¼¼°èÀÇ ¿î¼Û ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå
Artificial Intelligence (AI) in Transportation
»óǰÄÚµå : 1768787
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 189 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¿î¼Û ºÐ¾ß ÀΰøÁö´É(AI) ¼¼°è ½ÃÀå, 2030³â±îÁö 102¾ï ´Þ·¯¿¡ µµ´Þ Àü¸Á

2024³â¿¡ 42¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿î¼Û ºÐ¾ß ÀΰøÁö´É(AI) ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 15.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 102¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î´Â CAGR 17.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 73¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Çϵå¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 12.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 12¾ï ´Þ·¯, Áß±¹Àº CAGR 14.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ¿î¼Û ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 15¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 14.8%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 14.0%¿Í 13.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.0%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¿î¼Û ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AI´Â ÀÚÀ²ÁÖÇàÂ÷¿Í ¾ÈÀü¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

ÀΰøÁö´É(AI)Àº ÀÚÀ²ÁÖÇàÂ÷ÀÇ ¹ßÀüÀ» ÃËÁøÇÏ°í ±³Åë ¾ÈÀüÀ» Å©°Ô Çâ»ó½ÃÅ´À¸·Î½á ±³Åë »óȲÀ» ±Ùº»ÀûÀ¸·Î À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷´Â LIDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó µî ´Ù¾çÇÑ ¼¾¼­ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© µµ·Î¸¦ 'º¸°í', Àå¾Ö¹°À» ÀνÄÇϰí, Áï°¢ÀûÀÎ ÆÇ´ÜÀ» ³»¸®°í, ȯ°æÀ» ÇØ¼®Çϰí, Ž»öÇϱâ À§ÇØ AI¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÄÄÇ»ÅÍ ºñÀüÀ» ÀÌ¿ëÇÑ ¾Ë°í¸®ÁòÀº º¸ÇàÀÚ, ±³Åë Ç¥ÁöÆÇ, ÀÚÀü°Å, ´Ù¸¥ Â÷·®°ú °°Àº µ¿Àû ¿ä¼Ò¸¦ ½Äº°ÇÏ°í ¹ÝÀÀÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ½ÇÁ¦ ½Ã³ª¸®¿À¸¦ ó¸®ÇÏ°í ´ëÀÀÇÒ ¼ö ÀÖ´Â ÀÌ·¯ÇÑ ´É·ÂÀ» ÅëÇØ ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀº Àΰ£ ¿îÀüÀÚº¸´Ù ´õ È¿°úÀûÀ¸·Î »ç°í¸¦ ¿¹ÃøÇϰí ȸÇÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI´Â ¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷»Ó¸¸ ¾Æ´Ï¶ó ±âÁ¸ Â÷·®ÀÇ ¿îÀü º¸Á¶ ½Ã½ºÅÛ¿¡µµ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. Â÷¼± ÀÌÅ» °æ°í, ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Ãæµ¹ ¹æÁö ½Ã½ºÅÛ°ú °°Àº AI ±â¹Ý ±â´ÉÀÌ ¸¹Àº ÀÚµ¿Â÷¿¡ Ç¥ÁØÀ¸·Î ÀåÂøµÇ¾î ±³Åë»ç°íÀÇ ÁÖ¿ä ¿øÀÎÀÎ ÀÎÀû ¿À·ù¸¦ ÁÙÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó AI´Â º¸´Ù ¾ÈÀüÇÑ µµ·Î¸¦ ¸¸µé°í, ±³Åë üÁõÀ» ¿ÏÈ­Çϰí, º¸´Ù È¿À²ÀûÀÎ ¿îÀüÀ» ÃËÁøÇÔÀ¸·Î½á ȯ°æ¿¡ ¹ÌÄ¡´Â Àü¹ÝÀûÀÎ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÌ ÀÚÀ² ÁÖÇà ±â¼ú¿¡ ´ëÇÑ ¾ÈÀü ¹× ±ÔÁ¤ Áؼö ±âÁØÀ» ¼³Á¤Çϱ⠽ÃÀÛÇÔ¿¡ µû¶ó, AI´Â ´Ü¼øÈ÷ Â÷·® ¿îÀü ¹æ½ÄÀ» °³¼±ÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó ÀÌ ±â¼úÀÌ ¾ö°ÝÇÑ ¾ÈÀü ¿ä±¸ »çÇ×À» ÃæÁ·Çϵµ·Ï º¸ÀåÇÒ ¼ö ÀÖ´Â À§Ä¡¿¡ ÀÖÀ¸¸ç, ÀÌ´Â ¿î¼ÛÀÇ ¾ÈÀü°ú ½Å·Ú¼º¿¡ Å« ÁøÀüÀ» °¡Á®¿Ã °ÍÀÔ´Ï´Ù.

