¼¼°èÀÇ ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀå
Plastic Resins
»óǰÄÚµå : 1777437
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 306 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀåÀº 2030³â±îÁö 9,979¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 8,407¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÃ¶ó½ºÆ½ ¼öÁö ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 2.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 9,979¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °áÁ¤¼º ¼öÁö´Â CAGR 2.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3,891¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºñ°áÁ¤¼º ¼öÁö ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 3.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 2,291¾ï ´Þ·¯, Áß±¹Àº CAGR 5.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀåÀº 2024³â¿¡ 2,291¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1,932¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 5.4%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.2%¿Í 2.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.6%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀåÀº Æ÷Àå, ÀÚµ¿Â÷, ÇコÄɾî, °Ç¼³, ¼ÒºñÀç µîÀÇ ¿ëµµ È®´ë¿¡ ÈûÀÔ¾î Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ ¼öÁö´Â ´Ù¾çÇÑ ÇÃ¶ó½ºÆ½ Á¦Ç°À» Á¦Á¶Çϱâ À§ÇÑ ±âÆÇ ¿ªÇÒÀ» Çϸç, °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ´Ù¾çÇÑ »ê¾÷¿¡ Á¦°øÇÕ´Ï´Ù. °í¼º´É ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº Çõ½ÅÀûÀÎ ¼öÁö ¹èÇÕ, ¹ÙÀÌ¿À ´ëüÀç, Áö¼Ó °¡´ÉÇÑ ÀçȰ¿ë ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÏ¿© ÁøÈ­ÇÏ´Â ½ÃÀå ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» Çü¼ºÇÏ´Â °¡Àå µÎµå·¯Áø Æ®·»µå Áß Çϳª´Â »ýºÐÇØ¼º ¼öÁö ¹× ¹ÙÀÌ¿À ¼öÁö·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ÇÃ¶ó½ºÆ½ Æó±â¹°¿¡ ´ëÇÑ È¯°æ ¹®Á¦¿Í Á¤ºÎ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó »ê¾÷°è´Â Æú¸®¶ô»ê(PLA), Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA), ¹ÙÀÌ¿À Æú¸®¿¡Æ¿·»(PE) ¹× Æú¸®ÇÁ·ÎÇÊ·»(PP)°ú °°Àº ½Ä¹° À¯·¡ ¼öÁö¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä£È¯°æ ´ëü ¼öÁö´Â ±âÁ¸ ¼®À¯°è ¼öÁö¿¡ ÇÊÀûÇÏ´Â ±â°èÀû Ư¼ºÀ» Á¦°øÇÏ´Â µ¿½Ã¿¡ ÀÌ»êȭź¼Ò ¹èÃâ·®°ú ¸Å¸³ Æó±â¹°À» ÁÙÀÔ´Ï´Ù. Æ÷Àå ¹× FMCG ºÐ¾ßÀÇ ÁÖ¿ä ºê·£µåµéÀº Áö¼Ó°¡´É¼º ¹× ÇÃ¶ó½ºÆ½ »ç¿ë ±ÝÁö¿¡ ´ëÀÀÇϱâ À§ÇØ ÅðºñÈ­ °¡´ÉÇÑ ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ »ç¿ëÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀüÀÚ ºÐ¾ß¿¡¼­ °í¼º´É ¿£Áö´Ï¾î¸µ ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Æú¸®¿¡Å׸£¿¡Å׸£ÄÉÅæ(PEEK), Æú¸®Ä«º¸³×ÀÌÆ®(PC), ¾ÆÅ©¸±·Î´ÏÆ®¸± ºÎŸµð¿£ ½ºÆ¼·»(ABS), ¿­°¡¼Ò¼º Æú¸®¿ì·¹Åº(TPU) µî ÷´Ü °íºÐÀÚ ¼ÒÀç´Â °í°­µµ, ³»¿­¼º, ³»È­Çмº, °æ·®¼º µîÀÇ Æ¯¼ºÀ¸·Î ÀÎÇØ ±âÁ¸ ¼ÒÀ縦 ´ëüÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í¼º´É ÇÃ¶ó½ºÆ½Àº °æ·® ÀÚµ¿Â÷ Á¦Á¶, Àü±âÀÚµ¿Â÷(EV) ¹èÅ͸® ÄÉÀ̽º, ÀÇ·á±â±â ºÎǰ, 5G Åë½Å Àåºñ¿¡ ÇʼöÀûÀÔ´Ï´Ù.

