¼¼°èÀÇ ÀúºÐÀÚ ¿ø·áÀǾàǰ(API) ¿¬¼Ó »ý»ê ½ÃÀå
Continuous Manufacturing For Small Molecule APIs
»óǰÄÚµå : 1774734
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 471 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ÀúºÐÀÚ ¿ø·áÀǾàǰ(API) ¿¬¼Ó »ý»ê ½ÃÀåÀº 2030³â±îÁö 6¾ï 2,940¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 3¾ï 6,110¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀúºÐÀÚ ¿ø·áÀǾàǰ(API) ¿¬¼Ó »ý»ê ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 9.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 6¾ï 2,940¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸®¿¢ÅÍ´Â CAGR 11.5%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 5,650¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¤¼® Àåºñ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 10.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9,840¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 13.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀúºÐÀÚ ¿ø·áÀǾàǰ(API) ¿¬¼Ó »ý»ê ½ÃÀåÀº 2024³â¿¡ 9,840¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 13.5%·Î 2030³â±îÁö 1¾ï 2,980¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 6.8%¿Í 8.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 7.7%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀúºÐÀÚ ¿ø·áÀǾàǰ(API) ¿¬¼Ó »ý»ê ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀúºÐÀÚ ¿ø·áÀǾàǰ(API) ¿¬¼Ó »ý»êÀº ÀüÅëÀûÀÎ ¹èÄ¡ °øÁ¤¿¡¼­ ¹þ¾î³ª ÀǾàǰ Á¦Á¶ÀÇ Çõ½ÅÀÇ ¿øµ¿·ÂÀ¸·Î µîÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ÁÖ·Î È¿À²¼º Çâ»ó, Á¦Ç° ǰÁú °³¼±, ¼³Ä¡ ¸éÀû °¨¼Ò, ¼ö¿ä º¯µ¿¿¡ ´ëÇÑ ÀûÀÀ·Â Çâ»ó¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä Á¦¾à»ç ¹× CMO(À§Å¹»ý»ê¾÷ü)´Â ¹ÝÀÀ, Á¤Á¦, Á¦ÇüÈ­¸¦ ¿£µåÅõ¿£µå »ý»ê ¿öÅ©Ç÷ο쿡 ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ´Â ¿¬¼Ó ó¸® ½Ã½ºÅÛ¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÇÑ °¡Áö Å« Æ®·»µå´Â Áß¿äÇÑ Ç°Áú ¼Ó¼ºÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ°í °ß°íÇÏ°í ¹Ýº¹ °¡´ÉÇÑ Ãâ·ÂÀ» º¸ÀåÇϱâ À§ÇØ °í±Þ °øÁ¤ ºÐ¼® ±â¼ú(PAT)À» µµÀÔÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ´Â FDA ¹× EMA¿Í °°Àº ±ÔÁ¦ ±â°üÀÌ ÀǾàǰÀÇ Ç°Áú°ú ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö Àֱ⠶§¹®¿¡ Áö¼ÓÀûÀÎ ÇÁ·Î¼¼½º äÅÃÀ» ÁöÁöÇÒ »Ó¸¸ ¾Æ´Ï¶ó Àû±ØÀûÀ¸·Î Àå·ÁÇϰí ÀÖ´Â °Í°ú ÀÏÄ¡ÇÕ´Ï´Ù. ¶ÇÇÑ, ½Ç½Ã°£ ¸±¸®½º Å×½ºÆ®(RTRT) ±â´ÉÀÌ ¿¬¼Ó »ý»ê ¶óÀο¡ ÅëÇյǾî Á¦Ç° Å×½ºÆ®¿¡ µû¸¥ Áö¿¬À» ´õ¿í ÃÖ¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù.