AI´Â ¾î¶»°Ô Â÷·® °ü¸®¿Í ¿îÇà È¿À²À» ³ôÀÏ ¼ö ÀÖÀ»±î?

»ó¾÷¿ë ¿î¼Û ºÐ¾ß¿¡¼­ AI´Â Â÷·® °ü¸®¸¦ Çõ½ÅÇÏ¿© ±â¾÷ÀÌ º¸´Ù È¿À²ÀûÀÌ°í °æÁ¦ÀûÀ¸·Î »ç¾÷À» ¿î¿µÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. AI ±â¹Ý ºÐ¼®À» ÅëÇØ Â÷·® °ü¸®ÀÚ´Â °¢ Â÷·®ÀÇ »óŸ¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí, ¿¬·á ¼Òºñ, ¿£Áø ¼º´É, ºê·¹ÀÌÅ© »óÅÂ¿Í °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ÃßÀûÇϰí, À¯Áöº¸¼ö°¡ ÇÊ¿äÇÑ ½ÃÁ¡À» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù. AI´Â ¿¹Áöº¸Àü ±â´ÉÀ» ÅëÇØ Â÷·®ÀÇ ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÏ°í ºñ¿ë°ú È¥¶õÀ» ÃÊ·¡ÇÏ´Â ¿¹±âÄ¡ ¸øÇÑ °íÀåÀ» ¹æÁöÇÕ´Ï´Ù. Â÷·® °ü¸®¿¡ ´ëÇÑ ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀº ºñ¿ëÀ» Àý°¨ÇÒ »Ó¸¸ ¾Æ´Ï¶ó °¢ ÀÚ»êÀÇ ¼ö¸íÀ» ¿¬ÀåÇϰí, °¡Ä¡¸¦ âÃâÇϰí, º¸´Ù ¾ÈÁ¤ÀûÀÎ ¼­ºñ½º¸¦ º¸ÀåÇϸç, AI´Â °æ·Î °èȹÀ» ÃÖÀûÈ­ÇÏ¿© ¿îÇà È¿À²À» ´õ¿í Çâ»ó½Ãŵ´Ï´Ù. ±³Åë ÆÐÅÏ, ³¯¾¾, °ú°Å ¹è¼Û ÀÏÁ¤ µîÀÇ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© AI´Â °¡Àå È¿À²ÀûÀÎ ¹è¼Û °æ·Î¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, ±â¾÷Àº ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í, ¿î¼Û ½Ã°£À» ´ÜÃàÇϰí, ¹è¼Û Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¹°·ù ¹× ´ëÁß ±³Åë ±â°ü¿¡ À־µµ AI¸¦ Ȱ¿ëÇÑ ¼ö¿ä ¿¹Ãø µµ±¸´Â ¸Å¿ì À¯¿ëÇÕ´Ï´Ù. AI´Â °èÀýÀû Ãß¼¼, ¼ÒºñÀÚ ¼ö¿ä, Áö¿ª °æÁ¦ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ¿îÇà °ü¸®ÀÚ°¡ ÀÏÁ¤°ú ÀÚ¿øÀ» µ¿ÀûÀ¸·Î Á¶Á¤Çϰí, ¼­ºñ½º °¡¿ë¼ºÀ» °³¼±Çϰí, ¿îÇà ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÃÖÀûÈ­µÈ ¶ó¿ìÆÃ°ú È¿À²ÀûÀÎ ÀÚ¿ø ¹èºÐÀº ź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ±â¿©Çϰí, Áö¼Ó °¡´ÉÇϰí ģȯ°æÀûÀÎ ¿î¼Û ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ºÎÇÕÇϱ⠶§¹®¿¡ AI¸¦ Ȱ¿ëÇÑ Â÷·® °ü¸®ÀÇ È¯°æÀû ÀÌÁ¡µµ Å®´Ï´Ù.

±³Åë °ü¸® ¹× ÀÎÇÁ¶ó °³¹ß¿¡¼­ AIÀÇ ¿ªÇÒÀº ¹«¾ùÀΰ¡?

