¼¼°èÀÇ Ç×°ø±³Åë °ü¸® ½ÃÀå
Air Traffic Management
»óǰÄÚµå : 1766886
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 372 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,225,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,675,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ç×°ø±³Åë °ü¸® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 384¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 189¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×°ø±³Åë °ü¸® ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 12.5%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 384¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Çϵå¿þ¾î´Â CAGR 12.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 228¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¹× ¼Ö·ç¼Ç ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 13.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 49¾ï ´Þ·¯, Áß±¹Àº CAGR 16.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ç×°ø±³Åë °ü¸® ½ÃÀåÀº 2024³â¿¡ 49¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 91¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 16.1%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.5%¿Í 10.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 9.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ç×°ø±³Åë °ü¸® ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ç×°ø±³Åë °ü¸®¶õ ¹«¾ùÀΰ¡?

Ç×°ø±³Åë °ü¸®(ATM)´Â Ç×°ø±âÀÇ ¾ÈÀüÇϰí È¿À²ÀûÀÎ À̵¿À» Á¶Á¤ÇÏ´Â ½Ã½ºÅÛ°ú ÇÁ·Î¼¼½º¸¦ ÀǹÌÇϸç, Ç×°ø±³Åë°üÁ¦(ATC), Ç×°ø±³ÅëÈ帧°ü¸®(ATFM), °ø¿ª°ü¸®(ASM) µî ¸î °¡Áö Áß¿äÇÑ ±¸¼º¿ä¼Ò¸¦ Æ÷ÇÔÇϸç, °¢ ±¸¼º¿ä¼Ò´Â Ç×°ø±³ÅëÀÌ ÀûÀýÇÏ°Ô ±ÔÁ¦µÉ ¼ö ÀÖµµ·Ï °íÀ¯ÇÑ ¿ªÇÒÀ» ¼öÇàÇÕ´Ï´Ù. ATC´Â °ø¿ª ³» Ç×°ø±â À¯µµ¿¡ ÁßÁ¡À» µÎ°í ÀÌÂø·ú ½Ã¿Í °øÇ×ÀÇ À¯µµ·Î¿¡¼­ Ç×°ø±â¸¦ À¯µµÇϰí, ATFMÀº Ç×°ø±âÀÇ È帧À» °ü¸®ÇÏ¿© º´¸ñÇö»óÀ» ¹æÁöÇϰí Áö¿¬À» ÁÙÀÓÀ¸·Î½á Ç×°ø±³ÅëÀÌ ¿øÈ°ÇÏ°Ô ÀÌ·ç¾îÁöµµ·Ï Çϸç, ASMÀº Àü·«ÀûÀÎ °èȹÀ» ¼¼¿ì°í, ´Ù¾çÇÑ ÀÌ¿ëÀÚ¿¡°Ô °ø¿ªÀ» ÇÒ´çÇÕ´Ï´Ù. ±º¿ë±â, ¹Î°£ Ç×°ø±â, ¹Î°£ Ç×°ø±â°¡ °£¼· ¾øÀÌ ¾ÈÀüÇÏ°Ô ¿îÇ×ÇÒ ¼ö ÀÖµµ·Ï ´Ù¾çÇÑ »ç¿ëÀÚ¿¡°Ô °ø¿ªÀ» ÇÒ´çÇÏ¿© ATMÀÇ ÁÖ¿ä ¸ñÀûÀº Ãæµ¹À» ¹æÁöÇϰí, Áú¼­Á¤¿¬Çϰí È¿À²ÀûÀÎ ±³Åë È帧À» À¯ÁöÇϸç, °ø¿ªÀÇ ¿ë·®À» ÃÖÀûÈ­ÇÏ´Â °ÍÀÔ´Ï´Ù. ÷´Ü ±â¼ú°ú Ç×°ø Ç×¹ý ¼­ºñ½º Á¦°ø¾÷ü, Ç×°ø»ç ¹× °øÇ× °£ÀÇ Á¶Á¤À» ÅëÇØ ATMÀº ½Â°´°ú È­¹°À» Æ÷ÇÔÇÑ Ç×°ø ¾ÈÀüÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

Çö´ë Ç×°ø±³Åë °ü¸®¿¡ ÇʼöÀûÀÎ ±â¼úÀ̶õ?

