¼¼°èÀÇ ±ØÀú¿Â ¹ëºê ½ÃÀå
Cryogenic Valves
»óǰÄÚµå : 1766954
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 381 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,198,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,594,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

±ØÀú¿Â ¹ëºê ¼¼°è ½ÃÀåÀº 2030³â±îÁö 46¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 34¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ±ØÀú¿Â ¹ëºê ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 5.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 46¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ LNG´Â CAGR 6.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 20¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ê¼Ò ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 9,310¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±ØÀú¿Â ¹ëºê ½ÃÀåÀº 2024³â¿¡ 8¾ï 9,310¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 7.9%·Î 2030³â±îÁö 10¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 3.0%¿Í 4.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±ØÀú¿Â ¹ëºê ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±ØÀú¿Â ¹ëºê´Â ¹«¾ùÀ̸ç, ¿Ö ±ØÀú¿Â ÀÀ¿ë ºÐ¾ß¿¡ ÇʼöÀûÀΰ¡?

±ØÀú¿Â ¹ëºê´Â ±ØÀú¿Â À¯Ã¼ÀÇ È帧À» Á¦¾îÇϱâ À§ÇØ ¼³°èµÈ Ư¼ö ¹ëºêÀ̸ç, ±ØÀú¿Â À¯Ã¼´Â ÀϹÝÀûÀ¸·Î -150¡É ÀÌÇÏÀÇ ±ØÀú¿Â¿¡¼­ ÀúÀå ¹× ¿î¼ÛµË´Ï´Ù. ÀÌ ¹ëºê´Â ±ØÀú¿Â À¯Ã¼°¡ ÇʼöÀûÀÎ »ê¾÷¿¡¼­ ¾×ü Áú¼Ò, »ê¼Ò, ¼ö¼Ò, õ¿¬°¡½º(LNG)¿Í °°Àº ¾×È­ °¡½º¸¦ Ãë±ÞÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Ç¥ÁØ ¹ëºê¿Í ´Þ¸® ±ØÀú¿Â ¹ëºê´Â ÃÊÀú¿Â¿¡ °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ¿­ ¼öÃàÀ¸·Î ÀÎÇÑ ´©ÃâÀ» ¹æÁöÇÕ´Ï´Ù. ¾×È­ °¡½º°¡ ¾×ü »óÅ·ΠÀ¯ÁöµÇµµ·Ï º¸ÀåÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ºÀ¼â ¹× Á¦¾î¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ¹ëºêÀÇ ¼³°è´Â Á¾Á¾ È®Àå º¸´ÖÀ» ÅëÇÕÇÏ¿© ½ºÅÛ°ú ¾×Ãß¿¡ÀÌÅ͸¦ ¿µÇÏ ÀÌ»óÀÇ ¿Âµµ·Î À¯ÁöÇÏ¿© ¾óÀ½ÀÌ ½×ÀÌ´Â °ÍÀ» ¹æÁöÇÏ°í ±â´ÉÀû ¹«°á¼ºÀ» À¯ÁöÇÏ´Â µ¥ µµ¿òÀ̵˴ϴÙ.

±ØÀú¿Â ¹ëºê´Â ÇコÄɾî, ¿¡³ÊÁö, Ç×°ø¿ìÁÖ, ÇØ¿î µî ±ØÀú¿Â ¹°ÁúÀ» È¿À²ÀûÀÌ°í ¾ÈÀüÇÏ°Ô Ãë±ÞÇÏ´Â °ÍÀÌ Áß¿äÇÑ »ê¾÷¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, LNG »ê¾÷¿¡¼­ ±ØÀú¿Â ¹ëºê´Â ÀúÀå ÅÊÅ©¿¡¼­ ¼ö¼Û ÆÄÀÌÇÁ¶óÀÎ, Àç±âÈ­ ÀåÄ¡·Î °¡´Â LNGÀÇ È帧À» Á¦¾îÇÏ¿© È¿À²ÀûÀÎ ¿¬·á ÀúÀå ¹× À¯ÅëÀ» ÃËÁøÇÕ´Ï´Ù. ÀÇ·á »ê¾÷¿¡¼­ ±ØÀú¿Â ¹ëºê´Â ÀÇ·á¿ë ÀúÀå ¹× »ý¹°ÇÐÀû ½Ã·á º¸°üÀ» À§ÇÑ ¾×ü »ê¼Ò ¹× ¾×ü Áú¼ÒÀÇ È帧À» Á¦¾îÇÕ´Ï´Ù. ±ØÀú¿Â ¹ëºê´Â ±× ±â´ÉÀÇ Á߿伺À» °í·ÁÇÒ ¶§ ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ÀÛµ¿ ¾ÈÀü¼º, ½Ã½ºÅÛ È¿À²¼º ¹× ±ÔÁ¤ Áؼö¿¡ Å©°Ô ±â¿©ÇÕ´Ï´Ù.