AI´Â ±³Åë °ü¸®¸¦ Çõ½ÅÇϰí ÀÎÇÁ¶ó °³¹ßÀ» À̲ô´Â °­·ÂÇÑ µµ±¸·Î, ¸ÅÀÏ ¼ö¹é¸¸ ¸íÀÇ »ç¶÷µé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¡´Â µµ½Ã °èȹÀÇ µÎ °¡Áö Áß¿äÇÑ ºÐ¾ßÀÔ´Ï´Ù. ±³Åë °ü¸®¿¡¼­ AI ½Ã½ºÅÛÀº ¼¾¼­, °¨½Ã Ä«¸Þ¶ó, Ä¿³ØÆ¼µåÄ«ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ±³Åë È帧À» ¸ð´ÏÅ͸µÇϰí, Á¤Ã¼ ÁöÁ¡À» °¨ÁöÇϰí, ÀáÀçÀûÀÎ Áö¿¬À» ¿¹ÃøÇÕ´Ï´Ù. ÀÌ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ÅëÇØ AI ¾Ë°í¸®ÁòÀº ±³Åë ½ÅÈ£ ŸÀ̹ÖÀ» Á¶Á¤Çϰí, ±³Åë °æ·Î¸¦ º¯°æÇϰí, ¿îÀüÀÚ¿¡°Ô ´ëü °æ·Î¸¦ °æ°íÇÏ¿© ±Ã±ØÀûÀ¸·Î ±³Åë üÁõÀ» ¿ÏÈ­Çϰí, ¾ÈÀüÀ» °³¼±Çϰí, ¿øÈ°ÇÑ ÃâÅð±ÙÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó °³¹ß¿¡¼­ AI´Â µµ½Ã °èȹ°¡µé¿¡°Ô µµ·Î, ±³·®, ´ëÁß±³Åë ½Ã½ºÅÛ ¼³°è¸¦ ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ±ÍÁßÇÑ ¿¹ÃøÀû ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. AI´Â Àα¸ Áõ°¡ ¿¹Ãø, Â÷·® µ¥ÀÌÅÍ, ÃâÅð±Ù ÇൿÀ» ºÐ¼®ÇÏ¿© ÇöÀç ¼ö¿ä¸¦ ÃæÁ·½Ãų »Ó¸¸ ¾Æ´Ï¶ó ¹Ì·¡ ¼ö¿ä¿¡ ´ëºñÇÑ ÀÎÇÁ¶ó¸¦ ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, AI´Â ±¸Á¶Àû º¯È­, ¸¶¸ð, ½ºÆ®·¹½º ÁöÁ¡À» °¨ÁöÇÒ ¼ö ÀÖ´Â ³»Àå ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ÅëÇØ Áß¿äÇÑ ÀÎÇÁ¶óÀÇ »óŸ¦ ¸ð´ÏÅ͸µÇϰí, ¹®Á¦°¡ °í°¡ÀÇ ÆÄ±«ÀûÀÎ °íÀåÀ¸·Î È®´ëµÇ±â Àü¿¡ Á¶±â À¯Áöº¸¼ö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. AI´Â ÀÎÇÁ¶ó °ü¸®¿¡ ´ëÇÑ ¿¹Ãø ¹× ¿¹¹æÀû Á¢±ÙÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á µµ½Ã À̵¿¼º, ¾ÈÀü ¹× ÁÖ¹ÎÀÇ »îÀÇ Áú Çâ»ó¿¡ ÃÊÁ¡À» ¸ÂÃá ½º¸¶Æ® ½ÃƼ ºñÀüÀÇ ±â¹ÝÀÌ µÇ´Â ź·ÂÀûÀ̰í È¿À²ÀûÀÎ ±³Åë ½Ã½ºÅÛ °³¹ßÀ» Áö¿øÇÕ´Ï´Ù.

