¼¼°èÀÇ BDaaS(Big Data-as-a-Service) ½ÃÀå
Big Data-as-a-Service (BDaaS)
»óǰÄÚµå : 1766915
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 409 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

BDaaS(Big Data-as-a-Service) ¼¼°è ½ÃÀåÀº 2030³â±îÁö 2,478¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 653¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â BDaaS(Big Data-as-a-Service) ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 24.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2,478¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ ¼Ö·ç¼ÇÀº CAGR 23.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1,418¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 26.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 163¾ï ´Þ·¯, Áß±¹Àº CAGR 31.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ BDaaS(Big Data-as-a-Service) ½ÃÀåÀº 2024³â¿¡ 163¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 702¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 31.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 18.5%¿Í 21.6%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 20.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ BDaaS(Big Data-as-a-Service) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

BDaaS(Big Data-as-a-Service)°¡ µ¥ÀÌÅÍ °ü¸®¸¦ Çõ½ÅÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

BDaaS(Big Data-as-a-Service)´Â ¿ÂÇÁ·¹¹Ì½º ÀÎÇÁ¶ó ¹× µ¥ÀÌÅÍ °úÇÐ Àü¹® Áö½Ä¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ ¾øÀ̵µ ¹æ´ëÇÏ°í º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ±â¾÷ÀÇ µ¥ÀÌÅÍ °ü¸® ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ó¸® ¹× ºÐ¼®¿¡ ´ëÇÑ ¿ä±¸¸¦ Ÿ»ç Á¦°ø¾÷ü¿¡ ¾Æ¿ô¼Ò½ÌÇÒ ¼ö ÀÖÀ¸¸ç, »ç³»¿¡¼­ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» À¯ÁöÇϱâ À§ÇÑ ¿î¿µ ¹× ÀçÁ¤Àû ºÎ´ã ¾øÀÌ ÃÖ÷´Ü µ¥ÀÌÅÍ ±â¼ú¿¡ Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍ ¹æ´ëÇϰí Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÏ´Â µ¥ÀÌÅͼ¼Æ®¸¦ ´Ù·ç´Â ±â¾÷¿¡°Ô ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. BDaaS Á¦°ø¾÷ü´Â µ¥ÀÌÅÍ ÀÎÇÁ¶óÀÇ ¹°·ù ¹®Á¦º¸´Ù ÇÙ½É ºñÁî´Ï½º ±â´É¿¡ ¸®¼Ò½º¸¦ ÁýÁßÇÒ ¼ö ÀÖµµ·Ï µ¥ÀÌÅÍ ¿î¿µÀ» ¼ö¿ä¿¡ µû¶ó È®Àå ¶Ç´Â Ãà¼ÒÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ µµ±¸¿Í ¼­ºñ½º¸¦ Á¦°øÇÏ¿© ÃÖ¼ÒÇÑÀÇ ¼³Á¤ ¹× À¯Áöº¸¼ö ¿ä±¸»çÇ×À¸·Î ¿ø½Ã µ¥ÀÌÅ͸¦ ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®À¸·Î ÀüȯÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. BDaaS´Â ³ôÀº ¼³Á¤ ºñ¿ë°ú ±â¼úÀû º¹À⼺ µî ºòµ¥ÀÌÅÍ¿Í °ü·ÃµÈ ±âÁ¸ÀÇ ÁøÀÔÀ庮À» Á¦°ÅÇÔÀ¸·Î½á °í±Þ ºÐ¼®¿¡ ´ëÇÑ Á¢±ÙÀ» ¹ÎÁÖÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤, ÆÐÅÏ ½Äº° ¹× ¿¹Ãø ¸ðµ¨¸µÀ» ÅëÇØ µ¥ÀÌÅÍ Á᫐ ½ÃÀå¿¡¼­ °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

BDaaS´Â ¾î¶»°Ô ºñÁî´Ï½ºÀÇ ¹Îø¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖÀ»±î?