Çö´ë Ç×°ø±³Åë °ü¸®´Â Ç×°ø±³Åë ¾÷¹«ÀÇ ¾ÈÀü¼º, È¿À²¼º, Á¤È®¼ºÀ» Çâ»ó½ÃŰ´Â ´Ù¾çÇÑ Ã·´Ü ±â¼ú¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ·¹ÀÌ´õ ½Ã½ºÅÛÀº ATMÀÇ °¡Àå ±âº»ÀûÀÎ ±â¼ú Áß Çϳª·Î °øÁß ¹× Áö»ó Ç×°ø±âÀÇ À§Ä¡¸¦ ½Ç½Ã°£À¸·Î ÃßÀûÇÕ´Ï´Ù. ¹Ý»çµÈ ÀüÆÄ¸¦ ±â¹ÝÀ¸·Î ¹°Ã¼ÀÇ À§Ä¡¸¦ °¨ÁöÇÏ´Â 1Â÷ ·¹ÀÌ´õ´Â Ç×°ø±âÀÇ Æ®·£½ºÆù´õ·ÎºÎÅÍ µ¥ÀÌÅ͸¦ ¼ö½ÅÇÏ¿© °íµµ ¹× ºñÇà ½Äº°°ú °°Àº Ãß°¡ Á¤º¸¸¦ Á¦°øÇÏ´Â 2Â÷ ·¹ÀÌ´õ ½Ã½ºÅÛ¿¡ ÀÇÇØ º¸¿ÏµË´Ï´Ù. ÀÚµ¿ Á¾¼Ó °¨½Ã ¹æ¼Û(ADS-B)Àº ATM¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ´Â ¶Ç ´Ù¸¥ ÷´Ü ½Ã½ºÅÛÀ¸·Î, ADS-B¸¦ ÅëÇØ Ç×°ø±â´Â À§¼º ½ÅÈ£¸¦ ÅëÇØ À§Ä¡, ¼Óµµ, °íµµ¸¦ ¹æ¼ÛÇÒ ¼ö ÀÖÀ¸¸ç, ƯÈ÷ ·¹ÀÌ´õÀÇ Ä¿¹ö¸®Áö°¡ Á¦ÇÑµÈ ¿Üµý Áö¿ªÀ̳ª ÇØ¾ç Áö¿ª¿¡¼­ º¸´Ù Á¤È®ÇÑ ÃßÀûÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °¡´ÉÇÕ´Ï´Ù. ÃßÀû ½Ã½ºÅÛ ¿Ü¿¡µµ ATMÀº Á¶Á¾»ç¿Í Ç×°ø °üÁ¦»ç °£ÀÇ Áö¼ÓÀûÀÎ ¿¬¶ôÀ» À¯ÁöÇϱâ À§ÇØ ÃʰíÁÖÆÄ(VHF) ¹«¼± ½Ã½ºÅÛ ¹× À§¼º ±â¹Ý Åë½Å ½Ã½ºÅÛ°ú °°Àº Åë½Å ±â¼ú¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÅëÇØ Áö½Ã¿Í Á¤º¸°¡ ¸íÈ®ÇÏ°í ½Ç½Ã°£À¸·Î Àü´ÞµÇ¾î Ç×°ø±âÀÇ ¾ÈÀüÇϰí ÇùÁ¶ÀûÀÎ À̵¿À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ç×°ø±³Åë°üÁ¦ÀÚµ¿È­½Ã½ºÅÛ(ATCAS)µµ Ãæµ¹ °¨Áö, °æ·Î ÃÖÀûÈ­, ºñÇà µ¥ÀÌÅÍ Ã³¸®¿Í °°Àº ÀÏ»óÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ¿© °üÁ¦»çÀÇ ¾÷¹« ºÎ´ãÀ» ÁÙÀÌ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °­·ÂÇÑ ¾Ë°í¸®Áò°ú ¿¹Ãø ¸ðµ¨¸µÀ» »ç¿ëÇÏ¿© Ç×°ø±â ¼ø¼­¸¦ ÃÖÀûÈ­Çϰí, ¿¬·á È¿À²À» °³¼±Çϸç, Áö¿¬À» ÁÙÀÔ´Ï´Ù. ¶ÇÇÑ, GPS¿Í °°Àº À§¼ºÇ×¹ý½Ã½ºÅÛ(GNSS)Àº ºñÇà °æ·ÎÀÇ Á¤È®µµ¸¦ ³ôÀÌ´Â Á¤È®ÇÑ À§Ä¡ µ¥ÀÌÅ͸¦ Á¦°øÇÏ¿© º¸´Ù È¿À²ÀûÀÎ °ø¿ª ÀÌ¿ë°ú ´õ ³ªÀº °æ·Î °èȹÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á Çö´ë ATM¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº Ç×°ø±³Åë °ü¸®¸¦ ¾î¶»°Ô °³¼±Çߴ°¡?