¶ÇÇÑ, ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ ÀçȰ¿ë°ú ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ ³ë·ÂÀº ½ÃÀå ¿ªÇÐÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ±â°èÀû ÀçȰ¿ë ±â¼ú°ú È­ÇÐÀû ÀçȰ¿ë ±â¼úÀÇ µîÀåÀ¸·Î ¼ÒºñÀÚ¿Í »ê¾÷°è¿¡¼­ ¹èÃâµÇ´Â ÇÃ¶ó½ºÆ½ Æó±â¹°À» °íǰÁú ¼öÁö·Î ÀüȯÇÏ¿© Æ÷Àå, ¼¶À¯, ÀÚµ¿Â÷ ³»ÀåÀç µîÀ¸·Î Àç»ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±â¾÷µéÀº ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ¸ñÇ¥¿Í ÇÃ¶ó½ºÆ½ Á¦Ç°ÀÇ ÀçȰ¿ë ÇÔ·® ±ÔÁ¦¸¦ ÃæÁ·½Ã۱â À§ÇØ Àç»ý PET(rPET), Àç»ý PP, Àç»ý Æú¸®¿¡Æ¿·» ¼öÁö¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ÇÃ¶ó½ºÆ½ ¼öÁö Á¦Á¶¿¡ ¾î¶² º¯È­¸¦ °¡Á®¿À°í Àִ°¡?

°íºÐÀÚ È­ÇÐ, ³ª³ë±â¼ú, ¼öÁö °¡°ø ±â¼ú °³¹ßÀº Ư¼º, Áö¼Ó°¡´É¼º, ¼º´ÉÀ» Çâ»ó½ÃŲ Â÷¼¼´ë ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Ã˸бâ¼ú, ¹ÙÀÌ¿À Æú¸®¸Ó ÇÕ¼º ¹× ÷°¡Á¦ Á¦Á¶ÀÇ Çõ½ÅÀº ´õ °­Çϰí, ´õ °¡º±°í, ´õ ´ÙÀç´Ù´ÉÇÑ ÇÃ¶ó½ºÆ½ ¼öÁö¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

°¡Àå Áß¿äÇÑ µ¹ÆÄ±¸ Áß Çϳª´Â ½º¸¶Æ® Æú¸®¸Ó¿Í Àڱ⺹¿ø¼º ¼öÁöÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ ¼ÒÀçµéÀº Çü»ó ±â¾ï, Àڱ⺹¿ø ´É·Â, ȯ°æ ÀÚ±Ø(¿­, ºû, pH º¯È­ µî)¿¡ ´ëÇÑ ¹ÝÀÀ¼º µî ÀûÀÀ Ư¼ºÀ» º¸ÀÔ´Ï´Ù. ½º¸¶Æ® ¼öÁö´Â Àڱ⺹¿ø ÄÚÆÃ, Ç×°ø¿ìÁÖ ºÎǰ, ÀÇ·á¿ë ÀÓÇöõÆ® µî¿¡ Àû¿ëµÇ¾î ¼ö¸íÀ» ´Ã¸®°í À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨Çϰí ÀÖ½À´Ï´Ù.

