¼¼°èÀÇ ÀÚµ¿ ¾×ü ó¸®(ALH) ±â¼ú ½ÃÀå
Automated Liquid Handling (ALH) Technologies
»óǰÄÚµå : 1766898
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 365 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,225,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,675,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚµ¿ ¾×ü ó¸®(ALH) ±â¼ú ¼¼°è ½ÃÀåÀº 2030³â±îÁö 33¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 21¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚµ¿ ¾×ü ó¸®(ALH) ±â¼ú ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 7.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 33¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÚµ¿ ¾×ü ó¸® ¿öÅ©½ºÅ×À̼ÇÀº CAGR 7.6%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 23¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ã¾à¡¤¼Ò¸ðǰ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 5¾ï 5,000¸¸ ´Þ·¯, Áß±¹Àº CAGR 11.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚµ¿ ¾×ü ó¸®(ALH) ±â¼ú ½ÃÀåÀº 2024³â¿¡´Â 5¾ï 5,000¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 4,930¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 11.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.4%¿Í 6.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿ ¾×ü ó¸®(ALH) ±â¼ú ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÚµ¿ ¾×ü ó¸® ±â¼úÀ̶õ?

ÀÚµ¿ ¾×ü ó¸®(ALH) ±â¼úÀº ¿¬±¸ ȯ°æ¿¡¼­ ¾×ü ½Ã·áÀÇ Á¤È®ÇÑ À̵¿À» °£¼ÒÈ­Çϰí Ç¥ÁØÈ­Çϴ ÷´Ü ½Ã½ºÅÛÀ¸·Î, ¿¬±¸, Áø´Ü ¹× ÀǾàǰ °³¹ß¿¡ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¾×ü À̼Û, ÇÇÆêÆÃ ¹× È¥ÇÕ °úÁ¤À» ÀÚµ¿È­ÇÏ¿© ±âÁ¸¿¡´Â ½ÇÇè½Ç ±â¼úÀÚ°¡ ¼¼½ÉÇÑ ÁÖÀǸ¦ ±â¿ï¿© ¼öÀÛ¾÷À¸·Î ¼öÇàÇØ¾ß Çß´ø ÀÛ¾÷À» ¼öÇàÇϸç, ALH ±â¼úÀº ·Îº¿ ÆÈ°ú Á¤¹Ð ÇÇÆêÀ» »ç¿ëÇÏ¿© Á¤È®ÇÑ ¾çÀÇ ¾×ü¸¦ ³ôÀº ÀçÇö¼ºÀ¸·Î ºÐÁÖÇÒ ¼ö ÀÖ¾î ÀÎÀ§ÀûÀÎ Á¶ÀÛÀÌ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù. ALH ½Ã½ºÅÛÀÇ ´Ù¿ëµµ¼ºÀº ¸ÂÃãÇü ÇÁ·ÎÅäÄÝ ÇÁ·Î±×·¡¹Ö, ¼Ò·®ºÎÅÍ ´ë·®±îÁö Ãë±Þ, ¿¬¼Ó Èñ¼®, ½Ã·á Ç¥ÁØÈ­, ºÐ¼® Áغñ¿Í °°Àº º¹ÀâÇÑ ÀýÂ÷¸¦ °ü¸®ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ¸ç, ALH ½Ã½ºÅÛÀÇ ´Ù¾ç¼ºÀº ½ÇÇèÀÇ Àϰü¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ALH ½Ã½ºÅÛÀº Á¾Á¾ ´Ù¸¥ ½ÇÇè½Ç Àåºñ ¹× ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû°ú ÅëÇÕµÇ¾î ½ÇÇè½Ç Á¤º¸ °ü¸® ½Ã½ºÅÛ(LIMS) ¹× ±âŸ ºÐ¼® Àåºñ¿Í µ¿±âÈ­ÇÏ¿© ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ALH ±â¼úÀº ¾×ü Ãë±Þ ÀÛ¾÷À» ÀÚµ¿È­ÇÔÀ¸·Î½á °úÇÐÀÚÀÇ ±ÍÁßÇÑ ½Ã°£À» Àý¾àÇϰí, ½Ã·á 󸮷®À» Çâ»ó½Ã۸ç, ½ÇÇè °á°úÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

ALH ½Ã½ºÅÛÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀÌ´Â ±â¼ú Çõ½ÅÀ̶õ?