BDaaS´Â °­·ÂÇÑ µ¥ÀÌÅÍ Ã³¸® ¹× ºÐ¼® ±â´É¿¡ ´ëÇÑ ¿Âµð¸Çµå ¾×¼¼½º¸¦ Á¦°øÇÔÀ¸·Î½á ºñÁî´Ï½º ¹Îø¼º°ú ¿î¿µ È¿À²¼ºÀ» ³ôÀ̰í, ±â¾÷ÀÌ º¯È­ÇÏ´Â µ¥ÀÌÅÍ ¿ä±¸¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. °í°¡ÀÇ °íÁ¤ µ¥ÀÌÅÍ ÀÎÇÁ¶ó¿¡ ÅõÀÚÇÏ´Â ´ë½Å, ±â¾÷Àº ½Ç½Ã°£ ¼ö¿ä¿¡ ¸ÂÃç È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º¿¡ ¾×¼¼½ºÇÏ¿© ÀÏ»óÀûÀÎ ¾÷¹« ºÐ¼®ºÎÅÍ °èÀýº° µ¥ÀÌÅÍ ±ÞÁõ ¹× ¿¹±âÄ¡ ¸øÇÑ µ¥ÀÌÅÍ ±ÞÁõ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚ¿ø °ü¸®ÀÇ Åº·Â¼ºÀ» ÅëÇØ ±â¾÷Àº µ¥ÀÌÅÍ ±â¹Ý ÇÁ·ÎÁ§Æ®¸¦ ´õ ºü¸£°Ô ½ÃÀÛÇϰí, º¯È­ÇÏ´Â ½ÃÀå ȯ°æ¿¡ ÀûÀÀÇϸç, ±âÁ¸ »ç³» ½Ã½ºÅÛº¸´Ù ´õ ºü¸£°Ô Á¤º¸¿¡ ÀÔ°¢ÇÑ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¹× ÆÀ °£ »óÈ£ ÀÛ¿ëÀ» °£¼ÒÈ­ÇÏ´Â Çù¾÷ µµ±¸¿Í ÀÎÅÍÆäÀ̽º¸¦ Á¦°øÇϸç, µ¿±âÈ­µÈ µ¥ÀÌÅÍ ÀλçÀÌÆ®¿¡ ÀÇÁ¸ÇÏ´Â ºÎ¼­ °£ ÆÀ¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ ÀåÁ¡Àº ¸¹Àº BDaaS Á¦°ø¾÷üµéÀÌ »çÀü ±¸ÃàµÈ ¸Ó½Å·¯´× ¸ðµ¨°ú °ü¸®Çü ºÐ¼® ¼­ºñ½º¸¦ Á¦°øÇÔÀ¸·Î½á µ¥ÀÌÅÍ »çÀ̾𽺠Àü¹® ÆÀÀÌ ¾ø´Â ±â¾÷µµ °í±Þ ºÐ¼® ±â´ÉÀ» Ȱ¿ëÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. BDaaS´Â ´ë±Ô¸ð ÀÎÇÁ¶ó ÅõÀÚ ¾øÀ̵µ °í±Þ µ¥ÀÌÅÍ µµ±¸¿¡ ´ëÇÑ ¿øÈ°ÇÑ ¾×¼¼½º¸¦ Á¦°øÇÔÀ¸·Î½á ±â¾÷ÀÌ ºñ¿ë È¿À²¼ºÀ» À¯ÁöÇϸ鼭 ¾÷¹« À¯¿¬¼ºÀ» ³ôÀ̰í, ÀλçÀÌÆ® È®º¸ ½Ã°£À» ´ÜÃàÇϰí, ½ÃÀå ±âȸ¿Í °úÁ¦¿¡ ´õ ºü¸£°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

BDaaS µµÀÔ¿¡ µû¸¥ °úÁ¦´Â ¹«¾ùÀΰ¡?