±â¼ú ¹ßÀüÀº ±ØÀú¿Â ¹ëºêÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

Àç·á, ¼³°è ¹× ÀÚµ¿È­ ±â¼úÀÇ ¹ßÀüÀ¸·Î ±ØÀú¿Â ¹ëºêÀÇ ¼º´É°ú ½Å·Ú¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÃֽбØÀú¿Â ¹ëºê´Â ½ºÅ×Àθ®½º ½ºÆ¿ ¹× Ư¼ö Çձݰú °°Àº °í±Þ Àç·á·Î ¸¸µé¾îÁ® ³»±¸¼º, ±ØÇÑÀÇ ¿Âµµ¿¡ ´ëÇÑ ³»¼º, °¡È¤ÇÑ Á¶°Ç¿¡¼­ÀÇ ¼º´É Çâ»óÀ» ½ÇÇöÇÕ´Ï´Ù. ÃÖ±Ù¿¡´Â °æ·® Ư¼º°ú °í°­µµ¸¦ ¸ðµÎ Á¦°øÇÏ´Â º¹ÇÕÀç·á¸¦ »ç¿ëÇÏ¿© Á¦Á¶µÇ´Â ¹ëºêµµ ÀÖ¾î Ç×°ø¿ìÁÖ µî ¹«°Ô°¡ Áß¿äÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ¹ëºêÀÇ °íÀå°ú ´©ÃâÀ» ¹æÁöÇϰí, ±ØÀú¿Â À¯Ã¼¸¦ ¾ÈÀüÇÏ°Ô ¹ÐºÀÇϸç, À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÕ´Ï´Ù.

ÀÚµ¿È­ ¹× ¿ø°Ý ¸ð´ÏÅ͸µ ±â¼ú ¶ÇÇÑ ±ØÀú¿Â ¹ëºêÀÇ ±â´ÉÀ» Çõ½ÅÀûÀ¸·Î º¯È­½ÃÄ×À¸¸ç, IoT Áö¿ø ½º¸¶Æ® ¹ëºê¸¦ ÅëÇØ ÀÛ¾÷ÀÚ´Â ¹ëºêÀÇ À§Ä¡, ¿Âµµ ¹× ¾Ð·Â µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© ±ØÀú¿Â À¯Ã¼ÀÇ È帧À» Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® ½Ã½ºÅÛÀº ½Ã½ºÅÛ ¿ä±¸ »çÇ׿¡ µû¶ó ¹ëºê À§Ä¡¸¦ ÀÚµ¿À¸·Î Á¶Á¤ÇÏ¿© »ç¶÷ÀÇ °³ÀÔÀ» ÁÙÀ̰í È¿À²¼ºÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇÑ ¿¹Áöº¸Àü ¶ÇÇÑ ´©ÃâÀ̳ª °íÀåÀ¸·Î À̾îÁö±â Àü¿¡ ¸¶¸ð³ª ¼Õ»óÀ» ½Äº°ÇÏ´Â °¡Ä¡ ÀÖ´Â ±â´ÉÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ±ØÀú¿Â ¹ëºê´Â ´õ¿í È¿À²ÀûÀÌ°í ¾ÈÀüÇÏ¸ç °ü¸®Çϱ⠽¬¿öÁ® ±ØÀú¿Â ¿ä±¸»çÇ×ÀÌ Áß¿äÇÑ »ê¾÷ Àü¹Ý¿¡¼­ ±ØÀú¿Â ¹ëºê¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

LNG ¹× ¼ö¼Ò ÀÀ¿ë ºÐ¾ß¿¡¼­ ±ØÀú¿Â ¹ëºê¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