±³Åë AI ½ÃÀåÀÇ ¼ºÀåÀ» À̲ô´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

±³Åë ºÐ¾ß AI ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú Çõ½ÅÀÇ ºü¸¥ ¼Óµµ¿Í ¾÷°è ³» ´ÏÁîÀÇ ÁøÈ­¸¦ °­Á¶ÇÏ´Â ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ °ÍÀº º¸´Ù ¾ÈÀüÇÏ°í Æí¸®ÇÑ ±³Åë¼ö´Ü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½É°ú »ç°í ¹× ¹è±â°¡½º °¨ÃàÀ» À§ÇÑ ±ÔÁ¦ Áö¿ø¿¡ ÈûÀÔ¾î ÀÚÀ² ÁÖÇà Â÷·®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ, ¿îÇà °ü¸® ºÐ¾ß¿¡¼­µµ AI¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ƯÈ÷ ¹°·ù ºÐ¾ß¿¡¼­´Â ±â¾÷µéÀÌ ¿îÇà ÃÖÀûÈ­, ºñ¿ë Àý°¨, ȯ°æ ¹®Á¦ ´ëÀÀÀ» À§ÇØ AI¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. µµ½ÃÈ­ÀÇ ÁøÀü°ú ½º¸¶Æ®½ÃƼ¿¡ ´ëÇÑ ³ë·Âµµ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, °¢ µµ½Ã´Â ±³ÅëüÁõ ´ëÀÀ, Ä¡¾È Çâ»ó, ÃâÅð±Ù °æÇè °³¼± µî AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ç¹°ÀÎÅͳÝ(IoT) ±â±â¿Í ¿¬°áµÈ ÀÎÇÁ¶ó°¡ ³Î¸® º¸±ÞµÇ¸é¼­ »õ·Î¿î »çÀ̹ö º¸¾È À§ÇèÀÌ ´ëµÎµÇ°í ÀÖÀ¸¸ç, AI´Â ÀáÀçÀûÀÎ À§ÇùÀ¸·ÎºÎÅÍ ±³Åë¸ÁÀ» º¸È£ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±³Åë¾÷°èÀÇ °æÀï ȯ°æÀº ¶ÇÇÑ ¿ì¼öÇÑ °í°´ °æÇèÀ» Á¦°øÇϰí, °í°´ À¯ÁöÀ²À» °³¼±Çϰí, ÀÌÅ»À» ÁÙÀ̱â À§ÇØ AI¿¡ ÅõÀÚÇÏ´Â ±â¾÷µéÀÇ µ¿±â¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¸Ó½Å·¯´×, ÀÚ¿¬¾î ó¸®, ÄÄÇ»ÅÍ ºñÀü°ú °°Àº AI ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀÇ Á¢±Ù¼ºÀÌ Çâ»óµÇ°í ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÇ¾î Áß¼Ò±â¾÷µµ ¿î¼Û °ü¸® ¹× Çõ½Å¿¡ AI¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇյǾî ÇöÀç ¼ö¿ä¸¦ ÃæÁ·½Ãų »Ó¸¸ ¾Æ´Ï¶ó º¸´Ù È¿À²ÀûÀÌ°í ¾ÈÀüÇϸç Áö¼Ó °¡´ÉÇÑ ¿î¼ÛÀÇ ¹Ì·¡·Î °¡´Â ±æÀ» ¿­±â À§ÇØ AI¸¦ ºü¸£°Ô µµÀÔÇÏ´Â ¾÷°èÀÇ ¸ð½ÀÀ» ±×·Á³»°í ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î), ÇÁ·Î¼¼½º(½ÅÈ£ ÀνÄ, ¹°Ã¼ ÀνÄ, µ¥ÀÌÅÍ ¸¶ÀÌ´×), ¿ëµµ(¹ÝÀÚÀ²ÁÖÇà Æ®·°, ÀÚÀ²ÁÖÇà Æ®·°, Æ®·° HMI)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence (AI) in Transportation Market to Reach US$10.2 Billion by 2030

The global market for Artificial Intelligence (AI) in Transportation estimated at US$4.2 Billion in the year 2024, is expected to reach US$10.2 Billion by 2030, growing at a CAGR of 15.7% over the analysis period 2024-2030. Software, one of the segments analyzed in the report, is expected to record a 17.0% CAGR and reach US$7.3 Billion by the end of the analysis period. Growth in the Hardware segment is estimated at 12.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.2 Billion While China is Forecast to Grow at 14.8% CAGR

The Artificial Intelligence (AI) in Transportation market in the U.S. is estimated at US$1.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.5 Billion by the year 2030 trailing a CAGR of 14.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.0% and 13.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.0% CAGR.

Global Artificial Intelligence (AI) in Transportation Market - Key Trends and Drivers Summarized

How Is AI Revolutionizing Autonomous Vehicles and Safety?

Artificial Intelligence (AI) is fundamentally reshaping the landscape of transportation by driving advancements in autonomous vehicles and significantly enhancing road safety. Autonomous vehicles rely heavily on AI to interpret and navigate their environment, using real-time data from an array of sensors, including LIDAR, radar, and cameras, to "see" the road, recognize obstacles, and make split-second decisions. AI algorithms, particularly those powered by deep learning and computer vision, are essential for identifying and reacting to dynamic elements like pedestrians, traffic signs, cyclists, and other vehicles. This ability to process and respond to real-world scenarios allows autonomous systems to predict and avoid accidents more effectively than human drivers. Moreover, AI isn’t limited to fully autonomous vehicles-it’s transforming driver-assistance systems in conventional vehicles as well. AI-driven features such as lane departure warnings, adaptive cruise control, and collision prevention systems are becoming standard in many vehicles, reducing human error, which remains the leading cause of road accidents. As these technologies continue to develop, AI is set to create safer roads, decrease congestion, and lower the overall environmental impact by promoting more efficient driving. With regulators beginning to set safety and compliance standards for autonomous technology, AI is not just enhancing the way vehicles operate, but is also positioned to ensure that this technology aligns with rigorous safety requirements, marking a major step forward for transportation safety and reliability.

