¼¼°èÀÇ Ã¢°í ¿À´õ ÇÇÅ· ½ÃÀå
Warehouse Order Picking
»óǰÄÚµå : 1773945
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 478 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

â°í ¿À´õ ÇÇÅ· ¼¼°è ½ÃÀåÀº 2030³â±îÁö 172¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 99¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â â°í ¿À´õ ÇÇÅ· ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 9.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 172¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½Ì±Û ¿À´õ ÇÇÅ·Àº CAGR 8.1%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 97¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸ÖƼ ¿À´õ ÇÇÅ· ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 11.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 27¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 12.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ã¢°í ¿À´õ ÇÇÅ· ½ÃÀåÀº 2024³â¿¡ 27¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 34¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 12.9%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 7.0%¿Í 8.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 7.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è â°í ¿À´õ ÇÇÅ· ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

¹°·ù È¿À²È­¸¦ À§ÇØ Ã¢°í ¿À´õ ÇÇÅ·ÀÌ Áß¿ä½ÃµÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

â°í ¿À´õ ÇÇÅ·Àº °ø±Þ¸Á ¿î¿µÀÇ Áß¿äÇÑ ¿ä¼Ò·Î ÁÖ¹®ÀÇ Á¤È®¼º, ÁÖ¹® ó¸® ¼Óµµ ¹× °í°´ ¸¸Á·µµ¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ½Å¼ÓÇϰí Á¤È®ÇÑ ¹è¼Û¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë°¡ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷Àº È¿À²ÀûÀÎ ÇÇÅ· Àü·«À» ¿ì¼±½ÃÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ°í ¼­ºñ½º ¼öÁØÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ ¼öÀÛ¾÷ ÇÇÅ· ¹æ½ÄÀº ÇÈÅõ¶óÀÌÆ®, À½¼º ÀÎ½Ä ÇÇÅ·, ·Îº¿ ÇÇÅ· ½Ã½ºÅÛ µî ÷´Ü ¼Ö·ç¼ÇÀ¸·Î ´ëüµÇ¾î È¿À²¼ºÀ» ³ôÀ̰í ÀÖÀ¸¸ç, E-Commerce ¹× DTC(Direct-to-Consumer) ¹è¼ÛÀÇ Áõ°¡·Î ÀÎÇØ â°í ³» ÇÇÅ·ÀÇ º¹À⼺Àº ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿À´õ ÇÇÅ·ÀÇ º¹À⼺Àº ´õ¿í Áõ°¡ÇßÀ¸¸ç, â°í´Â Á¤È®¼ºÀ» À¯ÁöÇϸ鼭 ´ë·®ÀÇ ÁÖ¹®À» ó¸®ÇØ¾ß ÇÕ´Ï´Ù. ¼Ò¸Å¾÷, Á¦¾à¾÷, Á¦Á¶¾÷ µîÀÇ ¾÷°è¿¡¼­´Â ¿À´õ ÇÇÅ· ÀÚµ¿È­¸¦ µµÀÔÇÏ¿© ½Ç¼ö¸¦ ÃÖ¼ÒÈ­ÇÏ°í ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­ÇÏ¿© ÇÕ¸®ÀûÀΠâ°í ¿î¿µÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ ¶ó½ºÆ® ¸¶ÀÏ ¹°·ù¸¦ °³¼±Çϰí ÁÖ¹® ó¸® ½Ã°£À» ´ÜÃàÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ¿À´õ ÇÇÅ· Çõ½ÅÀº â°í È¿À²È­ Àü·«ÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.

·Îº¿°ú AI´Â ¾î¶»°Ô º¯È­Çϰí Àִ°¡?

