¼¼°èÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶(Á¶»ç¿ë) ½ÃÀå
Viral Vector Production (Research-Use)
»óǰÄÚµå : 1777677
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 383 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶(Á¶»ç¿ë) ½ÃÀåÀº 2030³â±îÁö 40¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 17¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶(Á¶»ç¿ë) ½ÃÀåÀº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 15.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 40¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¾Æµ¥³ë¿¬°ü¹ÙÀÌ·¯½º´Â CAGR 17.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 17¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ·»Æ¼¹ÙÀÌ·¯½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 16.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 7,210¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 20.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶(Á¶»ç¿ë) ½ÃÀåÀº 2024³â¿¡ 4¾ï 7,210¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀ» 20.2%·Î 2030³â±îÁö 8¾ï 7,760¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 10.8%¿Í 13.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶(¿¬±¸¿ë) ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀÌ »ý¹° ÀÇÇÐ ¿¬±¸¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀº ƯÈ÷ À¯ÀüÀÚ Ä¡·á, ¹é½Å, ¾Ï Ä¡·áÁ¦ÀÇ °³¹ß¿¡¼­ »ý¹°ÀÇÇÐ ¿¬±¸ÀÇ Áß¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ´Â À¯Àü¹°Áú Àü´Þ ½Ã½ºÅÛ ¿ªÇÒÀ» Çϸç, °úÇÐÀÚµéÀÌ ¼¼Æ÷ ³»¿¡ À¯ÀüÀÚ¸¦ µµÀÔ, º¯Çü, ´ëüÇÏ¿© Áúº´ ±âÀü ¿¬±¸ ¹× Ç¥ÀûÄ¡·áÁ¦ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. À¯Àü¼º Áúȯ, °¨¿°¼º Áúȯ, ¾ÏÀÇ À¯º´·ü Áõ°¡·Î ÀüÀÓ»ó ¹× ÀÓ»ó ¿¬±¸¿ë °íǰÁú ¹ÙÀÌ·¯½º º¤ÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼¼Æ÷Ä¡·á¿Í À¯ÀüÀÚÄ¡·áÀÇ ¹ßÀü¿¡ µû¶ó ¿¬±¸ÀÚµéÀº ·»Æ¼¹ÙÀÌ·¯½º, ¾Æµ¥³ëºÎ¼öü¹ÙÀÌ·¯½º(AAV), ·¹Æ®·Î¹ÙÀÌ·¯½º µîÀÇ ¹ÙÀÌ·¯½º º¤Å͸¦ Ȱ¿ëÇÏ¿© ÀÌÀü¿¡´Â Ä¡·á°¡ ºÒ°¡´ÉÇÏ´Ù°í ¿©°ÜÁ³´ø Áúº´¿¡ ´ëÇÑ Çõ½ÅÀûÀÎ Ä¡·á¹ýÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÇöÀç ÁøÇà ÁßÀÎ mRNA ±â¹Ý ¹é½Å ¹× ¸é¿ªÄ¡·áÁ¦ °³¹ßÀº ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶ÀÇ Á߿伺À» ´õ¿í ºÎ°¢½Ã۰í ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ½Å¾à°³¹ß°ú °³¹ßÀ» °¡¼ÓÈ­Çϱâ À§ÇØ È®Àå °¡´ÉÇϰí È¿À²ÀûÀÎ Á¦Á¶ °øÁ¤ÀÌ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù.

¾î¶² ±â¼ú Çõ½ÅÀÌ ¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀ» º¯È­½Ã۰í Àִ°¡?