LNG ºÐ¾ß¿¡¼­ ±ØÀú¿Â ¹ëºê´Â ¾×È­ Ç÷£Æ®¿¡¼­ ÀúÀå ÅÊÅ©, ¼ö¼Û¼±, Àç±âÈ­ ½Ã¼³¿¡ À̸£±â±îÁö LNGÀÇ È帧À» Á¦¾îÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, LNG´Â ¹ßÀü, »ê¾÷ ÀÀ¿ë, ÇØ»ó ¿î¼Û¿¡¼­ ¹è±â°¡½º ¹èÃâÀ» ÁÙÀÌ´Â µ¥ Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ÇØ»ó ¿î¼Û¿¡¼­ ¹èÃâ°¡½º¸¦ ÁÙÀ̱â À§ÇÑ Áß¿äÇÑ ¿ä¼ÒÀ̸ç, ¾ÈÀüÇÑ ÀúÀå, ¿î¼Û ¹× Ãë±ÞÀ» º¸ÀåÇÏ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ±ØÀú¿Â ¹ëºê¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¹ëºê´Â ÇÊ¿äÇÑ ÃÊÀú¿ÂÀ» À¯ÁöÇϰí Á¦Ç° ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÏ¿© LNG ±â¹Ý ½Ã½ºÅÛÀÇ ¿î¿µ È¿À²¼º°ú ȯ°æ ¸ñÇ¥¿¡ ±â¿©ÇÕ´Ï´Ù.

ģȯ°æ ¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» À§ÇÑ »õ·Î¿î ¿¬·á¿øÀÎ ¼ö¼Òµµ ¾×ü »óŸ¦ À¯ÁöÇϱâ À§ÇØ LNGº¸´Ù ´õ ³·Àº ¿Âµµ¿¡¼­ ÀúÀåÇØ¾ß Çϱ⠶§¹®¿¡ ¾ÈÀüÇÑ Ãë±ÞÀ» À§ÇÑ °íµµÀÇ ±ØÀú¿Â ¹ëºê°¡ ÇÊ¿äÇÕ´Ï´Ù. ¼ö¼Û, ¿¡³ÊÁö ÀúÀå, »ê¾÷ µîÀÇ ºÐ¾ß¿¡¼­ ûÁ¤ ´ëü ¿¡³ÊÁö·Î¼­ ¼ö¼ÒÀÇ È°¿ëÀÌ ÃßÁøµÇ°í ÀÖÀ¸¸ç, ¾×ü ¼ö¼Ò¸¦ Ãë±ÞÇϱâ À§ÇØ ¼³°èµÈ ±ØÀú¿Â ¹ëºêÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±ØÀú¿Â ¹ëºê´Â ¼ö¼ÒÀÇ ¾ÈÀüÇÑ ÀúÀå ¹× ¿î¼ÛÀ» ÃËÁøÇÔÀ¸·Î½á Àü ¼¼°è Żź¼ÒÈ­ ³ë·Â¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ´Â ¼ö¼Ò °æÁ¦ÀÇ ¼ºÀåÀ» Áö¿øÇÕ´Ï´Ù. ûÁ¤¿¡³ÊÁö ºÐ¾ß¿¡¼­ LNG¿Í ¼ö¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ±ØÀú¿Â ¿¬·á¸¦ ¾ÈÀüÇϰí È¿À²ÀûÀ̸ç Áö¼ÓÀûÀ¸·Î Ãë±ÞÇÏ´Â ±ØÀú¿Â ¹ëºêÀÇ Á߿伺ÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù.

±ØÀú¿Â ¹ëºê ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

±ØÀú¿Â ¹ëºê ½ÃÀåÀÇ ¼ºÀåÀº LNG¿Í ¼ö¼Ò¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹ëºê ±â¼úÀÇ ¹ßÀü, ÇコÄÉ¾î ¹× »ê¾÷ ºÐ¾ß¿¡¼­ÀÇ Àû¿ë È®´ë¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇÑ ³ë·ÂÀ¸·Î LNG ¹× ¼ö¼Ò ÀÎÇÁ¶ó°¡ ±ÞÁõÇϸ鼭 ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¿î¼Û, ÀúÀå ¹× À¯ÅëÀ» À§ÇÑ ±ØÀú¿Â ¹ëºê¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, LNG´Â ±âÁ¸ÀÇ È­¼®¿¬·á¸¦ ´ëüÇÒ ¼ö Àִ ûÁ¤ ¿¬·á·Î ƯÈ÷ ¹ßÀü ¹× ÇØ¾ç »ê¾÷¿¡¼­ ³Î¸® äÅÃµÇ¾î ¹èÃâ·® °¨ÃàÀ» À§ÇÑ ³ë·ÂÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¹èÃâ·® °¨Ãà ³ë·ÂÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ¼ö¼Ò °æÁ¦´Â ¿¡³ÊÁö ÀúÀå ¹× ¿î¼ÛÀ» À§ÇÑ Ä£È¯°æ ¿¬·á·Î ¼ö¼Ò¸¦ °í·ÁÇϸ鼭 °í¼º´É ±ØÀú¿Â ¹ëºê¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.