·Îº¿ °øÇÐ, AI ¹× µ¥ÀÌÅÍ ºÐ¼®ÀÇ ±â¼ú ¹ßÀüÀº â°í ¿À´õ ÇÇÅ· ÇÁ·Î¼¼½º¸¦ º¸´Ù ºü¸£°í, Á¤È®Çϰí, ºñ¿ë È¿À²ÀûÀ¸·Î Çõ½ÅÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý â°í °ü¸® ½Ã½ºÅÛ(WMS)Àº ½Ç½Ã°£ ÁÖ¹® µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÇÇÅ· °æ·Î¸¦ ÃÖÀûÈ­ÇÏ°í ±ä±Þ ¹è¼ÛÀÇ ¿ì¼±¼øÀ§¸¦ Á¤ÇÏ¿© ÇÇÅ· ½Ã°£°ú ÀηÂÀ» Àý°¨ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ÇÇÅ· °æ·Î¸¦ ÃÖÀûÈ­ÇÏ°í ±ä±ÞÇÑ ¹è¼Û¿¡ ¿ì¼±¼øÀ§¸¦ ºÎ¿©ÇÏ¿© ÇÇÅ·¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ÀΰǺñ¸¦ Àý°¨ÇÕ´Ï´Ù. ÀÚÀ² À̵¿ ·Îº¿(AMR)°ú ·Îº¿ ÆÈÀ» Æ÷ÇÔÇÑ ·Îº¿ ÇÇÅ· ½Ã½ºÅÛÀº ¿øÈ°ÇÑ Ç°¸ñ °Ë»ö°ú ÁÖ¹® ÅëÇÕÀ» °¡´ÉÇÏ°Ô Çϸç, â°í ¾÷¹«¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ºñÀü °¡À̵å ÇÇÅ· ±â¼úÀº ·Îº¿°ú â°í ÀÛ¾÷ÀÚ°¡ ´õ ³ôÀº Á¤È®µµ·Î ǰ¸ñÀ» ½Äº°ÇÏ°í ¼±ÅÃÇÒ ¼ö ÀÖµµ·ÏÇÔÀ¸·Î½á Á¤È®µµ¸¦ ³ôÀÔ´Ï´Ù. ½º¸¶Æ® ±Û·¡½º ¹× À½¼º ¾È³» ÇÇÅ· Çìµå¼Â°ú °°Àº ¿þ¾î·¯ºí ±â¼úÀº ÇÚÁîÇÁ¸® ³»ºñ°ÔÀ̼ǰú ½Ç½Ã°£ Àç°í ÃßÀûÀ» Á¦°øÇÏ¿© ÁÖ¹® 󸮸¦ ´õ¿í °£¼ÒÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, AI¸¦ Ȱ¿ëÇÑ ÀÚµ¿È­°¡ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó â°í ¿À´õ ÇÇÅ·Àº ´õ ¸¹Àº ÀûÀÀ·ÂÀ» °®Ãâ ¼ö ÀÖ½À´Ï´Ù. ÀûÀÀ¼ºÀÌ ³ô°í, µ¥ÀÌÅÍ ±â¹ÝÀ̸ç, È®À强ÀÌ ¶Ù¾î³ª Àüü °ø±Þ¸ÁÀÇ È¿À²¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

ÀÚµ¿ ¿À´õ ÇÇÅ· µµÀÔ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â À̽´´Â ¹«¾ùÀΰ¡?

ÀÌ·¯ÇÑ ÀåÁ¡¿¡µµ ºÒ±¸Çϰí â°í ¿À´õ ÇÇÅ·Àº ³ôÀº µµÀÔ ºñ¿ë, Àη ÀûÀÀ, ±âÁ¸ ¹°·ù ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕ µî ¿©·¯ °¡Áö ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÚµ¿ ÇÇÅ· ½Ã½ºÅÛÀ» µµÀÔÇÏ·Á¸é ·Îº¿, AI, â°í ÀÚµ¿È­ ±â¼ú¿¡ ´ëÇÑ ¸·´ëÇÑ ¼³ºñ ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ Áß¼Ò±â¾÷ÀÌ Á¢±ÙÇÏ±â ¾î·Æ½À´Ï´Ù. ¶ÇÇÑ, ¿À´õ ÇÇÅ· ¼Ö·ç¼Ç°ú ±âÁ¸ â°í °ü¸® ½Ã½ºÅÛ(WMS) ¹× ±â¾÷ ÀÚ¿ø °èȹ(ERP) ¼ÒÇÁÆ®¿þ¾î¿ÍÀÇ ÅëÇÕÀº º¹ÀâÇÏ°í ´ë±Ô¸ðÀÇ Ä¿½ºÅ͸¶ÀÌ¡ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ °úÁ¦´Â Á÷¿øµéÀÇ ÀûÀÀÀÔ´Ï´Ù. Á÷¿øµéÀº AI ±â¹Ý ÇÇÅ· ±â¼úÀ» È¿°úÀûÀ¸·Î Á¶ÀÛÇϱâ À§ÇÑ ±³À°ÀÌ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ ´ÙǰÁ¾ ¼Ò·® »ý»ê â°í ȯ°æ¿¡¼­´Â ƯÈ÷ ±úÁö±â ½¬¿î ¹°°ÇÀ̳ª ºÒ±ÔÄ¢ÇÑ ¸ð¾çÀÇ ¹°°ÇÀ» Ãë±ÞÇÒ ¶§ Á¤È®µµ¸¦ À¯ÁöÇϱⰡ ¾î·Æ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â ºñ¿ë È¿À²ÀûÀÎ ÀÚµ¿È­ ¼Ö·ç¼Ç, °­È­µÈ ±³À° ÇÁ·Î±×·¥, ´Ù¾çÇÑ Ã¢°í ·¹À̾ƿô¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â À¯¿¬ÇÑ ÇÇÅ· ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù.

