¼¼°èÀÇ ¾×ü ó¸® ±â¼ú ½ÃÀå
Liquid Handling Technology
»óǰÄÚµå : 1774987
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 464 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¾×ü ó¸® ±â¼ú ¼¼°è ½ÃÀåÀº 2030³â±îÁö 172¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 113¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¾×ü ó¸® ±â¼ú ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 7.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 172¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÚµ¿ ¿öÅ©½ºÅ×À̼ÇÀº CAGR 6.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 95¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇü ±â±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 31¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 11.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¾×ü ó¸® ±â¼ú ½ÃÀåÀº 2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 11.2%·Î ¼ºÀåÇÏ¿© 2030³â±îÁö ¿¹Ãø ½ÃÀå ±Ô¸ð 36¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.7%¿Í 7.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¾×ü ó¸® ±â¼ú ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¾×ü ó¸® ±â¼úÀº ½ÇÇè½Ç ¿î¿µ¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

Á¤¹ÐÇÑ À¯Ã¼ °ü¸®¿¡ ÇʼöÀûÀÎ ¾×ü ó¸® ±â¼úÀº ½ÇÇè½Ç ¿¬±¸ ¹× »ê¾÷ ÀÀ¿ë ºÐ¾ßÀÇ È¯°æÀ» ¿ÏÀüÈ÷ º¯È­½ÃÄ×½À´Ï´Ù. ½ÇÇè½Ç, Á¦¾àȸ»ç, »ý¸í°øÇÐ »ê¾÷°è¿¡¼­´Â ½ÇÇèÀÇ È¿À²¼º, Á¤È®¼º, ÀçÇö¼ºÀ» ³ôÀ̱â À§ÇØ ¾×ü ó¸® ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¼öµ¿ ÇÇÆêÆÃ°ú ´Þ¸®, ÀÚµ¿ ¾×ü ó¸® ¼Ö·ç¼ÇÀº ÈÞÀ¯ÁõÀ» ÃÖ¼ÒÈ­Çϰí, ³ôÀº Åõ¾à ½ºÅ©¸®´×, ¾à¹° °³¹ß ¹× Áø´Ü ÀýÂ÷ÀÇ Àϰü¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ½Å¼ÓÇϰí È®Àå °¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÇÇè½ÇÀº Á¤¹ÐÇÑ ºÐÁÖ, ÈíÀÔ ¹× ½Ã·á Àü󸮸¦ ¿ëÀÌÇÏ°Ô Çϴ ÷´Ü ·Îº¿ ¾×ü ó¸® ½Ã½ºÅÛÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿È­µÈ Ç÷§ÆûÀº ƯÈ÷ ¾×üÀÇ ¾çÀÌ Á¶±Ý¸¸ ºÒÀÏÄ¡ÇØµµ ½ÇÇè °á°ú°¡ ´Þ¶óÁú ¼ö ÀÖ´Â À¯Àüü ¹× ´Ü¹éÁúüÇÐ ¿¬±¸¿¡ À¯¸®ÇÕ´Ï´Ù. ¶ÇÇÑ, ¾×ü ó¸® ±â¼úÀº ÀΰøÁö´É(AI) ¹× ±â°è ÇнÀ°ú Å©°Ô ÅëÇÕµÇ¾î Æ¯Á¤ ½ÇÇè½ÇÀÇ ¿ä±¸¿¡ ÀûÀÀÇÏ´Â ÀÚü ÃÖÀûÈ­ ¿öÅ©Ç÷ο츦 °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇÏÀÌ ½½·¯Æ® ½ºÅ©¸®´×°ú ¹Ì¼¼À¯Ã¼ °øÇп¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¾×ü ó¸® ½Ã½ºÅÛÀº ÇÇÆêÆÃ Á¤È®µµ Çâ»ó, ¿À¿° ¾ø´Â ½Ã·á À̵¿, »ç¿ëÀÚ Ä£È­ÀûÀÎ ¼ÒÇÁÆ®¿þ¾î ÀÎÅÍÆäÀ̽º µî °è¼Ó ÁøÈ­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ½ÇÇè È¿À²À» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ½Ã¾àÀÇ ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÏ¿© ºñ¿ë Àý°¨¿¡µµ ±â¿©ÇÕ´Ï´Ù. ¸ÂÃãÇü ÀÇ·á, ½Å¾à ½ºÅ©¸®´×, ÇÕ¼º»ý¹°ÇÐ µî ¼¼°è ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê°¡ È®´ëµÊ¿¡ µû¶ó ¾×ü ó¸® ±â¼úÀº ½ÇÇè½Ç ¿î¿µÀÇ ±âº» ÃàÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¾×ü ó¸® ½Ã½ºÅÛÀÇ Ãֽбâ¼ú Çõ½ÅÀº ¹«¾ùÀΰ¡?

