¼¼°èÀÇ Àç°í ·Îº¿ ½ÃÀå
Inventory Robots
»óǰÄÚµå : 1774956
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 477 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è Àç°í ·Îº¿ ½ÃÀåÀº 2030³â±îÁö 129¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 48¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Àç°í ·Îº¿ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 18.0%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 129¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °íÁ¤Çü ·Îº¿Àº CAGR 19.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 89¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸ð¹ÙÀÏ ·Îº¿ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 14.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 13¾ï ´Þ·¯, Áß±¹Àº CAGR 24.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Àç°í ·Îº¿ ½ÃÀåÀº 2024³â¿¡ 13¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 29¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 24.0%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 13.2%¿Í 16.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.4%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ Àç°í ·Îº¿ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Àç°í ·Îº¿Àº â°í ¹× ¼Ò¸Å °ü¸®¿¡ ¾î¶² Çõ¸íÀ» ÀÏÀ¸Å°°í Àִ°¡?

Àç°í ·Îº¿ ½ÃÀåÀº ¼Ò¸Å, ¹°·ù, Á¦Á¶, ÀüÀÚ»ó°Å·¡ µîÀÇ »ê¾÷¿¡¼­ Àç°í Á¤È®¼º, ¾÷¹« È¿À²¼º, ½Ç½Ã°£ Àç°í ÃßÀûÀ» °­È­Çϱâ À§ÇØ ÀÚµ¿È­°¡ µµÀԵǸ鼭 ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Àç°í ·Îº¿Àº AI ±â¹Ý ºñÀü ½Ã½ºÅÛ, RFID ¼¾¼­, LiDAR, IoT ¿¬°áÀ» »ç¿ëÇÏ¿© Àç°í ¼öÁØÀ» ½ºÄµ, ÃßÀû ¹× °ü¸®Çϵµ·Ï ¼³°èµÈ ÀÚÀ² ¶Ç´Â ¹ÝÀÚÀ²Çü ±â°èÀÔ´Ï´Ù.

¿È´Ïä³Î ¼Ò¸Å, JIT(Just In Time) Àç°í °ü¸®, ÀüÀÚ»ó°Å·¡°¡ È®´ëµÊ¿¡ µû¶ó ±â¾÷µéÀº Àç°í ¿À·ù¸¦ ÁÙÀ̰í, ÀçÀÔ°í ÇÁ·Î¼¼½º¸¦ °³¼±Çϸç, µµ³­ ¹× °ü¸® ¿À·ù·Î ÀÎÇÑ ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¼öµ¿ ¹ÙÄÚµå ½ºÄ³´×°ú Á¤±âÀûÀÎ °¨»ç¿¡ ÀÇÁ¸ÇÏ´Â ÀüÅëÀûÀÎ Àç°í ÃßÀûÀº ½Ã°£ÀÌ ¸¹ÀÌ °É¸®°í ÀÎÀ§ÀûÀÎ ½Ç¼ö°¡ ¹ß»ýÇϱ⠽±½À´Ï´Ù. Àç°í ·Îº¿Àº Áö¼ÓÀûÀ̰í ÀÚÀ²ÀûÀÎ Àç°í ¸ð´ÏÅ͸µÀ» ÅëÇØ ÀÌ·¯ÇÑ ºñÈ¿À²¼ºÀ» ÇØ¼ÒÇϰí, º¸´Ù ½Å¼ÓÇÑ º¸Ãæ, ¼ö¿ä ¿¹Ãø °³¼±, â°í °ø°£ÀÇ ÃÖÀû Ȱ¿ëÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¶ÇÇÑ, Äڷγª19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ±â¾÷µéÀÌ Àç°í ÃßÀûÀ» À§ÇÑ ºñÁ¢Ã˽Ä, »çȸÀû °Å¸®µÎ±â ¼Ö·ç¼ÇÀ» ãÀ¸¸é¼­ °ø±Þ¸Á °ü¸®¿¡¼­ ·Îº¿°øÇÐ ¹× ÀÚµ¿È­ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ¾ú°í, AI, ¸Ó½Å·¯´×, ½Ç½Ã°£ ºÐ¼®ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î Çö´ëÀÇ ¹°·ùâ°í ¹× ¼Ò¸Å¾÷¿¡¼­ Àç°í ·Îº¿ÀÇ ¿ªÇÒÀº Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Àç°í ·Îº¿ ½ÃÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä µ¿ÇâÀº?