ÀÚµ¿ ¾×ü ó¸® ½Ã½ºÅÛÀÇ È¿À²¼º°ú Á¤È®¼ºÀº ·Îº¿ °øÇÐ, ¹Ì¼¼ À¯Ã¼ °øÇÐ ¹× ¼ÒÇÁÆ®¿þ¾î ±â¹Ý ÀÚµ¿È­ÀÇ ¹ßÀüÀ¸·Î °¡´ÉÇØÁ³½À´Ï´Ù. ·Îº¿ °øÇÐÀÇ Çõ½ÅÀº ALH ½Ã½ºÅÛ¿¡ ¸Å¿ì Á¤±³ÇÑ ÆÈ°ú À¯ÀüüÇÐ ¹× ½Å¾à °³¹ß µîÀÇ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿ä±¸ »çÇ×ÀÎ ¹Ì·®ÀÇ ¾×üµµ ÀϰüµÈ Á¤È®µµ·Î ó¸®ÇÒ ¼ö ÀÖ´Â Á¤¹Ð ÇÇÆêÀ» Á¦°øÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. ¹Ì¼¼À¯Ã¼ ±â¼úÀº ·¦¿ÂĨ ÀåÄ¡¿¡¼­ ±Ø¼Ò·®ÀÇ ¾×ü¸¦ Á¶ÀÛÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ALH¸¦ ´õ¿í °­È­ÇÏ¿© ½Ã¾à ¼Òºñ¸¦ ÁÙÀ̰í Á¦ÇÑµÈ °ø°£¿¡¼­ ³ôÀº 󸮷®À¸·Î ½ºÅ©¸®´×ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. °í±Þ ¼ÒÇÁÆ®¿þ¾î ¾Ë°í¸®ÁòÀ» ÅëÇØ ALH ÇÁ·Î¼¼½ºÀÇ °í±Þ ÇÁ·Î±×·¡¹Ö ¹× Á¦¾î°¡ °¡´ÉÇÏ¿© ½ÇÇè Á¶°Ç¿¡ µû¶ó ¾×ü·®, È¥ÇÕ ¼Óµµ ¹× ÇÇÆêÆÃ ÆÐÅÏÀ» ½Ç½Ã°£À¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸¹Àº ALH Ç÷§ÆûÀº ±â°è ÇнÀ ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ¾×üÀÇ Á¡µµ, ¾ç, ȯ°æ Á¶°ÇÀ» º¸Á¤ÇÏ¿© ÇÇÆêÆÃ Á¤È®µµ¸¦ ÃÖÀûÈ­ÇÕ´Ï´Ù. ¶ÇÇÑ, ALH ½Ã½ºÅÛÀº Á¾Á¾ ½ÇÇè½Ç Á¤º¸ °ü¸® ½Ã½ºÅÛ(LIMS)°ú ÅëÇÕµÇ¾î ¿øÈ°ÇÑ µ¥ÀÌÅÍ Àü¼Û, ÃßÀû ¹× ÀúÀå ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀ» ÅëÇØ ALH ½Ã½ºÅÛÀº ´Ù¾çÇÑ ½ÇÇè½Ç ȯ°æ°ú ÇÁ·ÎÅäÄÝ¿¡ °íµµ·Î ÀûÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, ´Ù¾çÇÑ °úÇÐÀû ÀÀ¿ë ºÐ¾ß¿¡¼­ º¹ÀâÇÑ ½ÇÇè ¿öÅ©Ç÷ο츦 ó¸®ÇÒ ¼ö ÀÖ´Â È¿À²¼º°ú ÀáÀç·ÂÀ» ¸ðµÎ Çâ»ó½ÃÄ×½À´Ï´Ù.

ÀÚµ¿ ¾×ü ó¸® ±â¼úÀÌ °¡Àå Å« ¿µÇâÀ» ¹ÌÄ¡´Â °÷Àº ¾îµðÀΰ¡?