Æ´»õ ÀǾàǰ, Èñ±ÍÀǾàǰ, ¸ÂÃãÇü ÀǾàǰ µî ºÒ¾ÈÁ¤ÇÑ ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ º¸´Ù ¹ÎøÇÑ »ý»ê¶óÀÎÀ» ¿øÇÏ´Â ±â¾÷µéÀÇ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿¬¼Ó °øÁ¤Àº ½Å¼ÓÇÑ ½ºÄÉÀϾ÷°ú ½ºÄÉÀÏ´Ù¿îÀ» °¡´ÉÇÏ°Ô Çϰí, ÀÚº» ÁöÃâ°ú ½ÃÀå Ãâ½Ã ½Ã°£À» ÁÙ¿©ÁÝ´Ï´Ù. ¶Ç ´Ù¸¥ ÁÖ¿ä Æ®·»µå´Â Á¦¾à Á¦Á¶ÀÇ µðÁöÅÐÈ­À̸ç, AI¸¦ Ȱ¿ëÇÑ °øÁ¤ ÃÖÀûÈ­ ¹× ¿¹Ãø ºÐ¼®Àº ¿¬¼Ó »ý»ê ¼³Á¤¿¡ Á¡Á¡ ´õ ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ ±â¼ú°ú °øÁ¤ ±â¼úÀÇ À¶ÇÕÀº ÄÄÇöóÀ̾ð½º, ÃßÀû¼º, È¿À²¼ºÀ» º¸ÀåÇϸ鼭 ¿î¿µÀ» °£¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬¼Ó »ý»ê Ç÷§Æû°ú ¸ðµâ½Ä ½ºÅ°µå ±â¹Ý ½Ã½ºÅÛÀ» °áÇÕÇÑ ÇÏÀ̺긮µå Á¦Á¶ ¸ðµ¨Àº ƯÈ÷ À¯¿¬Çϰí È®Àå °¡´ÉÇÑ Á¦Á¶°¡ Áß¿äÇÑ ½Å¾à Ãâ½Ã¿¡ ÀÖ¾î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó R&D ±Ô¸ð¿Í »ó¾÷Àû ±Ô¸ðÀÇ Á¦Á¶ÀÇ ±¸ºÐÀÌ ¸ðÈ£ÇØÁö¸é¼­ ½ÇÇè½Ç Çõ½Å¿¡¼­ ½ÃÀå Ãâ½Ã·Î ºü¸£°Ô ÀüȯÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

±â¼úÀº ¿ø·áÀǾàǰ »ý»ê °æ·Î¸¦ ¾î¶»°Ô À籸¼ºÇϰí Àִ°¡?

¿¬¼Ó »ý»êÀ¸·ÎÀÇ ÀüȯÀÇ Á߽ɿ¡´Â ±â¼ú Çõ½ÅÀÌ ÀÖ½À´Ï´Ù. Ç÷οì Äɹ̽ºÆ®¸®, ¸¶ÀÌÅ©·Î ¸®¾×ÅÍ, °­È­µÈ À¯´Ö ¿ÀÆÛ·¹À̼ÇÀº »ó¾÷Àû »ý»ê¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ Ã¤Åõǰí ÀÖÀ¸¸ç, ´õ ³ôÀº ¹ÝÀÀ È¿À², ´õ ÀûÀº ¿ë¸Å »ç¿ë·®, ´õ Áö¼Ó °¡´ÉÇÑ Ã³¸®¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. Á¾Á¾ º¯µ¿¼º°ú ½ºÄÉÀϾ÷¿¡ ¾î·Á¿òÀ» °Þ´Â Àϰý ó¸®¿Í ´Þ¸®, ¿¬¼Ó Ç÷§ÆûÀº º»ÁúÀûÀ¸·Î º¸´Ù ÅëÁ¦µÇ°í ¿¹Ãø °¡´ÉÇÕ´Ï´Ù. ¿¬¼Ó °áÁ¤È­ ¹× ¸âºê·¹ÀÎ ±â¹Ý ºÐ¸®¿Í °°Àº »õ·Î¿î µµ±¸´Â ¿¬¼ÓÀûÀÎ ¹æ¹ýÀ¸·Î »ý»êÇÒ ¼ö ÀÖ´Â È­ÇÐ ¹°Áú°ú ¿ø·áÀÇ ¹üÀ§¸¦ ´õ¿í ³ÐÇôÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¿­¿¡ ¹Î°¨ÇÑ È­ÇÕ¹°À» Á¦Á¶Çϰųª ±âÁ¸ÀÇ ¹èÄ¡ ½Ã½ºÅÛÀ¸·Î´Â Á¦¾îÇϱ⠾î·Á¿î °í¿­ ¹ÝÀÀÀ» ó¸®ÇÏ´Â µ¥ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù.

