¼¼°èÀÇ ±³À° ¹× ÇнÀ ºÐ¼® ½ÃÀå
Education and Learning Analytics
»óǰÄÚµå : 1766969
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 442 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

±³À° ¹× ÇнÀ ºÐ¼® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 296¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 129¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ±³À° ¹× ÇнÀ ºÐ¼® ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 14.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 296¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼³¸íÇüÀº CAGR 11.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 95¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¹ÃøÇü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 18.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 33¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 19.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±³À° ¹× ÇнÀ ºÐ¼® ½ÃÀåÀº 2024³â¿¡ 33¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 72¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 19.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 10.8%¿Í 12.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±³À° ¹× ÇнÀ ºÐ¼® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±³À° ¹× ÇнÀ ºÐ¼®Àº ±âÁ¸ ±³À° ¸ðµ¨À» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

±³À° ¹× ÇнÀ ºÐ¼®Àº ±³¼ö¹ý, Ä¿¸®Å§·³ ¼³°è, Çлý Áö¿ø ¼­ºñ½º¿¡ Á¤º¸¸¦ Á¦°øÇÏ´Â µ¥ÀÌÅÍ ±â¹Ý ÀλçÀÌÆ®¸¦ Á¦°øÇÔÀ¸·Î½á ±âÁ¸ ±³À°¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡¼­´Â ÇнÀ Ç÷§Æû ³»¿¡¼­ ÇлýµéÀÇ »óÈ£ÀÛ¿ëÀ» ÅëÇØ »ý¼ºµÇ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ¼öÁý, ºÐ¼®, ÇØ¼®ÇØ¾ß ÇÕ´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)°ú °°Àº ±â¼úÀ» ÅëÇØ ±³À°±â°üÀº ÇлýµéÀÇ ¼ºÀûÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ°í °³º° ÇнÀ ¿ä±¸¿¡ ¸Â´Â Àû±ØÀûÀÎ °³ÀÔÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ±³À°Àº ȹÀÏÀûÀÎ ¸ðµ¨¿¡¼­ º¸´Ù °³ÀÎÈ­µÈ °æÇèÀ¸·Î ÀüȯµÇ°í, ±³À°ÀÚµéÀº ÇлýµéÀÌ Á÷¸éÇÑ Æ¯Á¤ °úÁ¦¸¦ ÆÄ¾ÇÇϰí ÀÌÇØµµ¿Í ÁýÁßµµ¸¦ ³ôÀ̱â À§ÇÑ ¸ÂÃãÇü Àü·«À» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÇнÀ ºÐ¼®Àº ÇлýµéÀÇ Âü¿© ÆÐÅÏÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, ±³À°Àڴ ƯÈ÷ Á÷Á¢ÀûÀÎ »óÈ£ÀÛ¿ëÀÌ Á¦ÇÑµÉ ¼ö ÀÖ´Â °¡»ó ¶Ç´Â ÇÏÀ̺긮µå ÇнÀ ȯ°æ¿¡¼­ Âü¿©¿Í ¼º°ú¸¦ Çâ»ó½Ã۱â À§ÇØ ÄÁÅÙÃ÷ Á¦°ø ¹æ½ÄÀ» Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ±³À° ÄÁÅÙÃ÷ÀÇ È¿°ú¸¦ Æò°¡Çϰí, ¾î¶² ¸®¼Ò½º°¡ °¡Àå ÇнÀ È¿°ú¸¦ ³ôÀÌ´ÂÁö ÆÄ¾ÇÇϱâ À§ÇØ ºÐ¼® µµ±¸ÀÇ È°¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼® °á°ú´Â Ä¿¸®Å§·³ °³¹ßÀÇ ÁöħÀÌ µÉ ¼ö ÀÖÀ¸¸ç, ÃÖ°íÀÇ ±³À° ¼º°ú¸¦ °¡Á®´ÙÁÖ´Â °³³ä°ú ¸®¼Ò½º¿¡ ÃÊÁ¡À» ¸ÂÃâ ¼ö ÀÖ½À´Ï´Ù. µðÁöÅÐ ±³½Ç°ú ¿Â¶óÀÎ ÇнÀ Ç÷§ÆûÀÇ µîÀåÀ¸·Î ±³À° µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ ³ô¾ÆÁö¸é¼­ ±³À°±â°üÀº ·Î±×ÀÎ ºóµµ, Åä·Ð Âü¿©µµ, °úÁ¦ ¿Ï·á ¿©ºÎ µî ÇлýµéÀÇ ÇൿÀ» ÃßÀûÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â À§Çè¿¡ óÇÑ ÇлýÀ» Á¶±â¿¡ ¹ß°ßÇϰí ÅðÇÐÀ» ¹æÁöÇϱâ À§ÇØ Àû½Ã¿¡ ÇнÀÀ» Áö¿øÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌó·³ ÇнÀ ºÐ¼®Àº ºü¸£°Ô ÁøÈ­ÇÏ´Â µðÁöÅÐ ±³À° ȯ°æ¿¡¼­ °³Àκ° ¸ÂÃã ±³À°À» ÅëÇØ ±³À°±â°üÀÌ Çо÷ ¼ºÃëµµ, ÇнÀ Áö¼Ó·ü, Àüü Çлý ¸¸Á·µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â °­·ÂÇÑ µµ±¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇнÀ ºÐ¼®À» ÃËÁøÇÏ´Â ±â¼ú Çõ½ÅÀ̶õ?