±â¼ú ¹ßÀüÀº ¾×ü ó¸® Àåºñ¸¦ Å©°Ô °³¼±ÇÏ¿© ´õ ³ôÀº Á¤È®µµ, ´Ù¿ëµµ¼º, ÀÚµ¿È­ ´É·ÂÀ» °¡Á® ¿Ô½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­ °¡Àå ȹ±âÀûÀÎ °³¹ß Áß Çϳª´Â ÇÇÆê¿¡ Á÷Á¢ Á¢ÃËÇÏÁö ¾Ê°íµµ ¼Ò·®ÀÇ ¾×ü¸¦ À̼ÛÇÒ ¼ö ÀÖ´Â ºñÁ¢ÃË½Ä ¾×ü ó¸® ½Ã½ºÅÛÀÇ µîÀåÀ¸·Î, À½ÆÄ ¶Ç´Â ÇÇ¿¡Á¶ ºÐ¹è¸¦ ÀÌ¿ëÇÑ ºñÁ¢ÃË½Ä ¾×ü ó¸® ½Ã½ºÅÛÀÌ µîÀåÇß½À´Ï´Ù. À̸¦ ÅëÇØ À¯Àüü ºÐ¼®À̳ª °í¼øµµ ¾à¹° ½ºÅ©¸®´×°ú °°Àº ¹Î°¨ÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ä¼ÒÀÎ ±³Â÷ ¿À¿°ÀÇ À§ÇèÀ» Á¦°ÅÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì¼¼À¯Ã¼ º£½ºÀÇ ¾×ü 󸮴 ƯÈ÷ ÇöÀå Áø´Ü ¹× ¸ÂÃãÇü ÀÇ·á¿¡¼­ ·¦¿ÂĨ Ç÷§Æû¿¡¼­ ±Ø¼Ò·®ÀÇ ¾×ü¸¦ Á¦¾îÇϸ鼭 Á¶ÀÛÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼­ ¸¹Àº °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Æ®·»µå´Â Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú IoT(»ç¹°ÀÎÅͳÝ)ÀÇ ÅëÇÕÀ¸·Î, Àü ¼¼°è ½ÇÇè½Ç °£ÀÇ ¿ø°Ý ¸ð´ÏÅ͸µ°ú µ¥ÀÌÅÍ °øÀ¯¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¬°á¼ºÀº ¾×ü ÁÖÀÔ °øÁ¤ÀÇ ½Ç½Ã°£ ǰÁú °ü¸®¸¦ º¸ÀåÇÏ´Â µ¿½Ã¿¡ °øµ¿ ¿¬±¸¸¦ °­È­ÇÕ´Ï´Ù. ȯ°æÀûÀ¸·Î Áö¼Ó°¡´ÉÇÑ ¾×ü ó¸® ¼Ö·ç¼ÇÀ¸·ÎÀÇ Àüȯµµ µÎµå·¯Áö°í ÀÖÀ¸¸ç, °¢ ¾÷üµéÀº ¿¡³ÊÁö È¿À²ÀÌ ³ô°í ÀçȰ¿ëÀÌ °¡´ÉÇÏ¸ç Æó±â¹°ÀÌ ÀûÀº ÇÇÆêÆÃ ±â¼úÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿ ¾×ü ó¸® ½Ã½ºÅÛÀº ÇöÀç Á¤±³ÇÑ ¼¾¼­, ¸Ó½ÅºñÀü, ÇÁ·Î±×·¡¹Ö °¡´ÉÇÑ ¼ÒÇÁÆ®¿þ¾î¸¦ °®Ãß°í ÀÖÀ¸¸ç, ¿¬±¸ÀÚµéÀº ¼¼Æ÷¹è¾ç¿¡¼­ Â÷¼¼´ë ½ÃÄö½Ì¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ ÇÁ·ÎÅäÄÝÀ» ¸ÂÃãÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾×ü ó¸® ºÎǰ Á¦Á¶¿¡ 3D ÇÁ¸°ÆÃÀ» µµÀÔÇÏ¸é ¼³°è À¯¿¬¼ºÀ» ³ôÀ̸鼭 Á¦Á¶ ºñ¿ëÀ» Å©°Ô Àý°¨ÇÒ ¼ö ÀÖ¾î Áß°ß ¹× ½Å»ý ¿¬±¸ ±â°üÀÌ ÀÌ·¯ÇÑ ±â¼úÀ» º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù.