ÀÚµ¿È­ ¹× Á¦¾î ½Ã½ºÅÛÀº Áö¼ÓÀûÀÎ ¿ø·áÀǾàǰ »ý»êÀÇ °íÀ¯ÇÑ ¿ä±¸»çÇ×À» ÃæÁ·½Ã۱â À§ÇØ ÁøÈ­ÇØ ¿Ô½À´Ï´Ù. ¸Ó½Å·¯´× ¹× ½Ç½Ã°£ ºÐ¼®°ú ÅëÇÕµÈ Á¤±³ÇÑ Á¦¾î ¾ÆÅ°ÅØÃ³´Â ¿©·¯ ´ÜÀ§ ÀÛ¾÷ÀÇ ¿øÈ°ÇÑ ¿ÀÄɽºÆ®·¹À̼ÇÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ Æ®À© ¹× ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨°ú °°Àº ÷´Ü ¼ÒÇÁÆ®¿þ¾î ÅøÀ» ÅëÇÕÇÏ¿© °³¹ß °úÁ¤¿¡¼­ ÇÊ¿äÇÑ ½ÇÇè Ƚ¼ö¸¦ ÁÙÀ̸鼭 ¼³°è ¹× ½ºÄÉÀϾ÷ ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Àåºñ °ø±Þ¾÷üµéµµ ºü¸£°Ô Çõ½ÅÇϰí ÀÖÀ¸¸ç, º¸´Ù ºü¸¥ µµÀÔ°ú ÀÎÇÁ¶ó ºñ¿ë Àý°¨À» À§ÇØ ¿¬¼Ó °øÁ¤¿¡ ÀûÇÕÇÑ ¼ÒÇüÀÇ ¸ðµâÈ­µÈ ½Ã½ºÅÛÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °³¹ß·Î ÀÎÇØ »ý»ê Ç÷§ÆûÀ» Çö´ëÈ­ÇÏ·Á´Â Áß°ß Á¦¾à»ç ¹× Àü¹® Á¦Á¶¾÷üÀÇ ÁøÀÔ À庮ÀÌ Å©°Ô ³·¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »õ·Î¿î APIÀÇ ±¸Á¶¿Í ÇÕ¼ºÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁü¿¡ µû¶ó, ¿¬¼Ó ó¸® ½Ã½ºÅÛÀÌ Á¦°øÇÏ´Â Á¤¹Ðµµ¿Í ¸ÂÃãÈ­´Â ¿î¿µ»óÀÇ »çġǰÀÌ ¾Æ´Ñ Àü·«Àû ÇʼöǰÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼ö¿ä´Â ¾îµð¿¡¼­ ¿À´Â°¡? ÁÖ¿ä ÃÖÁ¾ ¿ëµµ ÀÌÇØ