ÃÖ±Ù ¸î ³â µ¿¾È ±â¼ú Çõ½ÅÀº Ç×°ø±³Åë °ü¸®¸¦ ±ØÀûÀ¸·Î º¯È­½ÃÄÑ Ç×°ø ¿©ÇàÀ» º¸´Ù ¾ÈÀüÇϰí, È¿À²ÀûÀ̸ç, ȯ°æÀûÀ¸·Î Áö¼Ó°¡´ÉÇÏ°Ô ¸¸µé¾ú½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ¹Ì±¹°ú À¯·´¿¡¼­ °¢°¢ NextGen°ú SESAR ÇÁ·Î±×·¥ÀÌ ³Î¸® äÅÃµÈ °ÍÀÔ´Ï´Ù. ÀÌ ÇÁ·Î±×·¥µéÀº Ç×°ø°üÁ¦ Çö´ëÈ­¸¦ À§ÇØ À§¼ºÇ×¹ý, ÷´Ü ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, ÀÚµ¿È­ ±â¼úÀ» µµÀÔÇϰí ATM ÀÎÇÁ¶ó¸¦ Á¾ÇÕÀûÀ¸·Î Á¡°ËÇÏ¿© Ç×°ø°üÁ¦¸¦ Çö´ëÈ­Çϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ³Ø½ºÆ®Á¨Àº ¼º´É ±â¹Ý ³»ºñ°ÔÀ̼Ç(PBN)°ú °°Àº µµ±¸¸¦ µµÀÔÇÏ¿© Ç×°ø±â°¡ º¸´Ù Á÷Á¢ÀûÀÎ °æ·Î·Î ºñÇàÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ¿¬·á¸¦ Àý¾àÇϰí ź¼Ò ¹èÃâ·®À» ÁÙÀÏ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ¶ÇÇÑ º¸´Ù Á¤È®ÇÑ ºñÇà °æ·Î¿Í °øÇ׿¡ ´ëÇÑ ÃÖÀûÀÇ Á¢±ÙÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á È¥ÀâÇÑ °ø¿ªÀÇ È¥ÀâÀ» ¿ÏÈ­ÇÏ´Â µ¥¿¡µµ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ Çõ½ÅÀº ATM ½Ã½ºÅÛ¿¡¼­ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ »ç¿ë È®´ëÀε¥, AI¿Í ML ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© Ç×°ø±â °£ ÀáÀçÀû Ãæµ¹À» ¹æÁöÇϰí ÀÇ»ç°áÁ¤ °úÁ¤À» °³¼±ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ¿¹ÃøÀû ÀλçÀÌÆ®¸¦ °üÁ¦»ç¿¡°Ô Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AI ½Ã½ºÅÛÀº Áö¿¬À» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ºñÇà ½ºÄÉÁÙÀ» ÃÖÀûÈ­Çϰí, ¾ÈÀü À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ´Â ÆÐÅÏÀ» ½Äº°Çϰí, °ø¿ª ¿ë·® °ü¸®¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ø°Ý Ÿ¿ö´Â ¼Ò±Ô¸ð °øÇ×°ú ¿Üµý Áö¿ª °øÇ×ÀÇ Ç×°ø±³Åë °ü¸®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ´Â ÃÖ±ÙÀÇ ±â¼ú Çõ½ÅÀÔ´Ï´Ù. °íÇØ»óµµ Ä«¸Þ¶ó¿Í ¼¾¼­¸¦ »ç¿ëÇÏ´Â ¿ø°Ý Ÿ¿ö¸¦ ÅëÇØ Ç×°ø °üÁ¦»ç´Â °øÇ× ¿î¿µÀ» Áß¾Ó¿¡¼­ °ü¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾î ¾ÈÀü¼ºÀ» À¯ÁöÇϸ鼭 ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. »çÀ̹ö º¸¾È ¶ÇÇÑ ATM ½Ã½ºÅÛ Çö´ëÈ­ÀÇ ÃÊÁ¡ÀÌ µÇ°í Àִµ¥, ATMÀÇ µðÁöÅÐ ±â¼ú°ú µ¥ÀÌÅÍ ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó »çÀ̹ö °ø°ÝÀÇ À§Çèµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Åë½Å ½Ã½ºÅÛ°ú ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» ÀáÀçÀûÀÎ Ä§ÇØ·ÎºÎÅÍ º¸È£Çϰí Ç×°ø ±³Åë ¾÷¹«ÀÇ ¾ÈÀü°ú ¹«°á¼ºÀ» º¸ÀåÇϱâ À§ÇØ »õ·Î¿î »çÀ̹ö º¸¾È ´ëÃ¥ÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ °øÀ¯ ±â¼úÀÇ ¹ßÀüÀ¸·Î Ç×°ø»ç, °øÇ×, Ç×°ø Ç×¹ý ¼­ºñ½º Á¦°ø¾÷ü °£ÀÇ Çù·ÂÀÌ °­È­µÇ¾î Àüü Ç×°ø ³×Æ®¿öÅ©ÀÇ È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.