Àç°í ·Îº¿ ½ÃÀåÀÇ °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â AI¸¦ žÀçÇÑ ÄÄÇ»ÅÍ ºñÀü°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ ÅëÇÕÀÔ´Ï´Ù. ÃֽŠÀç°í ·Îº¿Àº AI ±â¹Ý À̹ÌÁö Àνİú µö·¯´× ¸ðµ¨À» Ȱ¿ëÇÏ¿© ¹ÙÄÚµå ½ºÄµ, Àç°í ¼öÁØ °¨Áö, ´©¶ôµÈ »óǰ ½Äº°, ¼±¹Ý »óÅ ºÐ¼®À» ½Ç½Ã°£À¸·Î ¼öÇàÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» ÅëÇØ Àç°í ºÎÁ·À» ÁÙÀ̰í, º¸Ãæ Á¤È®µµ¸¦ ³ôÀ̸ç, ¿¹ÃøÀû Àç°í °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Å« Æ®·»µå´Â RFID(Radio-Frequency Identification)¿Í LiDAR(Light Detection and Ranging) ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±âÁ¸ÀÇ ¹ÙÄÚµå ½ºÄ³´×°ú ´Þ¸®, RFID Áö¿ø Àç°í ·Îº¿Àº Á÷Á¢ ½Ã¼±À» ¸ÂÃßÁö ¾Ê°íµµ ¿©·¯ ű׸¦ µ¿½Ã¿¡ ÀÐÀ» ¼ö ÀÖ¾î Àç°í °¨»ç¸¦ ÈξÀ ´õ ºü¸£°í Á¤È®ÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖÀ¸¸ç, LiDAR ±â¼úÀº ·Îº¿ÀÇ Å½»ö ¹× ¸ÅÇÎÀ» Çâ»ó½ÃÄÑ ¹«ÀÎ ¸ÅÀå, â°í, â°í, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­, ¹«ÀÎÈ­ ¹«ÀÎ ¸ÅÀå, â°í, ¹°·ù¼¾ÅÍ¿Í °°Àº ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ Àç°í ·Îº¿ÀÌ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

Àç°í °ü¸® ºÐ¾ß¿¡¼­ Çùµ¿ ·Îº¿(ÄÚº¿)ÀÇ ºÎ»óµµ ÀÌ »ê¾÷À» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¿ÏÀü ÀÚÀ² ·Îº¿°ú´Â ´Þ¸®, ÄÚº¿Àº Àΰ£ Á÷¿ø°ú ÇÔ²² ÀÏÇϸç Àç°í È®ÀÎ, ÁÖ¹® ÇÇÅ·, ½Ç½Ã°£ Àç°í ÃßÀûÀ» µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ·Îº¿Àº ÀÛ¾÷ÀÚÀÇ È¿À²¼ºÀ» ³ôÀ̰í, ÇǷθ¦ ÁÙÀ̸ç, Àΰ£ Á÷¿øÀ» ¿ÏÀüÈ÷ ´ëüÇÏÁö ¾Ê°íµµ Àç°í °ü·Ã ÀÛ¾÷À» °£¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â Ŭ¶ó¿ìµå ±â¹Ý ERP(Enterprise Resource Planning) ¹× WMS(Warehouse Management System)¿Í ½Ç½Ã°£ Àç°í µ¥ÀÌÅÍÀÇ ÅëÇÕÀÔ´Ï´Ù. Àç°í ·Îº¿Àº Àç°í µ¥ÀÌÅ͸¦ ERP ¹× WMS Ç÷§Æû°ú ¿øÈ°ÇÏ°Ô µ¿±âÈ­ÇÏ¿© ÁÖ¹® ÀÚµ¿È­, ¿©·¯ ÁöÁ¡ÀÇ Àç°í À̵¿ ÃßÀû, °ø±Þ¸Á °¡½Ã¼º Çâ»óÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ÀÌÄ¿¸Ó½º Ç®ÇÊ¸ÕÆ® ¼¾ÅÍ¿Í ¿È´Ïä³Î ¼Ò¸Å¾÷ü¿¡°Ô ƯÈ÷ Áß¿äÇϸç, Àç°íÀÇ ½Ç½Ã°£ Á¤È®¼ºÀº °ú¸Åµµ ¹× Àç°í ºÒÀÏÄ¡¸¦ ÇÇÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