ÇÃ¶ó½ºÆ½ Æó±â¹°À» ¸ð³ë¸Ó·Î ºÐÇØÇÏ¿© ¹öÁø ǰÁúÀÇ ¼öÁö·Î ÀçÇÕ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ±â°èÀû ÀçȰ¿ë°ú ´Þ¸® È­ÇÐÀû ÀçȰ¿ë °øÁ¤Àº ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϱ⠶§¹®¿¡ ½Äǰ µî±Þ ÀÀ¿ë ºÐ¾ß ¹× °í¼º´É ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½¿¡ ÀûÇÕÇÕ´Ï´Ù. ±â¾÷µéÀº ÇÃ¶ó½ºÆ½ Àç·áÀÇ ¼øÈ¯¼ºÀ» ³ôÀ̱â À§ÇØ °íµµÀÇ ¿­ºÐÇØ, È¿¼ÒÀû ºÐÇØ, ¿ë¸Å ±â¹Ý ÀçȰ¿ë ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, 3D ÇÁ¸°ÆÃ°ú ÀûÃþ °¡°øÀº ¸ÂÃãÇü ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ ¿ëµµ¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. °í¼º´É ¿­°¡¼Ò¼º Çʶó¸àÆ®, ¾×»ó ¼öÁö, °­È­ Æú¸®¸Ó º¹ÇÕÀç·áÀÇ µµÀÔÀ¸·Î Ç×°ø¿ìÁÖ, ÇコÄɾî, »ê¾÷¿ë °ø±¸ÀÇ º¹ÀâÇÑ ÇÃ¶ó½ºÆ½ ºÎǰÀÇ ÁÖ¹®Çü Á¦Á¶°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ź¼Ò¼¶À¯ °­È­ PEEK, UV °æÈ­Çü ±¤ÁßÇÕü, »ýºÐÇØ¼º PLA ºí·»µå µî ÷´Ü ¼ÒÀç´Â 3D ÇÁ¸°ÆÃ ÇÃ¶ó½ºÆ½ ºÎǰÀÇ ±â°èÀû °­µµ¿Í Á¤¹Ðµµ¸¦ Çâ»ó½Ãŵ´Ï´Ù.

¶ÇÇÑ, ³ª³ëº¹ÇÕü ¹× Æú¸®¸Ó ºí·»µù ±â¼úÀº ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ ±â°èÀû Ư¼º, ¿­Àû Ư¼º, À庮 Ư¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±×·¡ÇÉ, ź¼Ò³ª³ëÆ©ºê, ³ª³ëŬ·¹ÀÌ °­È­À縦 Á¢¸ñÇÏ¿© ÀÚµ¿Â÷, ±¹¹æ, °í¿Â¿ëµµ¿¡ ÀûÇÕÇÑ Ãʰ­·Â, °æ·® ÇÃ¶ó½ºÆ½ ¼ÒÀç°¡ ¸¸µé¾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Æú¸®¸ÓÀÇ ÇÕ±ÝÈ­ ¹× ÇÏÀ̺긮µå ¼öÁö ¹èÇÕÀÇ Çõ½ÅÀ¸·Î °¡ÀüÁ¦Ç°, »ê¾÷¿ë ÄÚÆÃ, »ýüÀûÇÕ¼º ÀÇ·á±â±â¿¡¼­ Àç·áÀÇ ¼º´ÉÀ» Á¶Á¤ÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÇÃ¶ó½ºÆ½ ¼öÁö ¼ö¿ä¸¦ ÁÖµµÇÏ´Â ÁÖ¿ä ¿ëµµ´Â?

ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀåÀº Æ÷Àå, ÀÚµ¿Â÷, °ÇÃà, ÇコÄɾî, ÀüÀÚÁ¦Ç°, ¼ÒºñÀç µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °¢ ¾÷°è´Â ¼º´É, ºñ¿ë, ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϴ Ư¼ö ¼öÁö ¹èÇÕ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Æ÷Àå ºÐ¾ß´Â ¿©ÀüÈ÷ ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ °¡Àå Å« ¼ÒºñóÀ̸ç, ¼¼°è ¼öÁö »ý»ê·®ÀÇ Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET), Æú¸®ÇÁ·ÎÇÊ·»(PP), °í¹Ðµµ Æú¸®¿¡Æ¿·»(HDPE), Æú¸®½ºÆ¼·»(PS) µîÀÇ Àç·á´Â ½Äǰ Æ÷Àå, ½ÄÀ½·á ¿ë±â, Ç÷º¼­ºí Çʸ§, »ê¾÷¿ë Æ÷Àå¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÅðºñÈ­ ¹× ÀçȰ¿ëÀ» Æ÷ÇÔÇÑ Áö¼Ó °¡´ÉÇÑ Æ÷Àå ¼Ö·ç¼ÇÀÇ µîÀåÀº ÇÃ¶ó½ºÆ½ Æ÷ÀåÀÇ ¹Ì·¡¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷¿¡¼­´Â ÀÚµ¿Â÷ÀÇ °æ·®È­¿Í ¿¬ºñ È¿À²À» Ãß±¸Çϸ鼭 ±Ý¼Ó ºÎǰÀ» ´ëüÇÏ´Â ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Æú¸®¾Æ¹Ìµå(PA), Æú¸®Ä«º¸³×ÀÌÆ®(PC), ¿­°¡¼Ò¼º ¿¤¶ó½ºÅä¸Ó(TPE), Æú¸®¿ì·¹Åº(PU)°ú °°Àº °í¼º´É Æú¸®¸Ó´Â ÀÚµ¿Â÷ ³»ÀåÀç, º¸´Ö ¾Æ·¡ ºÎǰ, ±¸Á¶ º¸°­, Àü±âÀÚµ¿Â÷ ¹èÅ͸® ÄÉÀ̽º µî¿¡ »ç¿ëµË´Ï´Ù. Àü±âÂ÷¿Í ÇÏÀ̺긮µå ÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº ³»¿­¼º, ³­¿¬¼º, °æ·®È­ ÇÃ¶ó½ºÆ½ ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÀÇ·á ¹× ÀÇ·á±â±â »ê¾÷µµ ÀÇ·á¿ë ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ ÁÖ¿ä ¼ÒºñÀÚÀÔ´Ï´Ù. Æú¸®¿¡Å׸£¿¡Å׸£ÄÉÅæ(PEEK), Æú¸®¿¡Æ¿·»(PE), Æú¸®¿°È­ºñ´Ò(PVC) µîÀÇ ¼ÒÀç´Â ¼ö¼ú±â±¸, ÀÇ·á¿ë Æ©ºê, À̽ÄÇü ±â±¸, ¾à¹° Àü´Þ ½Ã½ºÅÛ µî¿¡ »ç¿ëµË´Ï´Ù. ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Ç°ú ÀÇ·á±â¼úÀÇ ¹ßÀüÀ¸·Î »ýüÀûÇÕ¼º, ¸ê±Õ¼º, Ç×±Õ¼ºÀ» °®Ãá ÇÃ¶ó½ºÆ½ ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÀüÀÚ ¹× Àü±â »ê¾÷¿¡¼­ ÇÃ¶ó½ºÆ½ ¼öÁö´Â Àý¿¬Ã¼, ȸ·Î ±âÆÇ, ÄÉÀ̽º, ³»¿­ ºÎǰ¿¡ ÇʼöÀûÀÔ´Ï´Ù. Æú¸®Æä´Ò·»¼³ÆÄÀ̵å(PPS), ¾×Á¤ Æú¸®¸Ó(LCP), Æú¸®À̵̹å(PI) µîÀÇ °í¼º´É ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½Àº 5G ÀÎÇÁ¶ó, ¹ÝµµÃ¼, IoT µð¹ÙÀ̽ºÀÇ ¼ÒÇüÈ­, °í¿Â ¾ÈÁ¤¼º, Àü±âÀû ¼º´É Çâ»óÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀåÀÇ ¼ºÀåÀº Æú¸®¸Ó Á¦Á¶ ±â¼ú ¹ßÀü, °í¼º´É Áö¼Ó °¡´ÉÇÑ ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÇÃ¶ó½ºÆ½ Æó±â¹° ±ÔÁ¦ Á¤Ã¥, ÀçȰ¿ë °¡´ÉÇÑ Àç·á¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼±È£µµ º¯È­ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ Áß Çϳª´Â Áö¼Ó°¡´É¼º°ú ¼øÈ¯ °æÁ¦ ¿øÄ¢¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¼¼°è °¢±¹ÀÇ Á¤ºÎ¿Í ±â¾÷µéÀº ÇÃ¶ó½ºÆ½ Æó±â¹° °¨Ãà Á¤Ã¥À» ½ÃÇàÇϰí, ÇÃ¶ó½ºÆ½ Á¦Ç°¿¡ ÀçȰ¿ë ÇÔÀ¯¸¦ Àǹ«È­Çϰí, ÅðºñÈ­ °¡´ÉÇÑ ´ëüǰÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¹ÙÀÌ¿À ¼öÁö, È­ÇÐ ÀçȰ¿ë ÀÎÇÁ¶ó, ÷´Ü Æó±â¹° °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷ »ý»êÀÌ È®´ëµÇ°í ¿¬ºñ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó °í°­µµ ³»¿­¼º ÇÃ¶ó½ºÆ½ ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 Â÷·® ¹«°Ô¸¦ ÁÙÀÏ ¼ö ÀÖ´Â ¿­°¡¼Ò¼º ÇÃ¶ó½ºÆ½°ú º¹ÇÕ¼ÒÀç¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, °íºÐÀÚ È­ÇÐ ¹× ÷´Ü Á¦Á¶±â¼úÀÇ Çõ½ÅÀ¸·Î ¼º´ÉÀÌ Çâ»óµÇ°í ȯ°æ ºÎÇϰ¡ ÀûÀº Â÷¼¼´ë ¼öÁö¸¦ °³¹ßÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ½º¸¶Æ® ÇÃ¶ó½ºÆ½, Àüµµ¼º Æú¸®¸Ó, Ç×±Õ¼º ¼öÁö°¡ ºÎ»óÇϸ鼭 ÇコÄɾî, ÀüÀÚ, »ê¾÷ ÀÚµ¿È­ ºÐ¾ß¿¡¼­ »õ·Î¿î ÀÀ¿ë ºÐ¾ß°¡ »ý°Ü³ª°í ÀÖ½À´Ï´Ù.