Ç×°ø±³Åë °ü¸® ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Ç×°ø±³Åë °ü¸® ½ÃÀåÀÇ ¼ºÀåÀº ÁÖ·Î ¼¼°è Ç×°ø ¿©ÇàÀÇ ±Þ¼ÓÇÑ ¼ºÀå°ú º¸´Ù È¿À²ÀûÀÎ °ø¿ª °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í °°Àº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è Ç×°ø »ê¾÷Àº ƯÈ÷ ¾Æ½Ã¾Æ, ¾ÆÇÁ¸®Ä«, Áßµ¿ÀÇ ½ÅÈï °æÁ¦±¹¿¡¼­ Áö¼ÓÀûÀ¸·Î ¼ºÀåÇϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ¾ÈÀü°ú È¿À²¼ºÀ» ÀúÇØÇÏÁö ¾ÊÀ¸¸é¼­µµ Áõ°¡ÇÏ´Â Ç×°ø ±³Åë·®À» ó¸®ÇÒ ¼ö ÀÖ´Â Çö´ëÈ­µÈ ATM ½Ã½ºÅÛÀÌ Àý½ÇÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Àúºñ¿ë Ç×°ø»çÀÇ ºÎ»ó°ú °³¹ßµµ»ó±¹ÀÇ Áß»êÃþ Áõ°¡´Â Ç×°ø ¿©ÇàÀÇ ±Þ°ÝÇÑ Áõ°¡¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, Á¤ºÎ¿Í Ç×°ø ´ç±¹ÀÌ ATM ÀÎÇÁ¶ó ¾÷±×·¹À̵忡 ¸¹Àº ÅõÀÚ¸¦ Çϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº Ç×°øÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̱â À§ÇÑ Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀÔ´Ï´Ù. Ç×°ø±³Åë °ü¸®´Â º¸´Ù È¿À²ÀûÀÎ ºñÇà °æ·Î¸¦ °¡´ÉÇÏ°Ô Çϰí, ´ë±â ÆÐÅÏÀ» ÁÙÀ̰í, ÀÌÂø·ú ¼ø¼­¸¦ ÃÖÀûÈ­ÇÔÀ¸·Î½á ¿¬·á ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±¹Á¦¹Î°£ Ç×°ø±â±¸(ICAO)¿Í °°Àº ±¹Á¦±â±¸´Â Ç×°øÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇÑ ¾ß½ÉÂù ¸ñÇ¥¸¦ ¼³Á¤Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ÃֽŠATM ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´õ¿í Àå·ÁÇϰí ÀÖ½À´Ï´Ù. Ç×°ø»ç°¡ ¿¬·á È¿À²À» °³¼±ÇÏ°í ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, Ç×°ø»ç´Â ATM Á¦°ø¾÷ü¿¡°Ô º¸´Ù ģȯ°æÀûÀÎ ¿î¿µÀ» Áö¿øÇÏ´Â ±â¼úÀ» µµÀÔÇϵµ·Ï ¾Ð¹ÚÇϰí