ÀúºÐÀÚ ¿ø·áÀǾàǰÀÇ ¿¬¼Ó »ý»ê äÅÃÀº ºê·£µå ÀǾàǰ, Á¦³×¸¯ ÀǾàǰ, CMOÀÇ ¸íÈ®ÇÑ ¼ö¿ä ÆÐÅϰú ÇÔ²² ¿©·¯ ÃÖÁ¾ ¿ëµµ ºÎ¹®¿¡¼­ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¿À¸®Áö³Î Á¦¾à»çµéÀº ½Å¼ÓÇϰí À¯¿¬ÇÑ Ãâ½Ã ¹× ¶óÀÌÇÁ»çÀÌŬ °ü¸® Àü·«À» Áö¿øÇϱâ À§ÇØ ¿¬¼Ó »ý»ê ±â¼úÀ» Ȱ¿ëÇϰí ÀÖÀ¸¸ç, ƯÈ÷ Ä¡·á ¹üÀ§°¡ Á¼°Å³ª ¸ÂÃãÇü Åõ¿©°¡ ÇÊ¿äÇÑ ¾àǰÀÇ °æ¿ì ´õ¿í ±×·¯ÇÕ´Ï´Ù. Á¦³×¸¯ ÀǾàǰ ºÐ¾ß¿¡¼­ Á¦Á¶¾÷üµéÀº ºñ¿ë ¾Ð¹ÚÀ» ¹Þ°í ÀÖÀ¸¸ç, ¿¬¼Ó »ý»êÀº ǰÁú°ú ÄÄÇöóÀ̾𽺸¦ À¯ÁöÇϸ鼭 COGS(Cost of Goods-Sold)¸¦ ³·Ãâ ¼ö ÀÖ´Â ±æÀ» Á¦°øÇÕ´Ï´Ù. °í°´¿¡°Ô ½Å¼ÓÇÑ ÇÁ·ÎÁ§Æ® ó¸®, Àç°í ¿ä±¸ »çÇ× °¨¼Ò, ÇÁ·Î¼¼½º °ß°í¼º °­È­¸¦ Á¦°øÇÕ´Ï´Ù.

¶ÇÇÑ, ¾Ï, ÁßÃ߽Űæ°è Áúȯ, Èñ±ÍÁúȯÀÇ ÀûÀÀÁõ¿¡ »ç¿ëµÇ´Â °Í°ú °°Àº ¼Ò·®, °íºÎ°¡°¡Ä¡ ¿ø·áÀǾàǰ¿¡ ´ëÇÑ ¿¬¼Ó»ý»êÀÇ »ç¿ëµµ ´«¿¡ ¶ç°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä¡·á¹ýÀº ÀϹÝÀûÀ¸·Î ªÀº »ý»ê ÀÏÁ¤°ú ³ôÀº ¼øµµ ¼öÁØÀ» ¿ä±¸Çϴµ¥, ÀÌ µÎ °¡Áö ¿ä±¸»çÇ×Àº ¸ðµÎ ¿¬¼Ó »ý»ê ½Ã½ºÅÛ¿¡¼­ º»ÁúÀûÀ¸·Î Áö¿øµË´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ¿Í °øÁß º¸°Ç ±â°üÀº ƯÈ÷ Äڷγª19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ °ø±Þ¸Á È¥¶õÀ» °ÞÀ¸¸é¼­, ȸº¹·Â ±¸Ãà Àü·«ÀÇ ÀÏȯÀ¸·Î Çʼö ¿ø·áÀǾàǰÀÇ À°»ó »ý»ê ¹× ÇöÁö »ý»êÀ» ¿ËÈ£Çϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÌ·¯ÇÑ »óȲ¿¡¼­ ¼ÒÇü ¿¬¼Ó »ý»ê Àåºñ´Â ºÐ»êµÈ ±¹ÁöÀû »ý»ê ¸ðµ¨¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÌ ¾÷°è¿¡¼­´Â °øÁ¤ ¾ÈÀü¼º, ÃßÀû¼º, ºÀ¼â°¡ °¡Àå Áß¿äÇÑ ±ÔÁ¦ ¹°ÁúÀÇ °³¹ß ¹× Á¦Á¶¿¡ ¿¬¼Ó Ç÷§ÆûÀÇ È°¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀº? ÁÖ¸ñ¹Þ´Â ÁÖ¿ä ÃËÁø¿äÀÎ