»ê¾÷°è°¡ Àç·á È¿À²¼º, ±ÔÁ¦ Áؼö, Áö¼Ó°¡´É¼ºÀ» ÃÖ¿ì¼±À¸·Î »ï°í ÀÖ´Â °¡¿îµ¥, ÇÃ¶ó½ºÆ½ ¼öÁö ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀå¼¼¸¦ À̾ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÷´Ü °íºÐÀÚ °úÇÐ, Áö¼Ó °¡´ÉÇÑ Àç·á Çõ½Å, ÀçȰ¿ë ±â¼ú¿¡ ÅõÀÚÇÏ´Â ±â¾÷Àº ÇÃ¶ó½ºÆ½ »ê¾÷ÀÇ ´ÙÀ½ ´Ü°èÀÇ º¯È­¸¦ ÁÖµµÇϰí ÇÃ¶ó½ºÆ½ ¼öÁöÀÇ º¸´Ù Áö¼Ó °¡´ÉÇÏ°í °í¼º´ÉÀÇ ¹Ì·¡¸¦ º¸ÀåÇÒ °ÍÀÔ´Ï´Ù.

ºÎ¹®

Á¦Ç°(°áÁ¤¼º ¼öÁö, ºñ°áÁ¤¼º ¼öÁö, ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½, ½´ÆÛ ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½), ¿ëµµ(Æ÷Àå, ÀÚµ¿Â÷, °Ç¼³, Àü±â ¹× ÀüÀÚ, ¹°·ù, ¼ÒºñÀç, ¼¶À¯ ¹× ÀÇ·ù, °¡±¸ ¹× ħ±¸, ³ó¾÷, ÀÇ·á±â±â, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Plastic Resins Market to Reach US$997.9 Billion by 2030

The global market for Plastic Resins estimated at US$840.7 Billion in the year 2024, is expected to reach US$997.9 Billion by 2030, growing at a CAGR of 2.9% over the analysis period 2024-2030. Crystalline Resin, one of the segments analyzed in the report, is expected to record a 2.3% CAGR and reach US$389.1 Billion by the end of the analysis period. Growth in the Non-crystalline Resin segment is estimated at 3.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$229.1 Billion While China is Forecast to Grow at 5.4% CAGR

The Plastic Resins market in the U.S. is estimated at US$229.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$193.2 Billion by the year 2030 trailing a CAGR of 5.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.2% and 2.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.6% CAGR.