ÀÚµ¿ ¾×ü ó¸® ±â¼úÀº À¯Àüü ¿¬±¸, ÀÓ»ó Áø´Ü, ½Å¾à °³¹ß, ¹ÙÀÌ¿À Á¦Á¶ µî ³ôÀº Á¤¹Ðµµ¿Í ³ôÀº ó¸® ´É·ÂÀÌ ÇʼöÀûÀÎ ´Ù¾çÇÑ ºÐ¾ßÀÇ ½ÇÇè½Ç¿¡ º¯È­¸¦ °¡Á®¿Ô½À´Ï´Ù. À¯Àüü ¿¬±¸¿¡¼­ ALH ½Ã½ºÅÛÀº DNA/RNA ÃßÃâ, PCR ¼³Á¤ ¹× »ùÇà Á¶Á¦ÀÇ ÀÚµ¿È­¸¦ ÅëÇØ Áý´Ü ±Ô¸ð ¿¬±¸¿¡ ÇÊ¿äÇÑ ´ë·®ÀÇ ½Ã·á¸¦ ½Å¼ÓÇÏ°Ô Ã³¸®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼öÁØÀÇ ÀÚµ¿È­´Â ¸ÂÃãÇü ÀǷᳪ ¿ªÇÐó·³ ¿¬±¸ÀÚµéÀÌ ¼öõ °³ÀÇ »ùÇÿ¡¼­ °íǰÁú À¯ÀüÀÚ µ¥ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÏ´Â ºÐ¾ß¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ÀÓ»ó Áø´Ü ½ÇÇè½Çµµ ALHÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© ÀÏ»óÀûÀÎ »ùÇà Á¶Á¦ ¹× ºÐ¼® ¼³Á¤À» ÀÚµ¿È­ÇÔÀ¸·Î½á °Ë»ç °á°úÀÇ ³³±â¸¦ ´ÜÃàÇϰí ÀáÀçÀûÀÎ ¿À¿°À» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Å¾à °³¹ß ¹× Á¦¾à ¿¬±¸ ºÐ¾ß¿¡¼­ ALH ±â¼úÀº ´ë·® ½ºÅ©¸®´×¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ¼öõ °³ÀÇ È­ÇÕ¹° »ùÇÃÀ» Á¤È®ÇÏ°Ô Ã³¸®ÇÏ¿© Ç¥Àû »ýüºÐÀÚ¿¡ ´ëÇÑ Å×½ºÆ®¸¦ ¼öÇàÇÒ ¼ö ÀÖ¾î ÀáÀçÀû ¾à¹° Èĺ¸ ¹°ÁúÀÇ ½Äº°À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ALH ½Ã½ºÅÛÀº ½Ã·á Èñ¼®, ½Ã¾à È¥ÇÕ, ¼¼Æ÷¹è¾ç À¯Áö °ü¸® µîÀÇ ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­ÇÏ¿© ǰÁú °ü¸® ¹× ¸ð´ÏÅ͸µÀ» Áö¿øÇÏ´Â ¹ÙÀÌ¿À Á¦Á¶ ºÐ¾ß¿¡¼­µµ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº Á¤È®ÇÏ°í ¹Ýº¹ °¡´ÉÇÑ ¿öÅ©Ç÷ο찡 ÇÊ¿äÇÑ È¯°æ¿¡¼­ ÇʼöÀûÀ̸ç, ½ÇÇè Á¶°ÇÀÌ ÀϰüµÇ°Ô À¯ÁöµÇµµ·Ï º¸ÀåÇÏ¿© ±Ã±ØÀûÀ¸·Î ´Ù¾çÇÑ °úÇÐ ºÐ¾ßÀÇ »ý»ê¼º, µ¥ÀÌÅÍ Ç°Áú ¹× ÀçÇö¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