¼ÒºñÀÚ ¼ö¿ä´Â ¾î¶»°Ô ¾×ü ó¸® ±â¼ú ½ÃÀåÀ» Çü¼ºÇϰí Àִ°¡?

»ý¹°ÇÐ ¹× È­ÇÐ ¿¬±¸ÀÇ º¹À⼺ Áõ°¡¿¡ µû¶ó °íÁ¤¹Ð ¾×ü ó¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ Á¦¾à ¾÷°è¿¡¼­´Â ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀÎÀ» °¡¼ÓÈ­Çϱâ À§ÇØ Ã·´Ü ºÐÁÖ-ºÐÁÖ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿ÀÀǾàǰ ¹× À¯ÀüÀÚ Ä¡·á ¿¬±¸ÀÇ Áö¼ÓÀûÀÎ È®´ë´Â °í¼øµµ, ¹«°øÇØ ¾×ü ó¸® ¼Ö·ç¼ÇÀÇ Çʿ伺À» ´õ¿í ºÎÃß±â°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­ ¿¬±¸ Àåºñ¿¡ ÅõÀÚÇÏ´Â À§Å¹¿¬±¸±â°ü(CRO)°ú Çмú±â°üÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¾×ü ó¸® ±â¼úÀÇ °í°´ ±â¹ÝÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚ¿Í R&D ´ã´çÀÚµéÀº ÇöÀç ¼öÀÛ¾÷ ÇÇÆêÆÃ°ú °ü·ÃµÈ ¹Ýº¹Àû););ÀÎ ÇÇ·Î ¼Õ»óÀ» ÁÙÀ̱â À§ÇØ »ç¿ëÀÚ Ä£È­ÀûÀ̰í ÀÎü°øÇÐÀûÀÎ µðÀÚÀÎÀ» ¿ì¼±½ÃÇϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷üµéÀº »ç¿ëÀÚ Á¤ÀÇ °¡´ÉÇÑ ÄÁÆ®·ÑÀ» °®Ãá Á÷°üÀûÀÎ ÀÎÅÍÆäÀ̽º¸¦ °³¹ßÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ½ÄÀ½·á »ê¾÷°ú ȯ°æ ½ÃÇè½Çµµ ¿À¿° ºÐ¼® ¹× ǰÁú º¸Áõ ½ÃÇè¿¡ ¾×ü ó¸® ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ¿© ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. µðÁöÅÐÈ­·Î ÀÎÇØ ½ÇÇè½Ç ¿î¿µÀÌ °è¼Ó ÀçÆíµÇ°í ÀÖ´Â °¡¿îµ¥, ½Ç½Ã°£ µ¥ÀÌÅÍ ·Î±ë°ú ÄÄÇöóÀ̾𽺠¸ð´ÏÅ͸µÀ» ¿ëÀÌÇÏ°Ô Çϴ Ŭ¶ó¿ìµå ±â¹Ý ¾×ü ó¸® Ç÷§ÆûÀÌ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¿ÏÀü ÀÚµ¿È­µÈ ¿öÅ©¾î¿þÀÌ ½Ã½ºÅÛÀÌ ¼±È£µÇ°í ÀÖÀ¸¸ç, »ç¶÷ÀÇ °³ÀÔ ¾øÀÌ º¹ÀâÇÑ ¾×ü ó¸® ÇÁ·ÎÅäÄÝÀ» ¼öÇàÇÒ ¼ö ÀÖ´Â ·Îº¿ ¿öÅ©½ºÅ×À̼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦¾àȸ»ç ¹× ÀÓ»ó ½ÇÇè½ÇÀÇ ±ÔÁ¦ Áؼö ¿ä±¸»çÇ×Àº ÃßÀû °¡´ÉÇÑ °ËÁõ °¡´ÉÇÑ ¾×ü ó¸® ¿öÅ©Ç÷οìÀÇ Çʿ伺À» °­Á¶ÇÏ¸ç ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ½ÇÇè½ÇÀÇ È¿À²¼º, µ¥ÀÌÅÍ ¹«°á¼º ¹× ÀÚµ¿È­ÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÃÖ÷´Ü ¾×ü ó¸® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¾×ü ó¸® ±â¼ú ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