±³À° ¹× ÇнÀ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº µ¥ÀÌÅÍ Ã³¸® ±â¼ú, AI, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ±³À°±â°üÀÌ ±³À° Ç÷§Æû¿¡¼­ ÇлýµéÀÇ »óÈ£ÀÛ¿ëÀ¸·Î »ý¼ºµÈ ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ¼öÁý, ÀúÀå, ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, AI¿Í MLÀº µ¥ÀÌÅÍ ºÐ¼®À» ÀÚµ¿È­ÇÏ°í ¼öÀÛ¾÷À¸·Î´Â °¨ÁöÇÒ ¼ö ¾ø´Â ¼û°ÜÁø ÆÐÅÏÀ» ¹ß°ßÇÒ ¼ö ÀÖ°Ô ÇØÁֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ º¯È­ÀÇ Á߽ɿ¡ ÀÖ½À´Ï´Ù. Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿¹Ãø ºÐ¼®Àº ML ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ÇлýÀÇ °ú°Å ÇൿÀ» ±â¹ÝÀ¸·Î ÇлýÀÇ °á°ú¸¦ ¿¹ÃøÇϰí, ±³À°ÀÚ´Â ÀáÀçÀûÀÎ ¹®Á¦¿¡ Àû±ØÀûÀ¸·Î ´ëóÇϰí ÇнÀ °æ·Î¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP) µµ±¸´Â ÇлýµéÀÇ Çǵå¹éÀ» ºÐ¼®ÇÏ¿© ÇнÀ ºÐ¼®À» ´õ¿í °­È­ÇÏ¿© ±³À° ±â°üÀÌ ÇлýµéÀÇ °¨Á¤À» ÀÌÇØÇÏ°í ±×¿¡ µû¶ó ±³À° ¹æ¹ýÀ» Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀº ´Ù¾çÇÑ ±³À° Ç÷§ÆûÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© ´ë±Ô¸ð·Î ºÐ¼®ÇÒ ¼ö Àֱ⠶§¹®¿¡ Àü ¼¼°è ±³À° ±â°üÀÌ ÇнÀ ºÐ¼®À» º¸´Ù ½±°í È¿À²ÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇнÀ ºÐ¼®ÀÇ ¶Ç ´Ù¸¥ Çõ½Å ºÐ¾ß´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ´ë½Ãº¸µåÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ´ë½Ãº¸µå´Â º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ´Ü¼øÈ­ÇÏ¿© ±³»ç¿Í °ü¸®ÀÚ°¡ ½±°Ô ÇØ¼®ÇÒ ¼ö ÀÖ´Â »ç¿ëÀÚ Ä£È­ÀûÀÎ Çü½ÄÀ¸·Î Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ½Ã°¢È­ ±â¼úÀ» ÅëÇØ ±³À°ÀÚµéÀº Âü¿© Ãß¼¼¸¦ ÃßÀûÇÏ°í °³¼±ÀÌ ÇÊ¿äÇÑ ºÎºÐÀ» ½±°Ô ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇнÀ ºÐ¼® Ç÷§ÆûÀº Á¡Á¡ ´õ ¸ð¹ÙÀÏ È£È¯¼º¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ±³»ç¿Í ÇлýµéÀÌ ´Ù¾çÇÑ ±â±â¿¡¼­ ÇнÀ ÀλçÀÌÆ®¿Í ¸®¼Ò½º¿¡ Á¢±ÙÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú µµ±¸°¡ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó, ±³À° ±â°üÀº ´Ù¾çÇÑ ÇнÀ ȯ°æ¿¡¼­ ÇлýµéÀÇ ±³À° °æÇè°ú ¼º°ú¸¦ Çâ»ó½Ã۱â À§ÇØ º¸´Ù µ¥ÀÌÅÍ Áß½ÉÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀÔ´Ï´Ù.