ÀÖ½À´Ï´Ù. ¹«ÀÎÇ×°ø±â(UAV), Áï µå·ÐÀÇ ¿µ°ø ÅëÇÕµµ ATM ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. »ó¾÷¿ë ¹× ·¹Å©¸®¿¡ÀÌ¼Ç¿ë µå·ÐÀÇ »ç¿ëÀÌ È®»êµÊ¿¡ µû¶ó À¯ÀÎÇ×°ø±â¿Í ¹«ÀÎÇ×°ø±âÀÇ °øÁ¸À» ¾ÈÀüÇÏ°Ô °ü¸®ÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À̴ ȥ¶õÀ̳ª ¾ÈÀü À§ÇèÀ» À¯¹ßÇÏÁö ¾Ê°í µå·ÐÀ» ±âÁ¸ Ç×°ø ±³Åë ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â UAS ±³Åë °ü¸®(UTM) ½Ã½ºÅÛ °³¹ß¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì¿Í À¯·´ µî ½ÅÈï±¹¿¡¼­´Â ±âÁ¸ ATM ÀÎÇÁ¶ó°¡ Çö´ëÈ­µÇ°í ÀÖ´Â °Íµµ ½ÃÀå °³Ã´¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ±ÔÁ¦ ±â°üÀº ÃÖ÷´Ü ±â¼úÀ» µµÀÔÇϱâ À§ÇØ ATM ½Ã½ºÅÛÀ» Áö¼ÓÀûÀ¸·Î ¾÷±×·¹À̵åÇÏ¿© °ø¿ªÀÌ ¹Ì·¡ÀÇ Ç×°ø ±³Åë·® Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¿î¿µ È¿À²¼º Çâ»ó, È¥Àâ ¿ÏÈ­, ¾ÈÀü °­È­¿¡ ÁßÁ¡À» µÎ°í ÀÌ·¯ÇÑ ¾÷±×·¹À̵åÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ½º¸¶Æ® °øÇ×ÀÇ ¼ºÀå°ú Ç×°ø »ê¾÷ÀÇ ±¤¹üÀ§ÇÑ µðÁöÅÐÈ­·Î ÀÎÇØ °øÇ×°ú Ç×°ø»ç´Â Çö´ëÀÇ º¹ÀâÇÑ Ç×°ø ¿©ÇàÀ» °ü¸®Çϱâ À§ÇØ Ã·´Ü ATM ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº AI, ¸Ó½Å·¯´×, À§¼º ±â¹Ý ³»ºñ°ÔÀ̼ÇÀÇ Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü°ú ÇÔ²² ÇâÈÄ ¸î ³â µ¿¾È Ç×°ø±³Åë °ü¸® ½ÃÀåÀÇ °ß°íÇÑ ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼Ö·ç¼Ç), °ø¿ª(Ç×°ø±³Åë ¼­ºñ½º(ATS), Ç×°ø±³Åë ÇÃ·Î¿ì °ü¸®(ATFM), °ø¿ª °ü¸®(ASM), Ç×°ø Á¤º¸ °ü¸®(AIM)), ¿ëµµ(ÀÚµ¿È­, Åë½Å, ³»ºñ°ÔÀ̼Ç, °¨½Ã)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Air Traffic Management Market to Reach US$38.4 Billion by 2030