ÀÌ·¯ÇÑ ÀåÁ¡¿¡µµ ºÒ±¸Çϰí, BDaaS µµÀÔÀº ƯÈ÷ º¸¾È, µ¥ÀÌÅÍ ÅëÇÕ, ÀáÀçÀûÀÎ º¥´õ Á¾¼Ó¼º µîÀÇ ¹®Á¦¸¦ ¾ß±âÇÒ ¼ö ÀÖÀ¸¸ç, BDaaS¸¦ µµÀÔÇÏ´Â ±â¾÷ÀÇ ÁÖ¿ä °ü½É»ç Áß Çϳª´Â ±â¹Ð Á¤º¸°¡ °ø±ÞÀÚÀÇ Å¬¶ó¿ìµå ȯ°æ ³» ¿ÀÇÁ»çÀÌÆ®¿¡ ÀúÀåµÇ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ µ¥ÀÌÅÍ º¸¾ÈÀÔ´Ï´Ù. µ¥ÀÌÅÍ º¸¾ÈÀÔ´Ï´Ù. ƯÈ÷ ÀÇ·á ¹× ±ÝÀ¶°ú °°ÀÌ ¹Î°¨ÇÑ Á¤º¸¸¦ ´Ù·ç´Â »ê¾÷¿¡¼­ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã º¸ÀåÀº GDPR, CCPA, HIPAA¿Í °°Àº ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ÁؼöÇϱâ À§ÇØ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ¾Æ¿ô¼Ò½Ì ȯ°æ¿¡¼­ÀÇ µ¥ÀÌÅÍ À¯Ãâ ¹× ¹«´Ü ¾×¼¼½ºÀÇ À§ÇèÀº Á¶Á÷ÀÌ BDaaS Á¦°ø¾÷ü¸¦ ½ÅÁßÇÏ°Ô °ËÅäÇϰí ÃÖ°í ¼öÁØÀÇ º¸¾È Ç¥ÁØÀ» ÁؼöÇÏ´ÂÁö È®ÀÎÇØ¾ß ÇÔÀ» ÀǹÌÇÕ´Ï´Ù. ¶ÇÇÑ, ¸¹Àº ±â¾÷µéÀÌ º¥´õ Á¾¼Ó(vendor lock-in)ÀÇ À§Çè¿¡ Á÷¸éÇϰí ÀÖÀ¸¸ç, ƯÁ¤ BDaaS °ø±ÞÀÚÀÇ »ýŰ迡 ÀÇÁ¸ÇÏ°Ô µÇ¾î ºñÁî´Ï½º ¿ä±¸»çÇ×ÀÌ º¯°æµÉ °æ¿ì °ø±ÞÀÚ¸¦ º¯°æÇÏ´Â °ÍÀÌ ºñ¿ëÀûÀ¸·Î³ª ±â¼úÀûÀ¸·Î ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅͰ¡ ºó¹øÇÏ°Ô ¹ß»ýÇÏ´Â ±â¾÷ÀÇ °æ¿ì, µ¥ÀÌÅÍ Àü¼Û Áö¿¬Àº ¼º´É ¹× »ç¿ëÀÚ °æÇè¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ BDaaS ¼Ö·ç¼ÇÀ» µµÀÔÇÒ ¶§ Á÷¿øµéÀÌ »õ·Î¿î µµ±¸, ¿öÅ©Ç÷οì, ºÐ¼® ¸ðµ¨¿¡ Àͼ÷ÇØÁ®¾ß Çϱ⠶§¹®¿¡ ÇнÀ °î¼±ÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ ½Ã½ºÅÛ ¹× ¿öÅ©Ç÷οì¿Í BDaaS¸¦ ÅëÇÕÇÒ ¶§ ¿øÈ°ÇÑ µ¥ÀÌÅÍ ±³È¯°ú Àϰü¼ºÀ» º¸ÀåÇϱâ À§ÇØ »ó´çÇÑ Á¶Á¤ÀÌ ÇÊ¿äÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀº ÀûÀýÇÑ BDaaS Á¦°ø¾÷ü¸¦ ¼±ÅÃÇÏ°í º¸¾È, È®À强, ÅëÇÕ °í·Á»çÇ×À» Æ÷ÇÔÇÑ Á¾ÇÕÀûÀÎ µµÀÔ Àü·«À» ¼ö¸³ÇÏ´Â °ÍÀÌ Áß¿äÇÏ´Ù´Â Á¡À» °­Á¶ÇÕ´Ï´Ù.

BDaaS(Big Data-as-a-Service) ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