Çö´ë ±³À°¿¡¼­ ÇнÀ ºÐ¼®ÀÇ ÁÖ¿ä Àû¿ë »ç·Ê´Â ¹«¾ùÀΰ¡?

ÇнÀ ºÐ¼®Àº °³ÀÎÈ­µÈ ÇнÀ¿¡¼­ ±³À° ±â°üÀÇ ÀÇ»ç°áÁ¤¿¡ À̸£±â±îÁö ±³À°ÀÇ ´Ù¾çÇÑ Ãø¸é¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ëµµ Áß Çϳª´Â ÀûÀÀÇü ÇнÀÀ¸·Î, ¾Ö³Î¸®Æ½½ºÀÇ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ÇлýÀÇ °íÀ¯ÇÑ ¿ä±¸¿Í ´É·Â¿¡ µû¶ó °³º° ÇлýÀÇ ÇнÀ °æÇèÀ» ¸ÂÃãÈ­ÇÏ´Â °ÍÀÔ´Ï´Ù. ÇнÀ Ç÷§ÆûÀº ÇлýÀÇ ¼ºÀû, ¼±È£µµ, Âü¿©µµ¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÄÁÅÙÃ÷ÀÇ ³­À̵µ, ¼Óµµ, Çü½ÄÀ» µ¿ÀûÀ¸·Î Á¶Á¤ÇÏ¿© ÇнÀ ¼º°ú¸¦ ÃÖÀûÈ­ÇÏ´Â ¸ÂÃãÇü ±³À° °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇнÀ ºÐ¼®Àº Âü¿© ÆÐÅϰú Çо÷ ¼ºÀû¿¡ µû¶ó ÁßµµÅ»¶ô À§Çè¿¡ óÇÑ ÇлýÀ» ½Äº°ÇÒ ¼ö ÀÖ¾î ±³À°±â°üÀÌ Àû½Ã¿¡ °³ÀÔÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ±â¹Ý Á¢±Ù ¹æ½ÄÀº °¡Àå ÇÊ¿äÇÑ °÷¿¡ Áö¿øÀÌ Á¦°øµÇ¹Ç·Î Á¹¾÷·ü°ú Çлý ¸¸Á·µµ¸¦ Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