The global market for Air Traffic Management estimated at US$18.9 Billion in the year 2024, is expected to reach US$38.4 Billion by 2030, growing at a CAGR of 12.5% over the analysis period 2024-2030. Hardware, one of the segments analyzed in the report, is expected to record a 12.0% CAGR and reach US$22.8 Billion by the end of the analysis period. Growth in the Software & Solutions segment is estimated at 13.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.9 Billion While China is Forecast to Grow at 16.1% CAGR

The Air Traffic Management market in the U.S. is estimated at US$4.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$9.1 Billion by the year 2030 trailing a CAGR of 16.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.5% and 10.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.4% CAGR.

Global Air Traffic Management Market - Key Trends and Drivers Summarized

What Is Air Traffic Management and How Does It Keep Air Travel Safe?

Air Traffic Management (ATM) refers to the systems and processes that coordinate the safe and efficient movement of aircraft both in the air and on the ground. ATM encompasses several critical components, including Air Traffic Control (ATC), Air Traffic Flow Management (ATFM), and Airspace Management (ASM), each of which plays a unique role in ensuring that air traffic is properly regulated. ATC focuses on directing aircraft in the airspace and guiding them during takeoff, landing, and while on taxiways at airports. ATFM ensures that air traffic moves smoothly by managing the flow of aircraft to prevent bottlenecks and reduce delays. ASM involves the strategic planning and allocation of airspace to different users, ensuring that military, commercial, and private aircraft can operate safely without interference. The main goal of ATM is to prevent collisions, maintain orderly and efficient traffic flows, and optimize airspace capacity. Through advanced technologies and coordination between air navigation service providers, airlines, and airports, ATM plays an essential role in keeping the skies safe for passengers and cargo alike.

What Technologies Are Essential to Modern Air Traffic Management?

Modern air traffic management relies heavily on a variety of sophisticated technologies that improve the safety, efficiency, and accuracy of air traffic operations. Radar systems are one of the most fundamental technologies in ATM, providing real-time tracking of aircraft positions in the air and on the ground. Primary radar, which detects the position of objects based on reflected radio waves, is complemented by secondary radar systems that receive data from aircraft transponders, providing additional information like altitude and flight identification. Automatic Dependent Surveillance-Broadcast (ADS-B) is another advanced system increasingly used in ATM. ADS-B allows aircraft to broadcast their position, speed, and altitude via satellite signals, enabling more accurate tracking, especially in remote or oceanic regions where radar coverage may be limited. In addition to tracking systems, ATM relies on communication technologies, such as Very High Frequency (VHF) radio systems and satellite-based communication systems, to maintain constant contact between pilots and air traffic controllers. These systems ensure that instructions and information are relayed clearly and in real-time, allowing for the safe and coordinated movement of aircraft. Air Traffic Control Automation Systems (ATCAS) have also become critical in reducing controller workload by automating routine tasks such as conflict detection, route optimization, and flight data processing. These systems use powerful algorithms and predictive modeling to optimize the sequencing of aircraft, improve fuel efficiency, and reduce delays. Additionally, Global Navigation Satellite Systems (GNSS), such as GPS, play a crucial role in modern ATM by providing precise location data that enhances the accuracy of flight paths, enabling more efficient airspace usage and better route planning.