ÀÚµ¿ ¾×ü ó¸® ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀÚµ¿ ¾×ü ó¸® ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, °íó¸® ½ÇÇè ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, °úÇÐ ¿¬±¸¿¡¼­ º¸´Ù ¹Ýº¹ÀûÀÌ°í ¿À·ù ¾ø´Â ¿öÅ©Ç÷οì·ÎÀÇ ÀüȯÀ» ¹Ý¿µÇÏ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â À¯ÀüüÇÐ, ´Ü¹éÁúüÇÐ, ½Å¾à°³¹ß ºÐ¾ß¿¡¼­ Á¤È®¼º°ú È®À强¿¡ ´ëÇÑ ¿ä±¸°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÀÌ ºÐ¾ß¿¡¼­´Â ¹æ´ëÇÑ ¾çÀÇ »ùÇÃÀ» ºü¸£°í Á¤È®ÇÏ°Ô Ã³¸®ÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ½ÇÇè½Ç¿¡¼­ µ¥ÀÌÅÍ Ç°Áú ÀúÇÏ ¾øÀÌ Ã³¸®·®À» Çâ»ó½Ã۱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ALH ½Ã½ºÅÛÀº ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ºÐÁÖ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ¿© È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇϰí, ÀÎÀû ¿À·ù¸¦ ÁÙÀ̸ç, ½ÇÇèÀÇ È®½ÇÇÑ È®ÀåÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ¸ÂÃãÇü ÀÇ·áÀÇ È®´ëÀÔ´Ï´Ù. °³ÀθÂÃãÀÇ·á¿¡¼­´Â °³º° À¯ÀüÀÚ ¹× ¹ÙÀÌ¿À¸¶Ä¿ µ¥ÀÌÅ͸¦ ºÐ¼®Çϱâ À§ÇØ ³ôÀº Á¤È®µµ¿Í ÀçÇö¼ºÀÌ ³ôÀº ½ÇÇè ÀýÂ÷°¡ ¿ä±¸µÇ±â ¶§¹®¿¡ ALH ±â¼úÀº ºÐÀÚÁø´Ü¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ½Å¼ÓÇϰí ÀÚµ¿È­µÈ °Ë»ç ¹× ½Ã·á 󸮿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Áø´Ü ¹× ¿¬±¸ ºÐ¾ß ¸ðµÎ¿¡¼­ ALH ½Ã½ºÅÛÀÇ °¡Ä¡°¡ ´õ¿í ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ·Îº¿ °øÇÐ ¹× ÀΰøÁö´É ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀº ALH ½Ã½ºÅÛÀ» ´õ¿í À¯¿¬Çϰí, Àú·ÅÇϰí, ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ¸ðµç ±Ô¸ðÀÇ ½ÇÇè½Ç¿¡¼­ äÅÃÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, ALH¿Í ½ÇÇè½Ç Á¤º¸ °ü¸® ½Ã½ºÅÛ(LIMS) ¹× µ¥ÀÌÅÍ ºÐ¼® Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ¿øÈ°ÇÑ µ¥ÀÌÅÍ Ã³¸®, ÃßÀû¼º, ÃßÀû¼º µ¥ÀÌÅÍ Ã³¸®, ÃßÀû¼º, º¹ÀâÇÑ ¿öÅ©Ç÷οìÀÇ ÀÚµ¿È­¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ÀÌ·¯ÇÑ ±â¼úÀÇ ¸Å·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ½ÇÇè½Ç¿¡¼­ ¾÷¹« È¿À²¼º°ú Æó±â¹° °¨¼Ò¸¦ Á¡Á¡ ´õ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥ ALH ½Ã½ºÅÛÀº ½Ã¾à »ç¿ëÀ» ÃÖ¼ÒÈ­ÇÏ°í ¾×ü Ãë±Þ °øÁ¤À» ÃÖÀûÈ­ÇÏ¿© Áö¼Ó°¡´ÉÇÑ ½ÇÇè½Ç °üÇàÀ» ÇâÇÑ Ãß¼¼¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀ» Á¾ÇÕÇϸé ALH ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ALH´Â Çö´ë ½ÇÇè½ÇÀÇ ¿öÅ©Ç÷οì¿Í °úÇÐÀû ¹ß°ßÀ» À§ÇÑ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(ÀÚµ¿ ¾×ü 󸮡¤¿öÅ©½ºÅ×À̼Ç, ½Ã¾à¡¤¼Ò¸ðǰ), ¿ëµµ(Drug Discovery & ADME-µ¶¼º ¿¬±¸, ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö, ¾Ï¡¤À¯Àüü ¿¬±¸, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, Çмú¡¤¿¬±¸±â°ü, ¼öŹ¿¬±¸±â°ü)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Automated Liquid Handling (ALH) Technologies Market to Reach US$3.3 Billion by 2030

The global market for Automated Liquid Handling (ALH) Technologies estimated at US$2.1 Billion in the year 2024, is expected to reach US$3.3 Billion by 2030, growing at a CAGR of 7.8% over the analysis period 2024-2030. Automated Liquid Handling Workstations, one of the segments analyzed in the report, is expected to record a 7.6% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the Reagents & Consumables segment is estimated at 8.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$550.0 Million While China is Forecast to Grow at 11.8% CAGR

The Automated Liquid Handling (ALH) Technologies market in the U.S. is estimated at US$550.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$849.3 Million by the year 2030 trailing a CAGR of 11.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.4% and 6.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.4% CAGR.

Global Automated Liquid Handling (ALH) Technologies Market - Key Trends and Drivers Summarized

What Are Automated Liquid Handling Technologies and How Do They Function?

Automated Liquid Handling (ALH) technologies are advanced systems that streamline and standardize the precise movement of liquid samples in laboratory environments, making them essential tools in research, diagnostics, and drug development. These systems automate the process of liquid transfer, pipetting, and mixing, performing tasks that traditionally required meticulous manual handling by lab technicians. ALH technologies employ robotic arms and precision pipettes, capable of dispensing liquids in exact volumes with high reproducibility, minimizing human error and ensuring consistency across experiments. The versatility of ALH systems allows for programming custom protocols, handling anything from small to large volumes, and managing complex procedures such as serial dilutions, sample normalization, and assay preparations. Additionally, ALH systems are often integrated with other lab equipment and software platforms, enabling them to work in sync with laboratory information management systems (LIMS) and other analytical devices. By automating liquid handling tasks, ALH technologies free up valuable time for scientists, improve sample throughput, and significantly enhance the accuracy and reliability of experimental results.