â°í ¿À´õ ÇÇÅ· ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

â°í ¿À´õ ÇÇÅ· ½ÃÀåÀÇ ¼ºÀåÀº E-CommerceÀÇ È®´ë, â°í ³» ·Îº¿ µµÀÔ Áõ°¡, ½Ç½Ã°£ Àç°í °¡½Ã¼º È®º¸ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¿È´Ïä³Î ¼Ò¸Å¾÷ÀÇ ºÎ»óÀ¸·Î È¿À²ÀûÀÎ ÁÖ¹® 󸮿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷µéÀº Á¤È®µµ¸¦ ³ôÀÌ°í ¸®µå ŸÀÓÀ» ´ÜÃàÇÏ´Â ÀÚµ¿ ÇÇÅ· ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý ºÐ¼® ¹× ¼ö¿ä ¿¹ÃøÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿À´õ ÇÇÅ· ÇÁ·Î¼¼½º°¡ ´õ¿í ÃÖÀûÈ­µÇ°í ÀÖ½À´Ï´Ù. ¿À´õ ÇÇÅ· ÇÁ·Î¼¼½º°¡ ´õ¿í ÃÖÀûÈ­µÇ¾î ±â¾÷Àº ÁÖ¹®·® º¯µ¿À» ¿¹ÃøÇÏ°í °ü¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® â°í¿Í µðÁöÅÐ °ø±Þ¸Á ÅëÇÕÀ¸·ÎÀÇ ÀüȯÀº ½Ç½Ã°£ ÃßÀû ¹× ÀÚµ¿ ºÐ·ù ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µµ½Ã ³» Ç®ÇÊ¸ÕÆ® ¼¾ÅÍ¿Í ¶ó½ºÆ® ¸¶ÀÏ ¹è¼Û °ÅÁ¡ÀÇ È®´ë´Â °í¹Ðµµ Áö¿ª¿¡¼­ÀÇ ¹è¼Û È¿À²À» ³ôÀÌ·Á´Â ±â¾÷µéÀÇ ¿ä±¸·Î ÀÎÇØ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. â°íÀÇ ÀÚµ¿È­°¡ ÁøÇàµÊ¿¡ µû¶ó Áö´ÉÇü ¿À´õ ÇÇÅ· ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ È®´ëµÇ°í, ·Îº¿ °øÇÐ, AI, ¹°·ù ±â¼úÀÇ Çõ½ÅÀÌ ´õ¿í °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

¹æ½Ä(½Ì±Û ¿À´õ ÇÇÅ·, ¸ÖƼ ¿À´õ ÇÇÅ·), ±â¼ú(ÀÚµ¿ â°í(ASRS), ¹«Àοî¹ÝÂ÷/ÀÚÀ² À̵¿ ·Îº¿, ÄÁº£ÀÌ¾î ½Ã½ºÅÛ, ½ºÄ³³Ê, ±âŸ), µµÀÔ(Ŭ¶ó¿ìµå, ¿ÂÇÁ·¹¹Ì½º), ÃÖÁ¾»ç¿ëÀÚ(°Ç¼³, Á¦Á¶, ¼Ò¸Å, E-Commerce, ÇコÄɾî, ÀǾàǰ¡¤È­Àåǰ, ¿î¼Û¡¤¹°·ù, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Warehouse Order Picking Market to Reach US$17.2 Billion by 2030

The global market for Warehouse Order Picking estimated at US$9.9 Billion in the year 2024, is expected to reach US$17.2 Billion by 2030, growing at a CAGR of 9.6% over the analysis period 2024-2030. Single Order Picking, one of the segments analyzed in the report, is expected to record a 8.1% CAGR and reach US$9.7 Billion by the end of the analysis period. Growth in the Multiple Order Picking segment is estimated at 11.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.7 Billion While China is Forecast to Grow at 12.9% CAGR

The Warehouse Order Picking market in the U.S. is estimated at US$2.7 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.4 Billion by the year 2030 trailing a CAGR of 12.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.0% and 8.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.5% CAGR.