¾×ü ó¸® ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀº ½ÇÇè½Ç ÀÚµ¿È­ ¹ßÀü, °í¼øµµ ½ºÅ©¸®´×¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »ý¹° ÀÇÇÐ ¿¬±¸ÀÇ º¹À⼺ Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. ½Å¾à °³¹ß °úÁ¤¿¡¼­ ºÐ¼® °³¹ß, È­ÇÕ¹° ½ºÅ©¸®´×, ¼¼Æ÷¹è¾ç ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ Á¤¹ÐÇÑ ¾×ü 󸮰¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Á¦¾à »ê¾÷°ú »ý¸í°øÇÐ »ê¾÷Àº ½ÃÀå È®´ëÀÇ ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ, °¨¿°¼º ÁúȯÀÇ Áõ°¡¿Í ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Áø´Ü ½ÇÇè½Ç¿¡¼­ ¾×ü ó¸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë ½ÃÄö½Ì(NGS)°ú ÁßÇÕÈ¿¼Ò ¿¬¼â ¹ÝÀÀ(PCR) ±â¼úÀÌ ±¤¹üÀ§ÇÏ°Ô Ã¤ÅõǸ鼭 °íÁ¤¹Ð, ¹«°øÇØ ¾×ü ó¸® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý¸í°úÇÐ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú Çмú ¿¬±¸ ±â°üÀÇ È®´ë·Î ÀÎÇØ ÀÚµ¿ ¾×ü ó¸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾×ü ó¸® Àåºñ¿¡ AI¿Í ¸Ó½Å·¯´×À» ÅëÇÕÇÏ¿© ÀÛ¾÷ È帧ÀÇ ÃÖÀûÈ­¸¦ °­È­ÇÏ°í ¹Ýº¹¼ºÀ» Çâ»ó½ÃŰ¸é¼­ ¼öÀÛ¾÷ °³ÀÔÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ½ÇÇè½Ç ¿î¿µÀÇ Áö¼Ó°¡´É¼ºÀ¸·ÎÀÇ ÀüȯÀ¸·Î, ½Ã¾à Æó±â ¹× ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖ¼ÒÈ­Çϴ ģȯ°æ ¾×ü ó¸® ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½ÇÇè½Ç ÇÁ·Î¼¼½ºÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ­·Î ÀÎÇØ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®, ÄÄÇöóÀ̾𽺠ÃßÀû ¹× ¿ø°Ý Á¦¾î°¡ °¡´ÉÇÑ ½º¸¶Æ® ¾×ü ó¸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ È¿À²¼º, Á¤È®¼º, È®À强À» Áß½ÃÇÏ´Â °¡¿îµ¥, ¾×ü ó¸® ±â¼úÀº °úÇÐÀû Çõ½Å°ú ¿¬±¸ ¹ßÀü¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐ ¹× ½º¸¶Æ® ·Îº¿ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¾×ü ó¸® ±â¼úÀº ÃֽнÇÇè½Ç ¿öÅ©Ç÷οìÀÇ ÇÙ½ÉÀ¸·Î Àå±âÀûÀÎ ½ÃÀå ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(ÀÚµ¿ ¿öÅ©½ºÅ×À̼Ç, ¼ÒÇü µð¹ÙÀ̽º, ¼Ò¸ðǰ), À¯Çü(ÀÚµ¿ ¾×ü ó¸®, ¼öµ¿ ¾×ü ó¸®, ¹ÝÀÚµ¿ ¾×ü ó¸®), ¿ëµµ(Drug Discovery ¹× ADME-µ¶¼º ¿¬±¸, ¾Ï ¹× À¯Àüü ¿¬±¸, ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö, ±âŸ), ÃÖÁ¾ ¿ëµµ(Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, ¼öŹ¿¬±¸±â°ü, Çмú¡¤¿¬±¸±â°ü)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Liquid Handling Technology Market to Reach US$17.2 Billion by 2030