ÇнÀ ºÐ¼®Àº Ä¿¸®Å§·³ ¼³°è ¹× °ü¸®Àû ÀÇ»ç°áÁ¤¿¡µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ÄÚ½º¿Í ¸ðµâ¿¡ °ÉÄ£ ÇлýµéÀÇ ¼º°ú¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ Áý°èÇÏ°í ºÐ¼®ÇÔÀ¸·Î½á ±³À°±â°üÀº Ä¿¸®Å§·³ÀÇ °³¼±Á¡À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÐ¼®Àº ±³À°ÀÚ°¡ ±³À° ¹æ¹ýÀÇ È¿°ú¸¦ Æò°¡ÇÏ°í ±×¿¡ µû¶ó ±³À° Á¢±Ù ¹æ½ÄÀ» Á¶Á¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. °ü¸® Ãø¸é¿¡¼­´Â µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ÀÚ¿øÀ» ¹èºÐÇϰí, ±³À°±â°üÀº ¼ö¿ä°¡ ¸¹Àº ºÐ¾ß¿Í Áß¿äÇÑ Çʿ信 µû¶ó ÀηÂ, ÀÎÇÁ¶ó, ¿¹»êÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌó·³ ÇнÀ ºÐ¼®À» ±³À° °æ¿µ¿¡ ÅëÇÕÇÔÀ¸·Î½á Á¾ÇÕÀûÀÌ°í ±Ù°Å¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤ Á¢±Ù¹ýÀ» Áö¿øÇϰí, ÀÚ¿øÀ» Àü·«Àû ¸ñÇ¥¿¡ ¸Â°Ô Á¶Á¤ÇÏ¿© ±³À° È¿°ú¿Í Á¶Á÷ÀÇ È¿À²¼ºÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±³À° ¹× ÇнÀ ºÐ¼® ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

±³À° ¹× ÇнÀ ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº µðÁöÅÐ ÇнÀ Ç÷§ÆûÀÇ È®´ë, °³ÀÎÈ­µÈ ÇнÀÀÇ Çʿ伺, Çлý À¯ÁöÀ² Çâ»ó¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è À¯Ä¡¿øºÎÅÍ °íµîÇб³±îÁö ¸ðµç ±³À°±â°ü¿¡¼­ E-Learning ¼Ö·ç¼ÇÀ» µµÀÔÇÔ¿¡ µû¶ó ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ°í ÀÖÀ¸¸ç, ±³À°±â°üÀº À̸¦ ÅëÇØ ÇнÀ¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¿Â¶óÀÎ ÇнÀ°ú ÇÏÀ̺긮µå ÇнÀ ¸ðµ¨ÀÌ È®»êµÊ¿¡ µû¶ó ±³À°ÀÚµéÀº ¿ø°ÝÀ¸·Î ÇлýµéÀ» ¸ð´ÏÅ͸µÇϰí Áö¿øÇÒ ¼ö ÀÖ´Â µµ±¸°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú°í, ÀÌ¿¡ µû¶ó Á¾ÇÕÀûÀÎ ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °³ÀÎÈ­µÈ ÇнÀ °æÇè¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÇнÀ ºÐ¼®¿¡ ´ëÇÑ °ü½Éµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÇнÀ ºÐ¼®À» ÅëÇØ ±³À°±â°üÀº Çлý °³°³ÀÎÀÇ ÇнÀ ½ºÅ¸Àϰú ´ÏÁî¿¡ µû¶ó ÄÁÅÙÃ÷¿Í ¸®¼Ò½º¸¦ ¸ÂÃãÈ­ÇÏ¿© ÇнÀ ÀÇ¿å°ú ÇнÀ ¼º°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