What Technological Innovations Drive the Efficiency and Precision of ALH Systems?

The efficiency and precision of Automated Liquid Handling systems are made possible by advancements in robotics, microfluidics, and software-driven automation, each contributing unique capabilities that have elevated ALH from simple pipetting machines to complex, integrated laboratory solutions. Robotics innovations have been instrumental, providing ALH systems with highly dexterous arms and precision pipettes capable of handling even the smallest liquid volumes with consistent accuracy, a critical requirement in fields such as genomics and drug discovery. Microfluidic technologies further enhance ALH by allowing the manipulation of minuscule liquid quantities on lab-on-a-chip devices, reducing reagent consumption and enabling high-throughput screening in limited spaces. Advanced software algorithms enable sophisticated programming and control over ALH processes, allowing for real-time adjustments in liquid volumes, mixing speeds, and pipetting patterns based on experimental conditions. Many ALH platforms also use machine learning algorithms to optimize pipetting accuracy by compensating for liquid viscosity, volume, and environmental conditions. Furthermore, ALH systems often integrate with laboratory information management systems (LIMS), providing seamless data transfer, tracking, and storage capabilities. These technological innovations make ALH systems highly adaptable to different lab settings and protocols, increasing both their efficiency and their potential to handle complex experimental workflows in a wide range of scientific applications.

Where Are Automated Liquid Handling Technologies Making the Greatest Impact?

Automated Liquid Handling technologies have become transformative in laboratories across multiple disciplines, including genomics, clinical diagnostics, drug discovery, and biomanufacturing, where precision and high-throughput capabilities are essential. In genomics research, ALH systems enable the automation of DNA/RNA extraction, PCR setup, and sequencing preparation, facilitating the rapid processing of large sample volumes needed for population-scale studies. This level of automation is particularly critical in fields like personalized medicine and epidemiology, where researchers require high-quality genetic data from thousands of samples. Clinical diagnostics laboratories also benefit significantly from ALH, using these systems to automate routine sample preparation and assay setups, which reduces turnaround time for test results and minimizes potential contamination. In drug discovery and pharmaceutical research, ALH technologies play a vital role in high-throughput screening, where they can precisely handle thousands of compound samples for testing against target biomolecules, accelerating the identification of potential drug candidates. Additionally, ALH systems are widely used in biomanufacturing, where they assist in quality control and monitoring by automating processes such as sample dilution, reagent mixing, and cell culture maintenance. These capabilities are indispensable in settings that require precise and repeatable workflows, as they ensure that experimental conditions are consistently maintained, ultimately enhancing productivity, data quality, and reproducibility across a variety of scientific fields.

What Is Driving the Growth of the Automated Liquid Handling Market?

The growth in the Automated Liquid Handling market is driven by several factors that reflect technological advancements, increased demand for high-throughput lab processes, and a shift towards more reproducible and error-free workflows in scientific research. One primary driver is the surge in demand for precision and scalability in genomics, proteomics, and drug discovery, where research increasingly relies on processing vast numbers of samples quickly and accurately. As laboratories strive to increase their throughput without compromising data quality, ALH systems offer an efficient solution by automating time-intensive pipetting tasks, thereby reducing human error and enabling the reliable scaling of experiments. Another critical factor is the expansion of personalized medicine, which demands highly accurate and reproducible lab procedures to analyze individual genetic and biomarker data, making ALH technology indispensable in molecular diagnostics. The market also benefits from the growing need for rapid, automated testing and sample processing has highlighted the value of ALH systems in both diagnostics and research. Additionally, technological advancements, particularly in robotics and artificial intelligence, have made ALH systems more flexible, affordable, and accessible, encouraging adoption across labs of all sizes. The integration of ALH with laboratory information management systems (LIMS) and data analytics platforms also enhances the appeal of these technologies, as it enables seamless data handling, traceability, and automation of complex workflows. Finally, as labs increasingly prioritize operational efficiency and waste reduction, ALH systems contribute by minimizing reagent use and optimizing liquid handling processes, supporting the trend towards sustainable lab practices. Collectively, these factors underscore the increasing adoption of ALH technologies, positioning them as essential tools in modern laboratory workflows and scientific discovery.

SCOPE OF STUDY:

The report analyzes the Automated Liquid Handling (ALH) Technologies market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Automated Liquid Handling Workstations, Reagents & Consumables); Application (Drug Discovery & ADME-Tox Research, Bioprocessing / Biotechnology, Cancer & Genomic Research, Other Applications); End-Use (Pharma & Biotech Companies, Academic & Research Institutes, Contract Research Organizations)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â