The global market for Liquid Handling Technology estimated at US$11.3 Billion in the year 2024, is expected to reach US$17.2 Billion by 2030, growing at a CAGR of 7.3% over the analysis period 2024-2030. Automated Workstations, one of the segments analyzed in the report, is expected to record a 6.4% CAGR and reach US$9.5 Billion by the end of the analysis period. Growth in the Small Devices segment is estimated at 8.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.1 Billion While China is Forecast to Grow at 11.2% CAGR

The Liquid Handling Technology market in the U.S. is estimated at US$3.1 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.6 Billion by the year 2030 trailing a CAGR of 11.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.7% and 7.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.8% CAGR.

Global Liquid Handling Technology Market - Key Trends & Drivers Summarized

How Is Liquid Handling Technology Revolutionizing Laboratory Automation?

The landscape of laboratory research and industrial applications has been transformed by liquid handling technology, an essential component in precision fluid management. Laboratories, pharmaceutical firms, and biotech industries have increasingly adopted liquid handling systems to enhance efficiency, accuracy, and reproducibility in experiments. Unlike manual pipetting, automated liquid handling solutions minimize human error, ensuring consistency in high-throughput screening, drug discovery, and diagnostic procedures. With the growing demand for rapid and scalable solutions, laboratories have shifted toward advanced robotic liquid handling systems that facilitate precise dispensing, aspiration, and sample preparation. These automated platforms are particularly advantageous in genomic and proteomic research, where even slight inconsistencies in liquid volumes can alter experimental outcomes. Additionally, liquid handling technology has seen significant integration with artificial intelligence (AI) and machine learning, enabling self-optimizing workflows that adapt to specific laboratory needs. As the demand for high-throughput screening and microfluidics increases, liquid handling systems are expected to continue evolving with improved pipetting accuracy, contamination-free sample transfers, and user-friendly software interfaces. These advancements not only enhance experimental efficiency but also contribute to cost reduction by minimizing reagent wastage. With the global expansion of research initiatives in personalized medicine, drug screening, and synthetic biology, liquid handling technology remains a fundamental pillar of laboratory automation.

What Are the Latest Innovations in Liquid Handling Systems?

Technological advancements have significantly refined liquid handling equipment, leading to higher precision, versatility, and automation capabilities. One of the most groundbreaking developments in this field is the emergence of contactless liquid handling systems, which utilize acoustic waves or piezoelectric dispensing to transfer minuscule liquid volumes without direct pipette contact. This eliminates the risk of cross-contamination, a crucial factor in sensitive applications such as genomic analysis and high-throughput drug screening. Additionally, microfluidic-based liquid handling has gained traction, particularly in point-of-care diagnostics and personalized medicine, as it allows controlled manipulation of extremely small fluid volumes on lab-on-a-chip platforms. Another notable trend is the integration of cloud computing and the Internet of Things (IoT), enabling remote monitoring and data sharing among laboratories across the globe. This connectivity enhances collaborative research while ensuring real-time quality control in liquid dispensing processes. The transition toward environmentally sustainable liquid handling solutions is also evident, with manufacturers developing energy-efficient, recyclable, and low-waste pipetting technologies. Automated liquid handling systems now come equipped with sophisticated sensors, machine vision, and programmable software, allowing researchers to customize protocols for diverse applications ranging from cell culture to next-generation sequencing. Moreover, the adoption of 3D printing in liquid handling component fabrication has significantly reduced production costs while enhancing design flexibility, making these technologies more accessible to mid-sized and emerging research institutions.