IoT Áö¿ø ½º¸¶Æ® ¹ëºê ¹× ÷´Ü ¼ÒÀç¿Í °°Àº ±â¼ú ¹ßÀüÀº ¹ëºêÀÇ ¼º´ÉÀ» Çâ»ó½Ã۰í ÀÛµ¿ À§ÇèÀ» ÁÙÀÓÀ¸·Î½á ½ÃÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ±ØÀú¿Â ¹ëºê´Â ±ØÇÑÀÇ ¿Âµµ¿Í ¾Ð·ÂÀ» °ßµô ¼ö ÀÖ°Ô µÇ¾î ¼ö¸íÀÌ ±æ¾îÁö°í, Áß¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ½Å·Ú¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ±ØÀú¿Â ¹ëºê´Â ÀÇ·á º¸Á¸, ³Ãµ¿¿ä¹ý, »ý¹°ÇÐÀû º¸Á¸À» À§ÇÑ ¾×ü Áú¼Ò ¹× »ê¼Ò °ü¸®¿¡ »ç¿ëµÇ±â ¶§¹®¿¡ ÇコÄÉ¾î ºÐ¾ßµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±ØÀú¿Â ¹ëºê´Â Àü ¼¼°èÀûÀ¸·Î Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö, ÷´Ü ÀÇ·á ±â¼ú, °í¼º´É »ê¾÷ ½Ã½ºÅÛÀ¸·Î À̵¿Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¿äÀεéÀÌ ±ØÀú¿Â ¹ëºê ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

°¡½º À¯Çü(LNG, »ê¼Ò, Áú¼Ò, ±âŸ °¡½º), ÃÖÁ¾ ¿ëµµ(¿¡³ÊÁö¡¤Àü·Â, È­ÇÐ, ½Äǰ ¹× À½·á, ÇコÄɾî, ±âŸ ÃÖÁ¾ ¿ëµµ), ¿ëµµ(ÀÌ¼Û ¶óÀÎ, ÅÊÅ© ¹× ÄÝµå ¹Ú½º, ¾×È­ Àåºñ, ¸Å´ÏÆúµå ¹× °¡½º Æ®·¹ÀÎ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Cryogenic Valves Market to Reach US$4.6 Billion by 2030

The global market for Cryogenic Valves estimated at US$3.4 Billion in the year 2024, is expected to reach US$4.6 Billion by 2030, growing at a CAGR of 5.1% over the analysis period 2024-2030. LNG, one of the segments analyzed in the report, is expected to record a 6.0% CAGR and reach US$2.0 Billion by the end of the analysis period. Growth in the Oxygen segment is estimated at 4.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$893.1 Million While China is Forecast to Grow at 7.9% CAGR

The Cryogenic Valves market in the U.S. is estimated at US$893.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.0 Billion by the year 2030 trailing a CAGR of 7.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.0% and 4.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.8% CAGR.

Global Cryogenic Valves Market - Key Trends & Drivers Summarized

What Are Cryogenic Valves and Why Are They Essential in Low-Temperature Applications?

Cryogenic valves are specialized valves designed to control the flow of cryogenic fluids, which are stored and transported at extremely low temperatures, typically below -150°C. These valves are crucial for handling liquefied gases like liquid nitrogen, oxygen, hydrogen, and natural gas (LNG) in industries where cryogenic fluids are essential. Unlike standard valves, cryogenic valves are engineered to withstand ultra-low temperatures and prevent leaks caused by thermal contraction. They ensure that liquefied gases remain in their liquid form, providing reliable containment and control. The design of these valves, often incorporating extended bonnets, helps keep the stem and actuator at temperatures above freezing, preventing ice buildup and maintaining functional integrity.

Cryogenic valves are indispensable in industries such as healthcare, energy, aerospace, and shipping, where the efficient and safe handling of cryogenic substances is crucial. In the LNG industry, for example, cryogenic valves control the flow of LNG from storage tanks to transportation pipelines and regasification units, facilitating efficient fuel storage and distribution. In healthcare, cryogenic valves help regulate the flow of liquid oxygen and nitrogen for medical storage and biological sample preservation. Given the critical nature of their function, cryogenic valves contribute significantly to operational safety, system efficiency, and regulatory compliance in these applications.