¶ÇÇÑ, ÀÚÀ² À̵¿ ·Îº¿(AMR)Àº ±âÁ¸ÀÇ °íÁ¤Çü Àç°í ½ºÄ³³Ê¸¦ ´ëüÇϰí ÀÖ½À´Ï´Ù. °íÁ¤µÈ À§Ä¡ÀÇ ¹ÙÄÚµå ¸®´õ±â¿Í ´Þ¸®, AMRÀº â°í Åë·Î¸¦ µ¿ÀûÀ¸·Î À̵¿ÇÏ¸ç ¹Ì¸® Á¤ÀÇµÈ °æ·Î ¾øÀ̵µ Àç°í ¼öÁØÀ» ½ºÄµÇÒ ¼ö ÀÖÀ¸¸ç, ÄÄÇ»ÅÍ ºñÀü, ¿¡Áö AI ó¸®, ½Ç½Ã°£ ¸ÅÇÎÀ» ÅëÇØ Àç°í º¯È­¿¡ Áï°¢ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. Bossa Nova Robotics, Zebra Technologies, Locus Robotics µîÀÇ ±â¾÷ÀÌ ´ë±Ô¸ð Àç°í ÀÚµ¿È­¸¦ À§ÇÑ AI ±â¹Ý AMR µµÀÔÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

Àç°í ·Îº¿ µµÀÔ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â À̽´´Â ¹«¾ùÀΰ¡?

Àç°í ÀÚµ¿È­ÀÇ ±Þ¼ÓÇÑ ¼ºÀå¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀº ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë, ÅëÇÕÀÇ º¹À⼺, ´Ù¾çÇÑ È¯°æ¿¡ ´ëÇÑ ÀûÀÀ¼º µî ¿©·¯ °¡Áö ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. °¡Àå Å« À庮 Áß Çϳª´Â ÀÚÀ² Àç°í ·Îº¿ µµÀÔ¿¡ ÇÊ¿äÇÑ ¸·´ëÇÑ ÀÚº» ÅõÀÚÀÔ´Ï´Ù. ·Îº¿Àº Àå±âÀûÀ¸·Î ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖÁö¸¸, ¸¹Àº ±â¾÷, ƯÈ÷ Áß¼ÒÇü ¼Ò¸Å¾÷üµéÀº Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× ÀÎÇÁ¶ó ¾÷±×·¹À̵忡 µû¸¥ Ãʱ⠺ñ¿ëÀ» Á¤´çÈ­Çϱâ À§ÇØ °í±ººÐÅõÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ±âÁ¸ â°í°ü¸®½Ã½ºÅÛ(WMS) ¹× ±â¾÷¿ë ¼ÒÇÁÆ®¿þ¾î¿ÍÀÇ ÅëÇÕµµ °úÁ¦ÀÔ´Ï´Ù. ¸¹Àº ¼Ò¸Å¾÷ü¿Í â°í´Â ±¸½Ä Àç°í °ü¸® ½Ã½ºÅÛÀ» »ç¿ëÇϰí Àֱ⠶§¹®¿¡ Å« º¯È­ ¾øÀÌ AI ±â¹Ý Àç°í ·Îº¿À» ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ´Â °ÍÀº ¾î·Æ½À´Ï´Ù. Àç°í ·Îº¿°ú ±âÁ¸ ±â¾÷ ¼Ö·ç¼Ç°úÀÇ »óÈ£¿î¿ë¼º ¹× µ¥ÀÌÅÍ µ¿±âÈ­¸¦ º¸ÀåÇÏ´Â °ÍÀº ¼º°øÀûÀÎ µµÀÔ¿¡ ÇʼöÀûÀÔ´Ï´Ù.