How Is Consumer Demand Shaping the Liquid Handling Technology Market?

Consumer demand for high-precision liquid handling solutions has evolved in response to the increasing complexity of biological and chemical research. The pharmaceutical industry, in particular, has driven demand for advanced pipetting and dispensing systems to accelerate drug development pipelines. The ongoing expansion of biopharmaceuticals and gene therapy research has further fueled the need for high-throughput, contamination-free liquid handling solutions. Additionally, the rising number of contract research organizations (CROs) and academic institutions investing in automated laboratory equipment has broadened the customer base for liquid handling technologies. Researchers and laboratory personnel are now prioritizing user-friendly, ergonomic designs that reduce repetitive strain injuries associated with manual pipetting, leading manufacturers to develop intuitive interfaces with customizable controls. The food and beverage industry, as well as environmental testing laboratories, have also contributed to market growth by utilizing liquid handling systems for contamination analysis and quality assurance testing. As digitalization continues to reshape laboratory operations, cloud-based liquid handling platforms that facilitate real-time data logging and compliance monitoring have gained popularity. The preference for fully automated, walkaway systems has led to increased adoption of robotic workstations capable of performing complex liquid handling protocols without human intervention. Additionally, regulatory compliance requirements in pharmaceutical and clinical laboratories have emphasized the need for traceable, validated liquid handling workflows, further accelerating market growth. As consumer awareness of laboratory efficiency, data integrity, and automation benefits increases, demand for cutting-edge liquid handling technology continues to surge.

What Are the Key Growth Drivers in the Liquid Handling Technology Market?

The growth in the liquid handling technology market is driven by several factors, including advancements in laboratory automation, the increasing demand for high-throughput screening, and the rising complexity of biomedical research. The pharmaceutical and biotechnology industries are among the primary contributors to market expansion, as drug discovery and development processes require precise liquid handling for assay development, compound screening, and cell culture applications. Additionally, the increasing prevalence of infectious diseases and the growing focus on personalized medicine have fueled demand for liquid handling systems in diagnostic laboratories. The widespread adoption of next-generation sequencing (NGS) and polymerase chain reaction (PCR) techniques has further propelled the need for highly accurate and contamination-free liquid handling solutions. Moreover, government funding for life sciences research and the expansion of academic research institutes have increased investments in automated liquid handling systems. The integration of AI and machine learning in liquid handling devices has enhanced workflow optimization, reducing manual intervention while improving reproducibility. Another significant driver is the shift toward sustainability in laboratory operations, encouraging the adoption of eco-friendly liquid handling technologies that minimize reagent waste and energy consumption. Additionally, the rapid digitalization of laboratory processes has increased the demand for smart liquid handling systems capable of real-time data analysis, compliance tracking, and remote operation. As industries continue to emphasize efficiency, precision, and scalability, liquid handling technology remains a critical enabler of scientific innovation and research progress. The increasing adoption of robotics and smart lab automation solutions is expected to sustain long-term market growth, making liquid handling technology a cornerstone of modern laboratory workflows.

SCOPE OF STUDY:

The report analyzes the Liquid Handling Technology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Products (Automated Workstations, Small Devices, Consumables); Type (Automated Liquid Handling, Manual Liquid Handling, Semi-automated Liquid Handling); Application (Drug Discovery & ADME-Tox Research, Cancer & Genomic Research, Bioprocessing / Biotechnology, Others); End-Use (Pharma & Biotech Companies, Contract Research Organization, Academic & Research Institutes)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â