BDaaS(Big Data-as-a-Service) ½ÃÀåÀÇ ¼ºÀåÀº µ¥ÀÌÅÍ ¾çÀÇ ±Þ°ÝÇÑ Áõ°¡, °í±Þ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ µ¥ÀÌÅÍ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. °¢ ºÐ¾ß¿¡¼­ µðÁöÅÐ ÀüȯÀÌ °¡¼ÓÈ­µÇ¸é¼­ ±â¾÷µéÀº IoT ±â±â, E-Commerce °Å·¡, ¼Ò¼È ¹Ìµð¾î, °í°´°úÀÇ »óÈ£ÀÛ¿ë µî ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡´Â ´ë±Ô¸ð·Î Á¤º¸¸¦ ÀúÀå, ó¸®, ºÐ¼®ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí, ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ ¾øÀÌ ºòµ¥ÀÌÅ͸¦ °ü¸®ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô BDaaS´Â ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅͼ¾Å͸¦ À¯ÁöÇϰųª Àü´ã µ¥ÀÌÅÍ ÆÀÀ» ±¸¼ºÇÒ Çʿ䰡 ¾ø±â ¶§¹®¿¡ ºñ¿ë È¿À²¼ºÀÌ Áß¿äÇÑ µ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, ¼³ºñ ÅõÀÚ¿Í Áö¼ÓÀûÀÎ ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ºÎ»óµµ BDaaS µµÀÔ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, Ŭ¶ó¿ìµå Ç÷§ÆûÀº ºòµ¥ÀÌÅÍÀÇ ¿ªµ¿ÀûÀÎ ¿ä±¸»çÇ׿¡ ´ëÀÀÇÏ´Â µ¥ ÇÊ¿äÇÑ È®À强°ú À¯¿¬¼ºÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó»Ó¸¸ ¾Æ´Ï¶ó BDaaS¸¦ ÅëÇØ ±â¾÷Àº »ç³» Àü¹® Áö½Ä ¾øÀ̵µ ÀΰøÁö´É, ¸Ó½Å·¯´×°ú °°Àº °í±Þ ºÐ¼® ±â´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, BDaaS Á¦°ø¾÷ü´Â ÀϹÝÀûÀ¸·Î Ç÷§Æû¿¡ ³»ÀåµÈ ÄÄÇöóÀ̾𽺠¹× º¸¾È ±â´ÉÀ» Á¦°øÇÏ¿© ±â¾÷ÀÌ GDPR ¹× HIPAA¿Í °°Àº ±ÔÁ¦ Ç¥ÁØÀ» º¸´Ù ½±°Ô ÁؼöÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, ¼ÒºñÀÚÀÇ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ Àνİú °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷µéÀº µ¥ÀÌÅÍ º¸È£¸¦ ÃÖ¿ì¼± °úÁ¦·Î »ï°í ÀÖÀ¸¸ç, ÀÌ´Â °­·ÂÇÑ º¸¾È Á¶Ä¡¸¦ Á¦°øÇÏ´Â BDaaS ¼Ö·ç¼Ç¿¡ ´ëÇÑ Ãß°¡ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεé·Î ÀÎÇØ BDaaS ½ÃÀåÀº ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍÀÇ Èû°ú ÀáÀç·ÂÀ» Ȱ¿ëÇϱâ À§ÇØ °¢ »ê¾÷ ºÐ¾ßÀÇ ±â¾÷µéÀÌ È¿À²ÀûÀ̰í À¯¿¬ÇÑ µ¥ÀÌÅÍ ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(¼Ö·ç¼Ç, ¼­ºñ½º), µðÇ÷ÎÀÌ¸ÕÆ®(ÆÛºí¸¯ Ŭ¶ó¿ìµå, ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå, ÇÏÀ̺긮µå Ŭ¶ó¿ìµå), ¾÷°èº°(BFSI, IT ¹× Åë½Å, Á¦Á¶, Á¤ºÎ, ¼Ò¸Å, ÇコÄÉ¾î ¹× »ý¸í°úÇÐ, ±âŸ ¾÷°è)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡°¡ ¼±º°ÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Big Data-as-a-Service (BDaaS) Market to Reach US$247.8 Billion by 2030

The global market for Big Data-as-a-Service (BDaaS) estimated at US$65.3 Billion in the year 2024, is expected to reach US$247.8 Billion by 2030, growing at a CAGR of 24.9% over the analysis period 2024-2030. Solutions, one of the segments analyzed in the report, is expected to record a 23.9% CAGR and reach US$141.8 Billion by the end of the analysis period. Growth in the Services segment is estimated at 26.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$16.3 Billion While China is Forecast to Grow at 31.4% CAGR

The Big Data-as-a-Service (BDaaS) market in the U.S. is estimated at US$16.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$70.2 Billion by the year 2030 trailing a CAGR of 31.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.5% and 21.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 20.2% CAGR.

Global Big Data-as-a-Service (BDaaS) Market - Key Trends and Drivers Summarized

Why Is Big Data-as-a-Service Transforming Data Management?

Big Data-as-a-Service (BDaaS) is transforming how companies approach data management, enabling them to leverage vast and complex datasets without having to invest heavily in on-premises infrastructure or specialized data science expertise. Through BDaaS, businesses can outsource storage, processing, and analytics needs to third-party providers, granting them access to cutting-edge data technology without the operational and financial strain of maintaining these systems internally. This shift is particularly valuable for enterprises dealing with massive, continuously growing datasets from varied sources, as it allows them to scale data operations up or down based on demand and focus their resources on core business functions rather than the logistical challenges of data infrastructure. BDaaS providers offer a suite of tools and services, including data storage, high-speed processing, and machine learning-driven analytics, enabling companies to turn raw data into actionable insights with minimal setup and maintenance requirements. By removing many of the traditional entry barriers associated with Big Data, such as high setup costs and technical complexity, BDaaS is democratizing access to advanced analytics. This shift is empowering companies of all sizes to make data-driven decisions, identify patterns, and create predictive models, fostering a competitive edge in an increasingly data-centric market.