±³À°±â°üÀÌ ¿î¿µ È¿À²¼º°ú Çлý ¼º°ø·ü Çâ»óÀ» ¸ñÇ¥·Î ÇÏ´Â °¡¿îµ¥, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ±³À°±â°üÀÇ °ü½ÉÀº ¶Ç ´Ù¸¥ ÁÖ¿ä ¼ºÀå µ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÇнÀ ºÐ¼®Àº ÇлýµéÀÇ ¼º°ú¿Í ¸¸Á·µµ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀο¡ ´ëÇÑ ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇϰí, ±â°üÀÇ ¸í¼º°ú °æÀï·ÂÀ» ³ôÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ ¿¹Ãø ºÐ¼®ÀÌ È®»êµÊ¿¡ µû¶ó ±³À°±â°üÀº À§Çè¿¡ óÇÑ ÇлýÀ» »çÀü¿¡ ½Äº°Çϰí Áö¿øÇÏ¿© ¹®Á¦°¡ ½É°¢ÇØÁö±â Àü¿¡ ´ëóÇÒ ¼ö ÀÖÀ¸¸ç, AIÀÇ ÅëÇÕ°ú Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀÇ ´ëÁßÈ­·Î ÀÎÇØ ºÐ¼® ±â¼úÀÌ ´õ ¸¹Àº ±³À°±â°ü¿¡ Àû¿ëµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ´õ ¸¹Àº ±³À° ±â°ü¿¡¼­ ºÐ¼® ±â¼úÀ» »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº Çб³, ´ëÇÐ, ±³À°¼¾ÅͰ¡ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ±³À° ¿©Á¤À» ÃÖÀûÈ­Çϱâ À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó ±³À° ¹× ÇнÀ ºÐ¼® ½ÃÀåÀÇ °­·ÂÇÑ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(¼³¸íÇü, ¿¹ÃøÇü, ó¹æÇü), Àü°³(Ŭ¶ó¿ìµå, ¿ÂÇÁ·¹¹Ì½º), ±¸¼º¿ä¼Ò(¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º), ÃÖÁ¾»ç¿ëÀÚ(±â¾÷, ±³À°±â°ü)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Education and Learning Analytics Market to Reach US$29.6 Billion by 2030

The global market for Education and Learning Analytics estimated at US$12.9 Billion in the year 2024, is expected to reach US$29.6 Billion by 2030, growing at a CAGR of 14.9% over the analysis period 2024-2030. Descriptive, one of the segments analyzed in the report, is expected to record a 11.8% CAGR and reach US$9.5 Billion by the end of the analysis period. Growth in the Predictive segment is estimated at 18.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.3 Billion While China is Forecast to Grow at 19.4% CAGR

The Education and Learning Analytics market in the U.S. is estimated at US$3.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$7.2 Billion by the year 2030 trailing a CAGR of 19.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.8% and 12.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.8% CAGR.

Global Education and Learning Analytics Market - Key Trends & Drivers Summarized

How Are Education and Learning Analytics Transforming Traditional Education Models?

Education and learning analytics are revolutionizing traditional education by providing data-driven insights that inform teaching methods, curriculum design, and student support services. This field involves gathering, analyzing, and interpreting vast amounts of data generated by students’ interactions within learning platforms. Through technologies such as artificial intelligence (AI) and machine learning (ML), education institutions can monitor real-time student performance, enabling proactive interventions tailored to individual learning needs. This approach shifts education from a one-size-fits-all model to a more personalized experience, where educators can identify specific challenges that students face and develop targeted strategies to enhance comprehension and retention. For instance, learning analytics can reveal patterns in student engagement, allowing educators to adapt content delivery methods to improve participation and outcomes, especially in virtual or hybrid learning environments where direct interaction may be limited.

Additionally, analytics tools are increasingly used to evaluate the effectiveness of educational content, highlighting which resources drive the most learning impact. Insights from these analyses can guide curriculum development, focusing on concepts or resources that yield the best educational outcomes. With the rise of digital classrooms and online learning platforms, educational data is more accessible than ever, allowing institutions to track student behavior, such as login frequency, participation in discussions, and completion of assignments. This data can also identify at-risk students early, enabling timely academic support to prevent dropouts. Learning analytics thus serve as a powerful tool, helping institutions improve academic performance, retention rates, and overall student satisfaction by tailoring education to meet individual needs in a rapidly evolving digital education landscape.

What Are the Technological Innovations Driving Learning Analytics?