Global Warehouse Order Picking Market - Key Trends & Drivers Summarized

Why Is Warehouse Order Picking Becoming a Priority for Logistics Efficiency?

Warehouse order picking is a crucial component of supply chain operations, directly impacting order accuracy, fulfillment speed, and customer satisfaction. As consumer expectations for fast and accurate deliveries rise, businesses are prioritizing efficient order-picking strategies to reduce operational costs and improve service levels. Traditional manual picking methods are being replaced by advanced solutions such as pick-to-light, voice-directed picking, and robotic picking systems to enhance efficiency. The growth of e-commerce and direct-to-consumer (DTC) shipping has further increased the complexity of warehouse order picking, requiring warehouses to handle high order volumes while maintaining precision. Industries such as retail, pharmaceuticals, and manufacturing are adopting order-picking automation to minimize errors and optimize workflow, ensuring streamlined warehouse operations. As businesses strive to improve last-mile logistics and reduce order processing times, order-picking innovations are becoming central to warehouse efficiency strategies.

How Are Robotics and AI Transforming Warehouse Order Picking?

Technological advancements in robotics, AI, and data analytics are revolutionizing warehouse order-picking processes, making them faster, more accurate, and cost-efficient. AI-driven warehouse management systems (WMS) analyze real-time order data to optimize picking routes and prioritize urgent shipments, reducing picking time and labor costs. Robotic picking systems, including autonomous mobile robots (AMRs) and robotic arms, are increasingly being integrated into warehouse operations, allowing for seamless item retrieval and order consolidation. Vision-guided picking technology enhances accuracy by enabling robots and warehouse workers to identify and select items with greater precision. Wearable technology, such as smart glasses and voice-guided picking headsets, further streamlines order fulfillment by providing hands-free navigation and real-time inventory tracking. As AI-powered automation continues to evolve, warehouse order picking is becoming more adaptive, data-driven, and scalable, improving overall supply chain efficiency.

What Challenges Are Impacting the Adoption of Automated Order Picking?

Despite its advantages, warehouse order picking faces several challenges, including high implementation costs, workforce adaptation, and integration with existing logistics infrastructure. The deployment of automated picking systems requires significant capital investment in robotics, AI, and warehouse automation technologies, making it less accessible for small and mid-sized enterprises. Additionally, integrating order-picking solutions with legacy warehouse management systems (WMS) and enterprise resource planning (ERP) software can be complex, requiring extensive customization. Another challenge is workforce adaptation, as employees need training to operate AI-driven picking technologies effectively. Furthermore, maintaining accuracy in high-mix, low-volume warehouse environments presents difficulties, particularly when dealing with fragile or irregularly shaped items. Addressing these challenges requires cost-effective automation solutions, enhanced training programs, and flexible picking technologies that adapt to diverse warehouse layouts.

What Factors Are Driving the Growth of the Warehouse Order Picking Market?

The growth in the warehouse order picking market is driven by several factors, including the expansion of e-commerce, increasing adoption of robotics in warehouses, and the push for real-time inventory visibility. The rise of omnichannel retailing has intensified the need for efficient order fulfillment, compelling businesses to invest in automated picking solutions that improve accuracy and reduce lead times. The increasing use of AI-driven analytics and predictive demand forecasting has further optimized order-picking processes, allowing businesses to anticipate and manage fluctuations in order volumes. Additionally, the shift towards smart warehouses and digital supply chain integration has fueled demand for real-time tracking and automated sorting technologies. The expansion of urban fulfillment centers and last-mile delivery hubs has also contributed to market growth, as companies seek to enhance distribution efficiency in high-density areas. As warehouse automation continues to advance, the demand for intelligent order-picking solutions is expected to grow, driving further innovation in robotics, AI, and logistics technology.

SCOPE OF STUDY:

The report analyzes the Warehouse Order Picking market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Method (Single Order Picking, Multiple Order Picking); Technology (Automated Storage & Retrieval Systems, Automated Guided Vehicles / Autonomous Mobile Robots, Conveyor Systems, Scanners, Others); Deployment (Cloud, On-Premise); End-Use (Construction, Manufacturing, Retail, E-Commerce, Healthcare, Pharma & Cosmetics, Transportation & Logistics, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â