º¹ÀâÇÑ ¼Ò¸Å ȯ°æ¿¡¼­ÀÇ ÀûÀÀ·Âµµ ¹®Á¦ÀÔ´Ï´Ù. â°í Àç°í ·Îº¿Àº ÅëÁ¦µÇ°í ±¸Á¶È­µÈ ȯ°æ¿¡¼­ ÀÛµ¿ÇÏÁö¸¸, ½Ä·áǰÁ¡, ¼îÇθô, À¯µ¿Àα¸°¡ ¸¹Àº ¼Ò¸Å °ø°£ÀÇ ·Îº¿Àº ¿¹ÃøÇÒ ¼ö ¾ø´Â »ç¶÷ÀÇ ¿òÁ÷ÀÓ, Àå¾Ö¹°, ´Ù¾çÇÑ ¼±¹Ý ·¹À̾ƿôÀ» Ž»öÇØ¾ß ÇÕ´Ï´Ù. º¸´Ù À¯¿¬ÇÏ°í »óȲÀ» ÀνÄÇÏ´Â ·Îº¿ ¼Ö·ç¼ÇÀÇ °³¹ßÀº ¸ÅÀå¿¡¼­ÀÇ Ã¤ÅÃÀ» È®´ëÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

ƯÈ÷ Àç°í ·Îº¿ÀÌ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ¿© Ŭ¶ó¿ìµå ±â¹Ý ½Ã½ºÅÛÀ¸·Î Àü¼ÛÇϱ⠶§¹®¿¡ µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã ¹®Á¦°¡ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷Àº °­·ÂÇÑ »çÀ̹ö º¸¾È ´ëÃ¥, ¾Ïȣȭ ÇÁ·ÎÅäÄÝ, ÄÄÇöóÀ̾𽺠ÇÁ·¹ÀÓ¿öÅ©¸¦ µµÀÔÇÏ¿© ±â¹Ð¼ºÀÌ ³ôÀº Àç°í ¹× ÆÇ¸Å µ¥ÀÌÅ͸¦ »çÀ̹ö À§Çù ¹× ¹«´Ü ¾×¼¼½º·ÎºÎÅÍ º¸È£ÇØ¾ß ÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ °úÁ¦´Â ³ëµ¿·Â À̵¿°ú Á÷¿øµéÀÇ ÀúÇ×ÀÔ´Ï´Ù. Àç°í ·Îº¿Àº Àΰ£ ±Ù·ÎÀÚ¸¦ ´ëüÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó »ý»ê¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ¼³°èµÇ¾úÁö¸¸, ÀϺΠÁ÷¿øµéÀº ÀÚµ¿È­¸¦ °í¿ë ¾ÈÁ¤¼ºÀ» À§ÇùÇÏ´Â °ÍÀ¸·Î ÀνÄÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº Á÷¿øµéÀÌ Àç°í °ü¸®¿¡¼­ Àΰ£°ú ·Îº¿ÀÇ Çù¾÷¿¡ ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï Àη Àç±³À° ¹× ÈÆ·Ã ÇÁ·Î±×·¥¿¡ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.