The growth of the education and learning analytics market is being fueled by advancements in data processing technologies, AI, and cloud computing. These innovations allow institutions to collect, store, and analyze large datasets generated by student interactions on educational platforms. AI and ML are central to this shift, as they enable the automation of data analysis, uncovering hidden patterns that would be otherwise impossible to detect manually. For example, predictive analytics uses ML algorithms to forecast student outcomes based on past behaviors, which allows educators to proactively address potential issues and optimize learning paths. Natural language processing (NLP) tools further enhance learning analytics by analyzing student feedback, enabling institutions to understand student sentiment and adjust instructional methods accordingly. With cloud-based solutions, data from various educational platforms can be integrated and analyzed at scale, making learning analytics more accessible and efficient for educational institutions worldwide.

Another area of technological innovation in learning analytics is the development of real-time data dashboards that provide educators with instant insights into student progress. These dashboards simplify complex datasets, presenting critical information in a user-friendly format that can be easily interpreted by teachers and administrators. Moreover, data visualization techniques make it easier for educators to track trends in engagement and identify areas needing improvement. Learning analytics platforms are also increasingly focused on mobile compatibility, allowing teachers and students to access learning insights and resources on various devices. As these technological tools continue to evolve, they enable deeper integration of analytics into the education sector, allowing institutions to adopt a more data-driven approach to improve educational experiences and outcomes for students across various learning contexts.

What Are the Key Applications of Learning Analytics in Modern Education?

Learning analytics is increasingly applied in various aspects of education, from personalized learning to institutional decision-making. One primary application is in adaptive learning, where analytics data is used to customize learning experiences for individual students based on their unique needs and abilities. By analyzing data on student performance, preferences, and engagement, learning platforms can dynamically adjust content difficulty, pace, and format, offering a tailored educational experience that optimizes learning outcomes. Another significant application is in student retention strategies; learning analytics can identify students at risk of dropping out based on their engagement patterns and academic performance, allowing institutions to deploy timely interventions. This data-driven approach helps in increasing graduation rates and improving overall student satisfaction, as support is provided where it’s most needed.

Learning analytics also plays a crucial role in curriculum design and administrative decision-making. By aggregating and analyzing data on student outcomes across different courses and modules, institutions can pinpoint areas for improvement within the curriculum. Additionally, analytics helps educators assess the effectiveness of teaching methods and adjust instructional approaches accordingly. Administratively, data insights can aid in resource allocation, allowing institutions to optimize staffing, infrastructure, and budgeting based on areas of high demand or critical need. This integration of learning analytics into educational management supports a holistic, evidence-based approach to decision-making, aligning resources with strategic objectives to maximize educational impact and institutional efficiency.

What Is Driving Growth in the Education and Learning Analytics Market?

The growth in the education and learning analytics market is driven by several key factors, including the expansion of digital learning platforms, the need for personalized learning, and the rising focus on improving student retention rates. The increasing adoption of e-learning solutions across K-12 and higher education institutions worldwide has generated vast amounts of data that institutions are now leveraging for learning insights. As online and hybrid learning models become more prevalent, educators require tools that enable them to monitor and support students remotely, which is fueling demand for comprehensive analytics solutions. Additionally, the push toward personalized learning experiences is driving interest in learning analytics, as it enables institutions to tailor content and resources to individual students based on their unique learning styles and needs, thereby improving engagement and learning outcomes.

Institutional interest in data-driven decision-making is another key growth driver, as educational institutions seek to improve operational efficiency and student success rates. Learning analytics offers actionable insights into factors impacting student performance and satisfaction, which are critical to enhancing the institution’s reputation and competitiveness. Moreover, the growing prevalence of AI-driven predictive analytics allows educators to proactively identify and support at-risk students, addressing challenges before they escalate. The increasing integration of AI, coupled with the accessibility of cloud-based solutions, is making analytics technology more available to a wider range of educational institutions. Together, these factors are driving the robust growth of the education and learning analytics market as schools, universities, and training centers seek to leverage data to optimize the educational journey.

SCOPE OF STUDY:

The report analyzes the Education and Learning Analytics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Descriptive, Predictive, Prescriptive); Deployment (Cloud, On-Premise); Component (Software, Services); End-Use (Enterprises, Academics)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 22 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â