Global Plastic Resin Market - Key Trends & Drivers Summarized

The plastic resin market is experiencing significant growth, driven by expanding applications in packaging, automotive, healthcare, construction, and consumer goods. Plastic resins serve as the base material for manufacturing a wide range of plastic products, offering lightweight, durable, and cost-effective solutions across multiple industries. With the increasing global demand for high-performance plastics, manufacturers are investing in innovative resin formulations, bio-based alternatives, and sustainable recycling solutions to meet evolving market needs.

One of the most prominent trends shaping the market is the shift toward biodegradable and bio-based resins. As environmental concerns and government regulations on plastic waste intensify, industries are adopting plant-derived resins such as polylactic acid (PLA), polyhydroxyalkanoates (PHA), and bio-based polyethylene (PE) and polypropylene (PP). These eco-friendly alternatives offer comparable mechanical properties to conventional petroleum-based resins while reducing carbon footprint and landfill waste. Major brands in packaging and FMCG sectors are increasingly using compostable plastic resins to comply with sustainability initiatives and plastic bans.

Another key driver is the growing demand for high-performance engineered resins in automotive, aerospace, and electronics sectors. Advanced polymer materials such as polyether ether ketone (PEEK), polycarbonate (PC), acrylonitrile butadiene styrene (ABS), and thermoplastic polyurethanes (TPU) are replacing traditional materials due to their high strength, heat resistance, chemical resistance, and lightweight properties. These high-performance plastics are essential for lightweight vehicle manufacturing, electric vehicle (EV) battery casings, medical device components, and 5G telecommunications equipment.

Furthermore, plastic resin recycling and circular economy initiatives are reshaping market dynamics. The emergence of mechanical and chemical recycling technologies has enabled post-consumer and post-industrial plastic waste to be converted into high-quality resins for reuse in packaging, textiles, and automotive interiors. Companies are investing in recycled PET (rPET), recycled PP, and recycled polyethylene resins to meet corporate sustainability goals and regulatory mandates on recycled content in plastic products.

How Are Technological Innovations Transforming Plastic Resin Manufacturing?

Advancements in polymer chemistry, nanotechnology, and resin processing techniques are driving the development of next-generation plastic resins with enhanced properties, sustainability, and performance. Innovations in catalyst technology, bio-polymer synthesis, and additive manufacturing are enabling the production of stronger, lighter, and more versatile plastic resins.

One of the most significant breakthroughs is the development of smart polymers and self-healing resins. These materials exhibit adaptive properties, such as shape memory, self-repairing capabilities, and responsiveness to environmental stimuli (e.g., heat, light, or pH changes). Smart resins are being integrated into self-healing coatings, aerospace components, and medical implants, offering improved longevity and reduced maintenance costs.

Another major innovation is chemical recycling and depolymerization technology, which allows for plastic waste to be broken down into monomers and repolymerized into virgin-quality resins. Unlike traditional mechanical recycling, chemical recycling processes retain the structural integrity of plastic resins, making them suitable for food-grade applications and high-performance engineering plastics. Companies are leveraging advanced pyrolysis, enzymatic depolymerization, and solvent-based recycling techniques to enhance the circularity of plastic materials.

Additionally, 3D printing and additive manufacturing are expanding the applications of custom-engineered plastic resins. The introduction of high-performance thermoplastic filaments, liquid resins, and reinforced polymer composites is enabling on-demand manufacturing of complex plastic parts in aerospace, healthcare, and industrial tooling. Advanced materials such as carbon fiber-reinforced PEEK, UV-curable photopolymers, and biodegradable PLA blends are enhancing the mechanical strength and precision of 3D-printed plastic components.