Àç°í ·Îº¿ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Àç°í ·Îº¿ ½ÃÀåÀÇ ¼ºÀåÀº °ø±Þ¸Á ÀÚµ¿È­, ÀüÀÚ»ó°Å·¡ ÁÖ¹® ó¸® ¼¾ÅÍÀÇ ºÎ»ó, Àç°í Á¤È®µµ Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ¿Â¶óÀÎ ¼îÇΰú ¿È´Ïä³Î ¼Ò¸ÅÀÇ Æø¹ßÀûÀÎ Áõ°¡ÀÔ´Ï´Ù. µû¶ó¼­ ±â¾÷Àº Á¤È®ÇÑ Àç°í ÃßÀûÀ» À¯ÁöÇϰí, Àç°í ºÎÁ·À» ÃÖ¼ÒÈ­Çϰí, ÁÖ¹® ó¸® ¼Óµµ¸¦ Çâ»ó½ÃÄÑ¾ß ÇÕ´Ï´Ù. Àç°í ·Îº¿Àº Àç°í °¨»ç¸¦ ÀÚµ¿È­Çϰí, ÀÎÀû ¿À·ù¸¦ ÁÙÀ̰í, Àç°í º¸Ãæ Áֱ⸦ ÃÖÀûÈ­ÇÏ¿© â°íÀÇ È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº â°í ¹× ¼Ò¸Å¾÷ÀÇ ³ëµ¿·Â ºÎÁ·ÀÌ ½ÉÈ­µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¸¹Àº »ê¾÷ÀÌ ³ëµ¿ Àα¸ °¨¼Ò¿Í ³ôÀº ÀÌÁ÷·ü¿¡ Á÷¸éÇÑ °¡¿îµ¥, ±â¾÷µéÀº ³ëµ¿·Â °ø¹éÀ» ¸Þ¿ì°í ¼öÀÛ¾÷¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¿î¿µÀÇ Àϰü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ·Îº¿ ÀÚµ¿È­¿¡ ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ AI¸¦ Ȱ¿ëÇÑ ¿¹Ãø ºÐ¼®ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» žÀçÇÑ Àç°í ·Îº¿Àº ¼ö¿ä º¯µ¿À» ¿¹ÃøÇϰí, Àç°í ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí, º¸Ãæ ÀÏÁ¤À» ÃÖÀûÈ­ÇÒ ¼ö Àֱ⠶§¹®¿¡ ±â¾÷Àº ³¶ºñ¸¦ ÁÙÀ̰í, °úÀ× Àç°í¸¦ ¹æÁöÇϰí, Àç°í °èȹÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½º¸¶Æ® â°í¿Í ´ÙÅ© ½ºÅä¾î(°í°´°úÀÇ »óÈ£ÀÛ¿ëÀÌ ¾ø´Â ÀÚµ¿È­µÈ Ç®ÇÊ¸ÕÆ® ¼¾ÅÍ)ÀÇ È®´ë´Â Àç°í ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¾Æ¸¶Á¸, ¿ù¸¶Æ®, ¾Ë¸®¹Ù¹Ù µîÀÇ ±â¾÷µéÀº ·Îº¿ÀÌ ÁÖµµÇÏ´Â Ç®ÇÊ¸ÕÆ® ¼¾ÅÍ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÚµ¿ º¸°ü ¹× °Ë»ö ½Ã½ºÅÛ(AS/RS)°ú Àç°í ·Îº¿ÀÌ µ¿±âÈ­µÈ ¿öÅ©Ç÷οì·Î ÀÛµ¿ÇÏ¿© ÁÖ¹® 󸮸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ·Îº¿°øÇÐ ¹× AI ±â¹Ý ÀÚµ¿È­¿¡ ´ëÇÑ Á¤ºÎ ÇýÅðú ÅõÀÚ´Â ½ÃÀå ¼ºÀå¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº ±¹°¡µéÀÌ ½º¸¶Æ® Á¦Á¶ ¹× ¹°·ù ÀÌ´Ï¼ÅÆ¼ºêÀÇ ÀÏȯÀ¸·Î »ê¾÷ ÀÚµ¿È­¸¦ ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÖÀ¸¸ç, â°í ¹× ¼Ò¸Å¾÷ÀÇ ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È­(RPA)¿¡ ´ëÇÑ ÀÚ±Ý ¹× ¼¼Á¦ ÇýÅÃÀ» Á¦°øÇÕ´Ï´Ù.