ÀúºÐÀÚ ¿ø·áÀǾàǰÀÇ ¿¬¼Ó »ý»ê ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú Çõ½Å, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø, ÃÖÁ¾ »ç¿ë ÆÐÅÏÀÇ ÁøÈ­, ¾÷¹«»ó Çʿ伺°ú °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¿ø¾àÀÇ º¹À⼺ Áõ°¡·Î ÀÎÇØ º¸´Ù Á¤¹ÐÇϰí ÅëÁ¦µÈ ÇÕ¼º Á¶°ÇÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. µÑ°, ±ÔÁ¦ ´ç±¹ÀÌ ½É»ç ¹× ½ÂÀÎ ½Å¼ÓÈ­ µî ¿¬¼Ó »ý»ê µµÀÔÀ» À§ÇÑ ¸íÈ®ÇÑ °æ·Î¿Í Àμ¾Æ¼ºê¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Á¦¾à ±â¾÷ÀÇ ±â¼ú ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼Â°, Á¦¾à »ê¾÷ÀÌ º¸´Ù °³ÀÎÈ­µÈ Ç¥Àû Ä¡·á·Î ÀüȯÇÔ¿¡ µû¶ó ¹èÄ¡ »ý»êº¸´Ù ¿¬¼Ó »ý»ê¿¡ ÀûÇÕÇÑ ÀÛÀº ¹èÄ¡ Å©±â¿Í ºü¸¥ Á¦Ç°È­¶ó´Â ¿ªÇÐÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

¿î¿µ Ãø¸é¿¡¼­ Á¦Á¶ ºñ¿ë Àý°¨, °ø±Þ¸Á ź·Â¼º Çâ»ó, ³ôÀº Á¦Ç° ǰÁú À¯Áö¿¡ ´ëÇÑ ¾Ð¹ÚÀ¸·Î ÀÎÇØ ÁÖ¿ä ±â¾÷µéÀº ÀüÅëÀûÀÎ Á¦Á¶ ½Ã½ºÅÛÀ» Àç°ËÅäÇϰí ÀÖ½À´Ï´Ù. ¿¬¼Ó »ý»êÀº ƯÈ÷ ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ÃÖÀûÈ­¸¦ À§ÇØ AI, IoT, °í±Þ ºÐ¼®°ú ÅëÇÕµÉ ¶§ ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ ´Þ¼ºÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ °æ·Î¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¸ðµâÇü ½Ã½ºÅÛ ¹× ÈÞ´ë¿ë ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀÌ °¡´ÉÇϱ⠶§¹®¿¡ Áß°ß Á¦¾à»ç ¹× Á¤ºÎ Áö¿ø Á¦Á¶ °ÅÁ¡ µî º¸´Ù ±¤¹üÀ§ÇÑ »ç¿ëÀÚÃþ¿¡ ¿¬¼Ó¼º Ç÷§ÆûÀÇ Àû¿ë °¡´É¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, Á¾¾çÇÐ, Èñ±ÍÁúȯ, Ư¼ö Á¦³×¸¯ µî ¼Óµµ, ǰÁú, À¯¿¬¼ºÀÌ Áß¿äÇÑ Ä¡·á ºÐ¾ß¿¡¼­ ¼ö¿ä Áõ°¡´Â ÀǾàǰ °¡Ä¡»ç½½ Àü¹Ý¿¡ °ÉÃÄ ¿¬¼Ó»ý»êÀÌ ±¤¹üÀ§ÇÏ°Ô È®»êµÇ´Â Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Àåºñ À¯Çü(¹ÝÀÀ±â, °áÁ¤È­±â, ¿©°ú ½Ã½ºÅÛ, ¹Í¼­, ¿­±³È¯±â, ±âŸ Àåºñ À¯Çü); À¯´Ö ¿î¿µ(ÇÕ¼º À¯´Ö ¿î¿µ, ºÐ¸® ¹× Á¤Á¦ À¯´Ö ¿î¿µ, °ÇÁ¶ À¯´Ö ¿î¿µ); API À¯Çü(ÀÏ¹Ý API, Çõ½Å API); ÃÖÁ¾ ¿ëµµ(CMO/CDMO ÃÖÁ¾ ¿ëµµ, Á¦¾à ȸ»ç ÃÖÁ¾ ¿ëµµ, Çмú ¹× ¿¬±¸ ±â°ü ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Continuous Manufacturing For Small Molecule APIs Market to Reach US$629.4 Million by 2030