Moreover, nanocomposites and polymer blending technologies are improving the mechanical, thermal, and barrier properties of plastic resins. The incorporation of graphene, carbon nanotubes, and nano-clay reinforcements is creating ultra-strong, lightweight plastic materials suitable for automotive, defense, and high-temperature applications. Innovations in polymer alloying and hybrid resin formulations are also expanding the possibilities for tailored material performance in consumer electronics, industrial coatings, and biocompatible medical devices.

What Are the Key Market Applications Driving Plastic Resin Demand?

The plastic resin market is highly diverse, with applications spanning packaging, automotive, construction, healthcare, electronics, and consumer goods. Each industry is driving demand for specialized resin formulations that meet performance, cost, and regulatory requirements.

The packaging sector remains the largest consumer of plastic resins, accounting for a significant share of global resin production. Materials such as polyethylene terephthalate (PET), polypropylene (PP), high-density polyethylene (HDPE), and polystyrene (PS) are widely used in food packaging, beverage containers, flexible films, and industrial packaging. The rise of sustainable packaging solutions, including compostable and recycled plastic resins, is reshaping the future of plastic packaging.

In the automotive industry, the push for lightweight vehicles and fuel efficiency has led to increased use of plastic resins to replace metal components. High-performance polymers such as polyamide (PA), polycarbonate (PC), thermoplastic elastomers (TPE), and polyurethane (PU) are used in interior trims, under-the-hood components, structural reinforcements, and electric vehicle battery enclosures. The transition to electric and hybrid vehicles is further accelerating demand for heat-resistant, flame-retardant, and lightweight plastic resins.

The healthcare and medical device industry is another major consumer of medical-grade plastic resins. Materials such as polyether ether ketone (PEEK), polyethylene (PE), and polyvinyl chloride (PVC) are used in surgical instruments, medical tubing, implantable devices, and drug-delivery systems. The demand for biocompatible, sterilizable, and antimicrobial plastic resins is growing due to stringent regulatory requirements and advancements in medical technology.

In the electronics and electrical industry, plastic resins are essential for insulation, circuit boards, enclosures, and heat-resistant components. High-performance thermoplastics such as polyphenylene sulfide (PPS), liquid crystal polymers (LCP), and polyimides (PI) are enabling miniaturization, high-temperature stability, and enhanced electrical performance in 5G infrastructure, semiconductors, and IoT devices.

What Factors Are Driving the Growth of the Plastic Resin Market?

The growth in the plastic resin market is driven by several factors, including technological advancements in polymer manufacturing, increasing demand for high-performance and sustainable resins, regulatory policies on plastic waste, and shifting consumer preferences toward recyclable materials.

One of the major market drivers is the growing emphasis on sustainability and circular economy principles. Governments and corporations worldwide are implementing plastic waste reduction policies, mandating recycled content in plastic products, and promoting compostable alternatives. This has led to increased investments in bio-based resins, chemical recycling infrastructure, and advanced waste management solutions.

Another key factor is the rising demand for lightweight, durable materials in the automotive and aerospace sectors. As electric vehicle production scales up and fuel efficiency regulations tighten, the need for high-strength, heat-resistant plastic resins is expanding. Manufacturers are focusing on thermoplastics and composites that reduce vehicle weight while maintaining structural integrity.

Additionally, innovation in polymer chemistry and advanced manufacturing techniques is enabling the development of next-generation resins with enhanced performance and lower environmental impact. The rise of smart plastics, conductive polymers, and antimicrobial resins is driving new applications in healthcare, electronics, and industrial automation.

As industries continue to prioritize material efficiency, regulatory compliance, and sustainability, the plastic resin market is poised for sustained growth. Companies that invest in cutting-edge polymer science, sustainable material innovation, and recycling technologies will lead the next phase of plastic industry transformation, ensuring a more sustainable and high-performance future for plastic resins.

SCOPE OF STUDY:

The report analyzes the Plastic Resins market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Crystalline Resin, Non-crystalline Resin, Engineering Plastics, Super Engineering Plastics); Application (Packaging, Automotive, Construction, Electrical & Electronics, Logistics, Consumer Goods, Textiles & Clothing, Furniture & Bedding, Agriculture, Medical Devices, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â