How Does AI Enhance Fleet Management and Operational Efficiency?

In commercial transportation, AI is transforming fleet management, enabling companies to operate more efficiently and economically. Through advanced AI-driven analytics, fleet managers can monitor the health of each vehicle in real time, track critical metrics such as fuel consumption, engine performance, and brake condition, and even predict when maintenance will be necessary. By leveraging predictive maintenance capabilities, AI minimizes vehicle downtime, preventing unexpected breakdowns that can be costly and disruptive. This proactive approach to vehicle management not only reduces costs but also extends the life of each asset, creating value and ensuring more reliable service. AI further enhances operational efficiency by optimizing route planning. Using data on traffic patterns, weather conditions, and historical delivery timelines, AI can identify the most efficient routes for deliveries, allowing companies to lower fuel consumption, reduce transit times, and improve delivery accuracy. For logistics and public transportation, AI-driven demand forecasting tools are also invaluable. By analyzing seasonal trends, consumer demand, and regional economic data, AI helps fleet managers adjust schedules and resources dynamically, improving service availability and reducing operating costs. The environmental benefits of AI-enabled fleet management are significant as well, as optimized routing and efficient resource allocation contribute to lower carbon emissions, aligning with the growing demand for sustainable and eco-friendly transportation solutions.

What Role Does AI Play in Traffic Management and Infrastructure Development?

AI is a powerful tool for transforming traffic management and guiding infrastructure development, two critical areas in urban planning that affect millions of people daily. In traffic management, AI systems analyze live data from sensors, surveillance cameras, and connected vehicles to monitor traffic flow, detect congestion points, and predict potential delays. This real-time data enables AI algorithms to make on-the-spot adjustments to traffic signal timing, reroute traffic, and alert drivers to alternate paths, ultimately reducing congestion, improving safety, and ensuring smoother commutes. In infrastructure development, AI is essential for urban planners, providing valuable predictive insights that help optimize the design of roads, bridges, and public transit systems. By analyzing population growth projections, vehicular data, and commuter behaviors, AI assists in creating infrastructure that not only meets current demand but is also prepared for future needs. Additionally, AI aids in monitoring the health of critical infrastructure through data from embedded sensors that can detect structural changes, wear, or stress points, allowing for early maintenance before issues escalate into costly and disruptive failures. By enabling predictive and preventive approaches to infrastructure management, AI supports the development of resilient and efficient transportation systems, which are foundational to the vision of smart cities focused on improving urban mobility, safety, and the quality of life for residents.

What’s Driving the Growth of the AI in Transportation Market?

The growth in the AI in transportation market is driven by several factors that underscore both the rapid pace of technological innovation and the evolving needs within the industry. Foremost among these is the increasing demand for autonomous vehicles, fueled by consumer interest in safer and more convenient modes of transport, as well as regulatory support aimed at reducing accidents and emissions. The need for AI in fleet management has also surged, particularly within the logistics sector, where companies are seeking ways to optimize operations, cut costs, and address environmental concerns. The growing trend toward urbanization and smart city initiatives is another crucial driver, as cities look for AI-driven solutions to address traffic congestion, enhance public safety, and improve commuter experiences. Furthermore, the widespread adoption of Internet of Things (IoT) devices and connected infrastructure has introduced new cybersecurity risks, making AI essential in safeguarding transportation networks from potential threats. The competitive landscape of the transportation industry also motivates companies to invest in AI to deliver superior customer experiences, improve retention, and reduce churn. Finally, advancements in AI technologies, such as machine learning, natural language processing, and computer vision, have made these solutions more accessible and cost-effective, allowing smaller companies to leverage AI for transportation management and innovation. Together, these drivers paint a picture of an industry rapidly embracing AI to not only meet current demands but to pave the way for a more efficient, secure, and sustainable future in transportation.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence (AI) in Transportation market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software, Hardware); Process (Signal Recognition, Object Recognition, Data Mining); Application (Semi-Autonomous Trucks, Autonomous Trucks, HMI in Trucks)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 233 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â