The global market for Continuous Manufacturing For Small Molecule APIs estimated at US$361.1 Million in the year 2024, is expected to reach US$629.4 Million by 2030, growing at a CAGR of 9.7% over the analysis period 2024-2030. Reactors, one of the segments analyzed in the report, is expected to record a 11.5% CAGR and reach US$156.5 Million by the end of the analysis period. Growth in the Crystallizers segment is estimated at 10.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$98.4 Million While China is Forecast to Grow at 13.5% CAGR

The Continuous Manufacturing For Small Molecule APIs market in the U.S. is estimated at US$98.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$129.8 Million by the year 2030 trailing a CAGR of 13.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 6.8% and 8.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.7% CAGR.

Global Continuous Manufacturing For Small Molecule APIs Market - Key Trends & Drivers Summarized

Continuous manufacturing for small molecule active pharmaceutical ingredients (APIs) has emerged as a transformative force in pharmaceutical production, offering a leap forward from the traditional batch processes. This shift is primarily catalyzed by the need for increased efficiency, better product quality, reduced footprint, and greater adaptability to demand fluctuations. Leading pharmaceutical companies and CMOs (Contract Manufacturing Organizations) are actively investing in continuous processing systems that integrate reaction, purification, and formulation into seamless, end-to-end production workflows. One major trend is the increasing deployment of advanced process analytical technologies (PAT) to monitor critical quality attributes in real-time, ensuring robust and reproducible outputs. This aligns with regulatory bodies such as the FDA and EMA that are not only supportive but actively encouraging the adoption of continuous processes due to their potential to enhance drug quality and reliability. Additionally, real-time release testing (RTRT) capabilities are being integrated into continuous lines, further minimizing delays associated with product testing.

A rising wave of interest can be observed from companies seeking more agile production lines to manage the volatile demands of niche drugs, orphan indications, and personalized medicine. Continuous processes allow rapid scale-up or scale-down, reducing capital expenditure and time-to-market. Another influential trend is the digitalization of pharma manufacturing, with AI-driven process optimization and predictive analytics becoming increasingly integral to continuous manufacturing setups. This convergence of digital and process technologies is streamlining operations while ensuring compliance, traceability, and efficiency. Moreover, hybrid manufacturing models, where continuous platforms are coupled with modular, skid-based systems, are gaining traction-especially for new drug launches where flexible, scalable manufacturing is critical. As these technologies mature, the distinction between R&D-scale and commercial-scale manufacturing is blurring, enabling quicker transitions from laboratory innovation to market availability.

How Is Technology Reshaping API Production Pathways?

Technological innovation lies at the heart of the shift to continuous manufacturing. Flow chemistry, microreactors, and intensified unit operations are increasingly being employed in commercial production, enabling higher reaction efficiency, lower solvent usage, and more sustainable processing. Unlike batch processing, which is often prone to variability and scale-up challenges, continuous platforms are inherently more controlled and predictable. Emerging tools such as continuous crystallization and membrane-based separations have further expanded the range of chemistries and APIs that can be manufactured using continuous methods. These tools are especially effective in producing heat-sensitive compounds or handling highly exothermic reactions, which are difficult to control in traditional batch systems.

