor estimated at US$1.5 Billion in the year 2024, is expected to reach US$4.8 Billion by 2030, growing at a CAGR of 21.2% over the analysis period 2024-2030. SIC Power Modules, one of the segments analyzed in the report, is expected to record a 19.0% CAGR and reach US$2.2 Billion by the end of the analysis period. Growth in the GaN Power Modules segment is estimated at 24.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$413.0 Million While China is Forecast to Grow at 28.1% CAGR

The GaN & SiC Power Semiconductor market in the U.S. is estimated at US$413.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.1 Billion by the year 2030 trailing a CAGR of 28.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.3% and 18.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.8% CAGR.

Global GaN & SiC Power Semiconductor Market - Key Trends & Drivers Summarized

Why Are GaN & SiC Power Semiconductors Transforming Power Electronics?

Gallium Nitride (GaN) and Silicon Carbide (SiC) power semiconductors have emerged as game-changing technologies in power electronics, offering superior efficiency, higher operating frequencies, and greater thermal stability compared to traditional silicon-based power devices. These wide-bandgap (WBG) semiconductors are enabling advancements in high-power applications, including electric vehicles (EVs), renewable energy systems, data centers, and high-frequency telecommunications. As industries push for more compact, energy-efficient, and high-performance power solutions, GaN and SiC semiconductors have become essential components in next-generation power management systems.

One of the primary advantages of GaN and SiC semiconductors is their ability to operate at higher voltages and temperatures with significantly lower energy losses. This makes them particularly valuable in applications requiring high power density, such as fast-charging EV infrastructure, solar inverters, and industrial motor drives. Additionally, the ability of these materials to switch at higher frequencies enables the miniaturization of power conversion systems, reducing the size and weight of power modules while increasing efficiency. As governments and corporations prioritize sustainability and energy conservation, the demand for GaN and SiC power semiconductors is expected to grow, driving innovations in electrification and power management.

How Are GaN & SiC Advancing Power Semiconductor Technology?

Technological advancements in material science, fabrication techniques, and power module design have significantly improved the performance and scalability of GaN and SiC power semiconductors. Innovations in epitaxial growth, particularly in SiC wafer production, have enhanced the quality and yield of SiC substrates, making them more commercially viable for high-power applications. Similarly, improvements in GaN-on-Silicon (GaN-on-Si) and GaN-on-GaN fabrication methods have led to increased device efficiency and cost reductions, making GaN power semiconductors more accessible to mass-market applications.

The integration of GaN and SiC into high-power switching devices, such as MOSFETs, Schottky diodes, and power modules, has further improved system performance in high-voltage applications. Additionally, advancements in packaging technologies, including chip-scale packaging (CSP) and advanced thermal management solutions, have enhanced the reliability and durability of GaN and SiC power components. The development of AI-driven power management algorithms is also optimizing the efficiency of GaN and SiC-based power systems, enabling real-time power optimization and predictive maintenance. As research continues to refine these semiconductor technologies, their adoption in next-generation power applications is expected to accelerate.

Which Industries and Market Segments Are Driving Demand for GaN & SiC Power Semiconductors?

The electric vehicle (EV) industry is one of the largest adopters of GaN and SiC power semiconductors, leveraging their high efficiency and fast-switching capabilities for EV inverters, onboard chargers, and DC-DC converters. Compared to conventional silicon-based power devices, SiC inverters significantly improve EV battery efficiency, leading to extended range and reduced charging times. Similarly, GaN power transistors are being used in compact, lightweight fast-charging solutions for EVs, supporting the global transition toward sustainable transportation.

The renewable energy sector is another major driver of GaN and SiC power semiconductor adoption, particularly in solar inverters and wind power conversion systems. These semiconductors enable higher energy conversion efficiencies, reducing power losses in photovoltaic (PV) installations and wind turbines. Additionally, data centers and telecommunications infrastructure are increasingly integrating GaN and SiC devices to improve power efficiency and reduce energy consumption in high-frequency power supply systems. With the expansion of 5G networks and AI-driven computing applications, the demand for high-efficiency power solutions is expected to rise, further boosting market growth for GaN and SiC semiconductors.

What Key Factors Are Driving Market Growth?

The growth in the GaN & SiC power semiconductor market is driven by several factors, including increasing demand for high-efficiency power electronics, advancements in semiconductor fabrication, and the expansion of electric vehicles and renewable energy installations. The shift toward electrification in transportation and industrial sectors has accelerated the need for high-performance power devices that reduce energy losses and improve system reliability. Additionally, regulatory mandates promoting energy efficiency and carbon footprint reduction have further propelled the adoption of GaN and SiC power solutions.

The expansion of semiconductor manufacturing capacity and the development of cost-effective production techniques, such as GaN-on-Si technology, have also contributed to market growth by making these semiconductors more affordable. Furthermore, the increasing adoption of AI-driven power management and smart grid technologies has enhanced the efficiency of GaN and SiC-based systems, optimizing energy distribution in industrial and residential applications. As industries continue to transition toward energy-efficient power solutions, GaN and SiC semiconductors are expected to play a crucial role in shaping the future of high-performance power electronics.

SCOPE OF STUDY:

The report analyzes the GaN & SiC Power Semiconductor market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (SIC Power Modules, GaN Power Modules, Discrete SIC, Discrete GaN); Application (Power Supplies Application, Industrial Motor Drives Application, Hybrid / Electric Vehicles Application, Photovoltaic Inverters Application, Traction Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â