ºÎ¹®

¸ðºô¸®Æ¼(°íÁ¤Çü ·Îº¿, À̵¿Çü ·Îº¿), ¿ÀÆÛ·¹ÀÌ¼Ç À¯Çü(ÀÚÀ²Çü, ¹ÝÀÚÀ²Çü, ¿ø°Ý Á¶ÀÛÇü), ¿ëµµ(½ºÄµ ¹× µ¥ÀÌÅÍ ¼öÁý, ÇÇÅ· ¹× ºÐ·ù ÆÓ¸´ ¹× Áß·®¹° À̵¿, ¼±¹Ý °¨»ç ¹× º¸Ãæ), ÃÖÁ¾ ¿ëµµ(¼Ò¸Å, E-Commerce, Á¦Á¶, ÇコÄÉ¾î ¹× ÀǾàǰ, ÀÚµ¿Â÷, ½Äǰ ¹× À½·á, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Inventory Robots Market to Reach US$12.9 Billion by 2030

The global market for Inventory Robots estimated at US$4.8 Billion in the year 2024, is expected to reach US$12.9 Billion by 2030, growing at a CAGR of 18.0% over the analysis period 2024-2030. Stationary Robots, one of the segments analyzed in the report, is expected to record a 19.8% CAGR and reach US$8.9 Billion by the end of the analysis period. Growth in the Mobile Robots segment is estimated at 14.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.3 Billion While China is Forecast to Grow at 24.0% CAGR

The Inventory Robots market in the U.S. is estimated at US$1.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.9 Billion by the year 2030 trailing a CAGR of 24.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.2% and 16.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.4% CAGR.

Global Inventory Robots Market - Key Trends & Drivers Summarized

How Are Inventory Robots Revolutionizing Warehouse and Retail Management?

The inventory robots market is witnessing rapid growth as industries such as retail, logistics, manufacturing, and e-commerce increasingly adopt automation to enhance inventory accuracy, operational efficiency, and real-time stock tracking. Inventory robots are autonomous or semi-autonomous machines designed to scan, track, and manage stock levels using AI-driven vision systems, RFID sensors, LiDAR, and IoT connectivity.

With the rise of omnichannel retail, just-in-time (JIT) inventory management, and e-commerce expansion, businesses are under increasing pressure to reduce inventory errors, improve restocking processes, and minimize shrinkage (loss due to theft or mismanagement). Traditional inventory tracking, which relies on manual barcode scanning and periodic audits, is time-consuming and prone to human error. Inventory robots eliminate these inefficiencies by conducting continuous, autonomous stock monitoring, ensuring faster replenishment, improved demand forecasting, and optimized warehouse space utilization.

Additionally, the COVID-19 pandemic accelerated the adoption of robotics and automation in supply chain management, as companies sought contactless and socially distanced solutions for inventory tracking. With ongoing advancements in AI, machine learning, and real-time analytics, the role of inventory robots in modern warehouse and retail operations is set to expand significantly.

What Are the Key Trends Driving the Inventory Robots Market?

One of the most significant trends in the inventory robots market is the integration of AI-powered computer vision and machine learning algorithms. Modern inventory robots leverage AI-driven image recognition and deep learning models to scan barcodes, detect stock levels, identify misplaced items, and analyze shelf health in real-time. These capabilities reduce stockouts, enhance restocking accuracy, and enable predictive inventory management.

Another major trend is the increasing adoption of RFID (Radio-Frequency Identification) and LiDAR (Light Detection and Ranging) technologies. Unlike traditional barcode scanning, RFID-enabled inventory robots can read multiple tags simultaneously without direct line-of-sight, making stock audits significantly faster and more accurate. LiDAR technology enhances robot navigation and mapping, allowing autonomous inventory robots to efficiently operate in dynamic environments such as retail stores, warehouses, and distribution centers.

The rise of collaborative robots (cobots) in inventory management is also shaping the industry. Unlike fully autonomous robots, cobots work alongside human employees, assisting with stock checks, order picking, and real-time inventory tracking. These robots increase worker efficiency, reduce fatigue, and streamline inventory-related tasks without fully replacing human staff.

Another key trend is the integration of real-time inventory data with cloud-based enterprise resource planning (ERP) and warehouse management systems (WMS). Inventory robots seamlessly sync stock data with ERP and WMS platforms, enabling businesses to automate purchase orders, track inventory movement across multiple locations, and improve supply chain visibility. This integration is particularly crucial for e-commerce fulfillment centers and omnichannel retailers, where real-time inventory accuracy is critical for avoiding overselling and stock discrepancies.