How Does BDaaS Enhance Business Agility and Efficiency?

BDaaS enhances business agility and operational efficiency by offering on-demand access to powerful data processing and analytics capabilities, allowing companies to respond rapidly to changing data needs. Instead of investing in expensive and fixed data infrastructure, organizations can now access scalable computing resources that adjust to real-time demands, supporting everything from daily operational analysis to handling seasonal spikes or unforeseen surges in data activity. This elasticity in resource management enables companies to launch data-driven projects more quickly, adapt to shifting market conditions, and make informed, data-backed decisions faster than with traditional, in-house systems. BDaaS platforms also provide collaborative tools and interfaces that streamline data sharing and team interactions, which is especially valuable for cross-functional teams relying on synchronized data insights. Another advantage is that many BDaaS providers offer pre-built machine learning models and managed analytics services, allowing businesses without dedicated data science teams to leverage sophisticated analysis capabilities. By removing the need for heavy infrastructure investments and providing seamless access to advanced data tools, BDaaS is making it possible for organizations to enhance their operational flexibility, reduce time-to-insight, and react more quickly to market opportunities and challenges, all while maintaining cost-efficiency.

What Challenges Come with Implementing BDaaS?

Despite its advantages, implementing BDaaS can present challenges, particularly around security, data integration, and potential vendor dependency. One of the primary concerns for companies adopting BDaaS is data security, as sensitive information is often stored off-site within the provider’s cloud environment. Ensuring data privacy, particularly for industries dealing with highly sensitive information like healthcare or finance, can be complex and is essential for compliance with stringent regulations like GDPR, CCPA, and HIPAA. The risk of data breaches or unauthorized access in outsourced environments means that organizations must carefully vet BDaaS providers to ensure they adhere to the highest security standards. Additionally, many businesses face the risk of vendor lock-in, where they become dependent on a particular BDaaS provider’s ecosystem, making it costly and technically difficult to switch providers should business needs change. Another challenge lies in latency and data transfer speeds; for companies dealing with high-frequency, real-time data, delays in data transfer can impact performance and user experience. There can also be a learning curve when implementing BDaaS solutions, as staff may need to familiarize themselves with new tools, workflows, and analytics models. Moreover, integrating BDaaS with existing systems and workflows can require substantial adjustments to ensure seamless data exchange and consistency. These challenges highlight the importance of selecting the right BDaaS provider and developing a comprehensive implementation strategy that includes security, scalability, and integration considerations.

What Drives the Growth of the Big Data-as-a-Service Market?

The growth in the Big Data-as-a-Service market is driven by several key factors, including the exponential increase in data volumes, an escalating demand for advanced analytics, and a growing need for scalable, cost-effective data solutions. As digital transformation accelerates across sectors, companies are generating vast quantities of data from a multitude of sources, such as IoT devices, e-commerce transactions, social media, and customer interactions. This explosion of data creates a demand for solutions that can store, process, and analyze information at scale, making BDaaS an attractive option for businesses seeking to manage Big Data without extensive investments in infrastructure. Cost efficiency is a significant driver, as BDaaS eliminates the need for organizations to maintain in-house data centers or build dedicated data teams, reducing both capital expenditure and ongoing operational costs. The rise of cloud computing has also fueled BDaaS adoption, with cloud platforms offering the scalability and flexibility needed to handle Big Data’s dynamic requirements. Beyond infrastructure, BDaaS enables companies to implement sophisticated analytics capabilities, including artificial intelligence and machine learning, without the need for specialized in-house expertise, a valuable asset for organizations aiming to leverage predictive insights and automation to gain a competitive advantage. Moreover, BDaaS providers typically offer compliance and security features built into their platforms, helping companies adhere to regulatory standards like GDPR and HIPAA with greater ease. Additionally, as consumers become more aware of and concerned with data privacy, businesses are motivated to prioritize data protection, driving further investment in BDaaS solutions that offer robust security measures. Collectively, these drivers are fueling a robust expansion in the BDaaS market, as companies across industries seek efficient and flexible data solutions to harness the growing power and potential of Big Data.

SCOPE OF STUDY:

The report analyzes the Big Data-as-a-Service (BDaaS) market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Deployment (Public Cloud, Private Cloud, Hybrid Cloud); Vertical (BFSI, IT & Telecom, Manufacturing, Government, Retail, Healthcare & Life Sciences, Other Verticals)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 67 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â