¹ÙÀÌ·¯½º º¤ÅÍ »ý»ê ºÐ¾ß¿¡¼­´Â ¿¬±¸ ÀÀ¿ëÀÇ È¿À²¼º, È®À强, ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â Å« ÁøÀüÀ» º¸À̰í ÀÖ½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ Çõ½Å Áß Çϳª´Â ÇöŹ ¼¼Æ÷¹è¾ç ½Ã½ºÅÛÀÇ »ç¿ëÀ¸·Î, À̸¦ ÅëÇØ ¹ÙÀÌ¿À¸®¾×ÅÍ¿¡¼­ ´ë±Ô¸ð ¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀÌ °¡´ÉÇØÁ® ºñ¿ëÀ» Àý°¨Çϰí Àϰü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ °í¼öÀ²ÀÇ Æ®·£½ºÆå¼Ç ½Ã¾à°ú ÃÖÀûÈ­µÈ ÇÃ¶ó½º¹Ìµå ¼³°èÀÇ °³¹ß·Î ¹ÙÀÌ·¯½º º¤ÅÍÀÇ ¿ª°¡°¡ Çâ»óµÇ¾î ¿¬±¸ÀÚµéÀº ¾ÈÁ¤¼ºÀ» ³ôÀÎ °íǰÁú º¤Å͸¦ »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÚµ¿È­¿Í AI¸¦ ÅëÇÑ °øÁ¤ ÃÖÀûÈ­ ¶ÇÇÑ º¯¼ö¸¦ ÃÖ¼ÒÈ­ÇÏ°í »ý»ê ¿öÅ©Ç÷ο츦 °£¼ÒÈ­ÇÔÀ¸·Î½á ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. CRISPR ±â¹Ý À¯ÀüÀÚ ÆíÁý ÅøÀº ¹ÙÀÌ·¯½º º¤ÅÍ °øÇÐÀ» ´õ¿í °­È­ÇÏ¿© ¿¬±¸ÀÚµéÀÌ º¸´Ù Á¤¹ÐÇϰí È¿À²ÀûÀÎ À¯ÀüÀÚ µµÀÔ ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ Å©·Î¸¶Åä±×·¡ÇÇ, ÃÊ¿ø½ÉºÐ¸® µî Á¤Á¦ ±â¼úÀÇ Çâ»óÀ¸·Î º¤ÅÍÀÇ ¼øµµ¿Í È¿´ÉÀÌ °­È­µÇ¾î À¯ÀüÀÚ Ä¡·á ¿¬±¸¿¡¼­ ´õ ³ôÀº È¿´ÉÀ» º¸ÀåÇÕ´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀÇ È®´ë¸¦ Á¦ÇÑÇÏ´Â ¹®Á¦´Â ¹«¾ùÀΰ¡?