Additionally, autonomous mobile robots (AMRs) are replacing traditional stationary inventory scanners. Unlike fixed-position barcode readers, AMRs navigate dynamically through warehouse aisles, scanning stock levels without requiring predefined paths. AMRs are equipped with computer vision, edge AI processing, and real-time mapping, enabling them to adapt to inventory changes on the fly. Companies such as Bossa Nova Robotics, Zebra Technologies, and Locus Robotics are leading the deployment of AI-powered AMRs for large-scale inventory automation.

What Challenges Are Impacting the Adoption of Inventory Robots?

Despite the rapid growth of inventory automation, the market faces several challenges, including high initial investment costs, integration complexity, and adaptability to diverse environments. One of the major barriers is the substantial capital investment required for deploying autonomous inventory robots. While robots reduce long-term operational costs, many businesses-especially small and mid-sized retailers-struggle to justify the upfront costs associated with hardware, software, and infrastructure upgrades.

Integration with legacy warehouse management systems (WMS) and enterprise software is another challenge. Many retailers and warehouses operate on outdated inventory management systems, making it difficult to seamlessly integrate AI-powered inventory robots without significant modifications. Ensuring interoperability and data synchronization between inventory robots and existing enterprise solutions is crucial for successful implementation.

Adaptability in complex retail environments is also a concern. While warehouse inventory robots operate in controlled, structured environments, robots in grocery stores, malls, and high-traffic retail spaces must navigate unpredictable human movement, obstacles, and diverse shelving layouts. Developing more flexible and context-aware robotic solutions is essential for expanding in-store adoption.

Additionally, data security and privacy concerns pose a challenge, especially as inventory robots collect and transmit large amounts of data to cloud-based systems. Businesses must implement robust cybersecurity measures, encryption protocols, and compliance frameworks to protect sensitive inventory and sales data from cyber threats and unauthorized access.

Another challenge is workforce displacement and employee resistance. While inventory robots are designed to enhance productivity rather than replace human workers, some employees may perceive automation as a threat to job security. Companies must focus on workforce reskilling and training programs to help employees adapt to human-robot collaboration in inventory management.

What Factors Are Driving the Growth of the Inventory Robots Market?

The growth in the inventory robots market is driven by the increasing demand for supply chain automation, the rise of e-commerce fulfillment centers, and the need for enhanced inventory accuracy. One of the primary drivers is the explosion of online shopping and omnichannel retailing, which requires businesses to maintain precise stock tracking, minimize stockouts, and improve order fulfillment speeds. Inventory robots enhance warehouse efficiency by automating stock audits, reducing human errors, and optimizing inventory replenishment cycles.

Another key factor is rising labor shortages in warehouse and retail sectors. With many industries facing a shrinking workforce and high turnover rates, businesses are turning to robotic automation to fill labor gaps, reduce dependency on manual stock-taking, and improve operational consistency.

The increasing adoption of AI-powered predictive analytics is also driving market expansion. Inventory robots equipped with machine learning algorithms can forecast demand fluctuations, detect inventory anomalies, and optimize restocking schedules, helping businesses reduce waste, prevent overstocking, and improve inventory planning.

The expansion of smart warehouses and dark stores (automated fulfillment centers with no customer interaction) is further fueling demand for inventory robotics. Companies such as Amazon, Walmart, and Alibaba are investing heavily in robot-driven fulfillment centers, where automated storage and retrieval systems (AS/RS) and inventory robots operate in synchronized workflows to accelerate order processing.

Additionally, government incentives and investments in robotics and AI-driven automation are playing a crucial role in market growth. Many countries are prioritizing industrial automation as part of their smart manufacturing and logistics initiatives, providing funding and tax benefits for robotic process automation (RPA) in warehouses and retail.

SCOPE OF STUDY:

The report analyzes the Inventory Robots market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Mobility (Stationary Robots, Mobile Robots); Operation Type (Autonomous, Semi-autonomous, Teleoperated); Application (Scanning & data collection, Picking & sorting, Pallet & Heavy-load moving, Shelf Auditing & replenishment); End-Use (Retail, E-commerce, Manufacturing, Healthcare & Pharmaceuticals, Automotive, Food & Beverages, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â