How Are Technological Advancements Enhancing Cryogenic Valve Performance?

Technological advancements in materials, design, and automation are significantly enhancing the performance and reliability of cryogenic valves. Modern cryogenic valves are made from advanced materials like stainless steel and specialized alloys, which provide durability, resistance to extreme temperatures, and improved performance in harsh conditions. Some valves are now produced using composite materials that offer both lightweight characteristics and high strength, making them suitable for applications where weight is a concern, such as aerospace. These materials prevent valve failures and leaks, ensuring that cryogenic fluids are safely contained and reducing maintenance costs.

Automation and remote monitoring technology have also transformed the functionality of cryogenic valves. IoT-enabled smart valves allow operators to monitor real-time data on valve position, temperature, and pressure, enabling precise control over cryogenic fluid flow. These smart systems can automatically adjust valve positions based on system demands, reducing human intervention and optimizing efficiency. Predictive maintenance, enabled by real-time monitoring and data analytics, has also emerged as a valuable feature, identifying wear and tear before it leads to leaks or failures. Together, these advancements have made cryogenic valves more efficient, safer, and easier to manage, supporting their growing demand across industries with critical low-temperature requirements.

Why Is There Increasing Demand for Cryogenic Valves in LNG and Hydrogen Applications?

The demand for cryogenic valves is rising as the use of LNG and hydrogen as cleaner, alternative fuels expands globally. In the LNG sector, cryogenic valves are essential for controlling the flow of LNG from liquefaction plants to storage tanks, transport vessels, and regasification facilities. As LNG has become a critical component in reducing emissions in power generation, industrial applications, and marine transport, there is a growing need for reliable cryogenic valves to ensure safe storage, transport, and handling. These valves help maintain the required ultra-low temperatures and minimize product loss, contributing to the operational efficiency and environmental goals of LNG-based systems.

Hydrogen, an emerging fuel source for the transition to green energy, also requires advanced cryogenic valves for safe handling, as it must be stored at even lower temperatures than LNG to remain in liquid form. The push toward hydrogen as a clean energy alternative in sectors such as transportation, energy storage, and industry is increasing the need for cryogenic valves designed to handle liquid hydrogen. By facilitating safe hydrogen storage and transportation, cryogenic valves support the growth of the hydrogen economy, which is becoming an integral part of global decarbonization efforts. Together, the rising demand for LNG and hydrogen in clean energy applications underscores the importance of cryogenic valves, which are key to ensuring safe, efficient, and sustainable handling of these cryogenic fuels.

What Factors Are Driving Growth in the Cryogenic Valves Market?

The growth in the cryogenic valves market is driven by increasing demand for LNG and hydrogen, advancements in valve technology, and expanding applications in healthcare and industrial sectors. The global focus on reducing carbon emissions has led to a surge in LNG and hydrogen infrastructure, which in turn fuels the demand for cryogenic valves for safe and efficient transport, storage, and distribution. LNG is widely adopted as a cleaner alternative to conventional fossil fuels, especially in power generation and marine industries, where it supports emission-reduction initiatives. Similarly, the hydrogen economy is gaining momentum as hydrogen is being explored as a green fuel for energy storage and transportation, creating a demand for high-performance cryogenic valves.

Technological advancements, such as IoT-enabled smart valves and advanced materials, are further propelling the market by enhancing valve performance and reducing operational risks. These advancements allow cryogenic valves to withstand extreme temperatures and pressures, extending their lifespan and reliability in critical applications. The healthcare sector also contributes to market growth, as cryogenic valves are used in managing liquid nitrogen and oxygen for medical storage, cryotherapy, and biological preservation. Together, these factors support the expansion of the cryogenic valves market, as they align with the global shift towards sustainable energy, advanced medical technology, and high-performance industrial systems.

SCOPE OF STUDY:

The report analyzes the Cryogenic Valves market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Gas Type (LNG, Oxygen, Nitrogen, Other Gases); End-Use (Energy & Power, Chemicals, Food & Beverage, Healthcare, Other End-Uses); Application (Transfer lines, Tanks & Cold Boxes, Liquefiers, Manifolds & Gas Trains)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â