»ý¹° ÀÇÇÐ ¿¬±¸¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ¹ÙÀÌ·¯½º º¤ÅÍ »ý»êÀº È®À强°ú Á¢±Ù¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¸î °¡Áö °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä Àå¾Ö¹° Áß Çϳª´Â ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶ÀÇ º¹À⼺À̸ç, Á¦Á¶¿¡´Â Ư¼ö ¼¼Æ÷¹è¾ç ½Ã¼³, »ý¹° ¾ÈÀü ÇÁ·ÎÅäÄÝ, ¾ö°ÝÇÑ Ç°Áú°ü¸® Á¶Ä¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ƯÈ÷ ¹ÙÀÌ·¯½º º¤Å͸¦ ´ë·® »ý»êÇÒ ¼ö ÀÖ´Â ÀÎÇÁ¶ó¸¦ °®ÃßÁö ¸øÇÑ ¼Ò±Ô¸ð ¿¬±¸±â°ü¿¡°Ô´Â ³ôÀº »ý»ê ºñ¿ë°ú Á¦ÇÑµÈ È®À强ÀÌ ¿©ÀüÈ÷ Áß¿äÇÑ À庮À¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á¿Í ¿ì¼öÀǾàǰÁ¦Á¶°ü¸®±âÁØ(GMP) Áؼö µî ¹ÙÀÌ·¯½º º¤ÅÍ »ý»ê°ú °ü·ÃµÈ ±ÔÁ¦Àû ¹®Á¦µµ ¿¬±¸ºÎÅÍ ½ÃÀå±îÁöÀÇ ÆÄÀÌÇÁ¶óÀÎÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀϺΠ¹ÙÀÌ·¯½º º¤ÅÍ´Â º¸Á¸ ±â°£ÀÌ Âª°í È¿´ÉÀ» À¯ÁöÇϱâ À§ÇØ Æ¯º°ÇÑ º¸Á¸ Á¶°ÇÀÌ ÇÊ¿äÇϹǷΠ¾ÈÁ¤¼º°ú º¸Á¸ÀÇ ÇѰ赵 ¹®Á¦Á¡À¸·Î ÁöÀûµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â ¿¬±¸¿ë ¹ÙÀÌ·¯½º º¤Å͸¦ º¸´Ù ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï È®Àå °¡´ÉÇÑ Á¦Á¶ ±â¼ú, Ç¥ÁØÈ­µÈ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ºñ¿ë È¿À²ÀûÀÎ »ý»ê Àü·«¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶(¿¬±¸¿ë) ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶(¿¬±¸¿ë) ½ÃÀåÀÇ ¼ºÀåÀº À¯ÀüÀÚ Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹é½Å °³¹ßÀÇ ¹ßÀü, »ý¹° ÀÇÇÐ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. À¯Àü¼º Áúȯ°ú °¨¿°¼º ÁúȯÀÇ È®»êÀ¸·Î ÀÎÇØ Çõ½ÅÀûÀÎ Ä¡·á¹ýÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖÀ¸¸ç, ¿¬±¸°³¹ßÀÚµéÀº ¹ÙÀÌ·¯½º º¤Å͸¦ ÀÌ¿ëÇÑ Ä¡·á¹ýÀ» °³¹ßÇÏ°í °³¼±Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿Í Àç»ý Ä¡·áÀÇ È®´ë´Â ÀüÀÓ»ó ¹× ÀÓ»ó ¿¬±¸¿¡¼­ ¹ÙÀÌ·¯½º º¤ÅÍÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹ÙÀÌ¿ÀÅ×Å©¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ´Â È®Àå °¡´ÉÇÑ ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶ Ç÷§ÆûÀÇ °³¹ßÀ» Áö¿øÇÏ¿© ¿¬±¸ ¹× ÀǾàǰ °³¹ß ±â°£À» ´ÜÃàÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. CRISPR ¹× À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüµµ Á¤¹ÐÀÇ·á ÀÀ¿ëÀ» À§ÇÑ È¿À²ÀûÀÎ À¯ÀüÀÚ µµÀÔ ÅøÀ» ã´Â ¿¬±¸ÀÚµé ¼ö¿ä·Î ÀÎÇØ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü°ú °øÁ¤ ÃÖÀûÈ­ ³ë·ÂÀº ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí À¯ÀüÀÚ ¹× ¼¼Æ÷ Ä¡·á ¿¬±¸ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ» º¸ÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

º¤ÅÍ À¯Çü(¾Æµ¥³ë¿¬°ü¹ÙÀÌ·¯½º, ·»Æ¼¹ÙÀÌ·¯½º, ¾Æµ¥³ë¹ÙÀÌ·¯½º, ·¹Æ®·Î¹ÙÀÌ·¯½º, ±âŸ), ¿ëµµ(¼¼Æ÷¡¤À¯ÀüÀÚ Ä¡·á °³¹ß, ¹é½Å °³¹ß, ÀǾàǰ¡¤¹ÙÀÌ¿ÀÀǾàǰ Ž»ö, ¹ÙÀÌ¿À¸ÞµðÄà ¿¬±¸), ÃÖÁ¾ ¿ëµµ(ÀǾàǰ¡¤¹ÙÀÌ¿ÀÀǾàǰ ±â¾÷, ¿¬±¸±â°ü)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Viral Vector Production (Research-Use) Market to Reach US$4.0 Billion by 2030

The global market for Viral Vector Production (Research-Use) estimated at US$1.7 Billion in the year 2024, is expected to reach US$4.0 Billion by 2030, growing at a CAGR of 15.0% over the analysis period 2024-2030. Adeno-associated Virus, one of the segments analyzed in the report, is expected to record a 17.0% CAGR and reach US$1.7 Billion by the end of the analysis period. Growth in the Lentivirus segment is estimated at 16.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$472.1 Million While China is Forecast to Grow at 20.2% CAGR

The Viral Vector Production (Research-Use) market in the U.S. is estimated at US$472.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$877.6 Million by the year 2030 trailing a CAGR of 20.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.8% and 13.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.9% CAGR.