Automation and control systems have evolved to meet the specific demands of continuous API manufacturing. Sophisticated control architectures, integrated with machine learning and real-time analytics, allow for the seamless orchestration of multiple unit operations. Additionally, the integration of advanced software tools such as digital twins and simulation models is enhancing design and scale-up capabilities while reducing the number of experimental runs required during development. Equipment vendors are also rapidly innovating, offering compact and modular systems tailored for continuous processing that allow faster deployment and lower infrastructure costs. These developments are significantly lowering the barrier to entry for mid-sized pharmaceutical companies and specialty manufacturers seeking to modernize their production platforms. Furthermore, with new APIs increasingly complex in structure and synthesis, the precision and customization enabled by continuous systems are becoming a strategic necessity rather than an operational luxury.

Where Is Demand Emerging From? Understanding Key End-Use Applications

The adoption of continuous manufacturing for small molecule APIs is accelerating across several end-use segments, with distinct patterns of demand in branded pharmaceuticals, generics, and CMOs. Branded drug manufacturers are leveraging continuous technologies to support rapid, flexible launches and lifecycle management strategies, especially for drugs with narrow therapeutic windows or customized dosing requirements. In the generic space, players are under mounting cost pressure, and continuous processing offers a pathway to lower cost-of-goods-sold (COGS) without compromising quality or compliance. For CMOs and CDMOs, continuous manufacturing has become a strategic differentiator, offering clients faster project turnaround, lower inventory requirements, and enhanced process robustness-all of which translate into competitive advantage in contract bidding.

There is also a marked uptick in the use of continuous manufacturing for low-volume, high-value APIs-such as those used in oncology, CNS disorders, and orphan indications. These therapies typically demand short production timelines and high purity levels, both of which are inherently supported by continuous systems. Furthermore, governments and public health organizations are beginning to advocate for onshore or localized production of essential APIs as part of resilience-building strategies, particularly in the wake of supply chain disruptions witnessed during the COVID-19 pandemic. In this context, compact continuous manufacturing units are ideal for distributed, localized production models. Additionally, the industry is seeing growth in the use of continuous platforms for developing and manufacturing controlled substances, where process security, traceability, and containment are of paramount importance.

What Is Fueling Market Expansion? Key Growth Drivers in Focus

The growth in the continuous manufacturing for small molecule APIs market is driven by several factors related to technological innovation, regulatory support, evolving end-use patterns, and operational imperatives. One of the primary growth drivers is the increasing complexity of APIs, which necessitates more precise and controlled synthesis conditions-capabilities where continuous processes excel. Secondly, regulatory authorities are providing clearer pathways and incentives for continuous production adoption, including accelerated review and approval mechanisms, which is encouraging pharmaceutical firms to invest in the technology. Third, as the pharmaceutical industry shifts towards more personalized and targeted therapies, there is a need for smaller batch sizes and rapid product turnaround-dynamics that are better served by continuous rather than batch production.

From an operational standpoint, the pressure to reduce manufacturing costs, improve supply chain resilience, and maintain high product quality is leading companies to reconsider their legacy production systems. Continuous manufacturing offers a clear path to achieving these goals, especially when integrated with AI, IoT, and advanced analytics for real-time monitoring and optimization. The ability to integrate with modular and portable systems is also expanding the applicability of continuous platforms to a broader set of users, including mid-tier pharmaceutical companies and government-backed manufacturing hubs. Lastly, the rising demand from therapeutic segments like oncology, rare diseases, and specialty generics-where speed, quality, and flexibility are critical-is acting as a catalyst for the wider deployment of continuous manufacturing across the pharmaceutical value chain.

SCOPE OF STUDY:

The report analyzes the Continuous Manufacturing For Small Molecule APIs market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Equipment Type (Reactors, Crystallizers, Filtration Systems, Mixers, Heat Exchangers, Other Equipment Types); Unit Operation (Synthesis Unit Operation, Separation and Purification Unit Operation, Drying Unit Operation); API Type (Generic APIs, Innovative APIs); End-Use (CMOs/CDMOs End-Use, Pharmaceutical Companies End-Use, Academic and Research Institutes End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â