Global Viral Vector Production (Research-Use) Market - Key Trends & Drivers Summarized

Why Is Viral Vector Production Critical for Biomedical Research?

Viral vector production has become a crucial component of biomedical research, particularly in the development of gene therapies, vaccines, and cancer treatments. Viral vectors serve as delivery systems for genetic material, enabling scientists to introduce, modify, or replace genes within cells to study disease mechanisms and develop targeted therapies. The increasing prevalence of genetic disorders, infectious diseases, and cancer has fueled the demand for high-quality viral vectors for preclinical and clinical research. With advancements in cell and gene therapy, researchers are leveraging viral vectors such as lentiviruses, adeno-associated viruses (AAVs), and retroviruses to develop innovative treatments for conditions that were previously considered untreatable. The ongoing development of mRNA-based vaccines and immunotherapies has further highlighted the importance of viral vector production, as researchers require scalable and efficient manufacturing processes to accelerate drug discovery and development.

What Technological Innovations Are Transforming Viral Vector Production?

The field of viral vector production has seen significant advancements, improving efficiency, scalability, and safety in research applications. One of the most notable innovations is the use of suspension cell culture systems, which enable large-scale viral vector production in bioreactors, reducing costs and improving consistency. Additionally, the development of high-yield transfection reagents and optimized plasmid designs has enhanced viral vector titers, allowing researchers to produce higher-quality vectors with increased stability. Automation and AI-driven process optimization are also revolutionizing viral vector manufacturing by minimizing variability and streamlining production workflows. CRISPR-based genome editing tools are further enhancing viral vector engineering, enabling researchers to create more precise and efficient gene delivery systems. Moreover, improvements in purification technologies, such as chromatography and ultracentrifugation, have enhanced vector purity and potency, ensuring higher efficacy in gene therapy research.

What Challenges Are Limiting the Expansion of Viral Vector Production?

Despite its critical role in biomedical research, viral vector production faces several challenges that impact scalability and accessibility. One of the primary obstacles is the complexity of manufacturing viral vectors, as production requires specialized cell culture facilities, biosafety protocols, and rigorous quality control measures. High production costs and limited scalability remain key barriers, particularly for smaller research institutions that lack the infrastructure to produce viral vectors in large quantities. Additionally, regulatory challenges associated with viral vector production, including safety concerns and compliance with good manufacturing practices (GMP), can slow down the research-to-market pipeline. Stability and storage limitations also pose a challenge, as some viral vectors have short shelf lives, requiring specialized storage conditions to maintain potency. Addressing these challenges requires continued investment in scalable manufacturing technologies, standardized regulatory frameworks, and cost-effective production strategies to ensure broader accessibility of viral vectors for research use.

What Factors Are Driving the Growth of the Viral Vector Production (Research-Use) Market?

The growth in the viral vector production (research-use) market is driven by several factors, including the rising demand for gene therapies, advancements in vaccine development, and increasing investments in biomedical research. The growing prevalence of genetic disorders and infectious diseases has fueled the need for innovative treatment approaches, prompting researchers to develop and refine viral vector-based therapies. The expansion of personalized medicine and regenerative therapies has further accelerated the adoption of viral vectors in preclinical and clinical research. Additionally, government funding and private sector investments in biotechnology have supported the development of scalable viral vector manufacturing platforms, facilitating faster research and drug development timelines. The rapid advancement of CRISPR and genome-editing technologies has also contributed to market growth, as researchers seek efficient gene delivery tools for precision medicine applications. As demand for viral vectors continues to rise, ongoing technological advancements and process optimization efforts are expected to drive market expansion, ensuring the continued progress of gene and cell therapy research.

SCOPE OF STUDY:

The report analyzes the Viral Vector Production (Research-Use) market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Vector Type (Adeno-associated Virus, Lentivirus, Adenovirus, Retrovirus, Others); Application (Cell & Gene Therapy Development, Vaccine Development, Pharma & Biopharma Discovery, Biomedical Research); End-Use (Pharma & Biopharma Companies, Research Institutes)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 44 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â