How Have Technological Innovations Improved Air Traffic Management?

Technological innovations have dramatically transformed air traffic management in recent years, making air travel safer, more efficient, and more environmentally sustainable. One of the most significant developments has been the widespread adoption of NextGen and SESAR programs in the United States and Europe, respectively. These programs represent comprehensive overhauls of ATM infrastructure, incorporating satellite-based navigation, advanced surveillance systems, and automation technologies to modernize air traffic control. NextGen, for instance, has introduced tools like Performance-Based Navigation (PBN), which enables aircraft to fly more direct routes, saving fuel and reducing carbon emissions. This technology also helps alleviate congestion in busy airspaces by allowing for more precise flight paths and optimized approaches to airports. Another key innovation is the increasing use of artificial intelligence (AI) and machine learning (ML) in ATM systems. AI and ML algorithms can analyze vast amounts of data in real time, providing controllers with predictive insights that help prevent potential conflicts between aircraft and improve decision-making processes. For example, AI systems can optimize the scheduling of flights to minimize delays, identify patterns that might lead to safety risks, and improve airspace capacity management. Additionally, remote towers are a recent innovation that is revolutionizing air traffic control for smaller or remote airports. Using high-definition cameras and sensors, remote towers allow air traffic controllers to manage airport operations from centralized locations, reducing costs while maintaining safety. Cybersecurity has also become a focal point in modernizing ATM systems. As ATM becomes increasingly reliant on digital technologies and data networks, the risk of cyber-attacks has grown. New cybersecurity measures are being developed to protect communication and surveillance systems from potential breaches, ensuring the safety and integrity of air traffic operations. Furthermore, advancements in data-sharing technologies enable better coordination between airlines, airports, and air navigation service providers, improving the overall efficiency of the aviation network.

What Factors Are Fueling the Growth of the Air Traffic Management Market?

The growth in the air traffic management market is driven by several key factors, primarily the rapid expansion of global air travel and the increasing demand for more efficient airspace management solutions. With the global aviation industry experiencing consistent growth, particularly in emerging economies in Asia, Africa, and the Middle East, there is a pressing need for modernized ATM systems that can handle the increasing volume of air traffic without compromising safety or efficiency. The rise of low-cost carriers and the growing middle class in developing regions have contributed to a surge in air travel, prompting governments and aviation authorities to invest heavily in upgrading their ATM infrastructure. Another significant driver is the global push toward reducing carbon emissions in aviation. Air traffic management plays a crucial role in minimizing fuel consumption by enabling more efficient flight paths, reducing holding patterns, and optimizing takeoff and landing sequences. International bodies like the International Civil Aviation Organization (ICAO) have set ambitious targets for reducing aviation’s environmental impact, further incentivizing investments in modern ATM systems that can help meet these goals. As airlines seek to improve fuel efficiency and cut costs, they are pressuring ATM providers to implement technologies that support greener operations. The integration of unmanned aerial vehicles (UAVs), or drones, into the airspace is another factor driving ATM market growth. As the use of commercial and recreational drones becomes more widespread, there is an increasing need for systems that can safely manage the coexistence of manned and unmanned aircraft. This has spurred the development of UAS Traffic Management (UTM) systems, which aim to integrate drones into existing air traffic systems without causing disruptions or safety risks. Additionally, the modernization of existing ATM infrastructure in developed regions, such as North America and Europe, is contributing to market growth. Governments and regulatory bodies are continuously upgrading ATM systems to incorporate cutting-edge technologies, ensuring that airspace can accommodate future increases in air traffic. The focus on improving operational efficiency, reducing congestion, and enhancing safety is a driving force behind these upgrades. Lastly, the growth of smart airports and the broader digitization of the aviation industry are also contributing factors, as airports and airlines increasingly rely on advanced ATM systems to manage the complexities of modern air travel. These factors, combined with the ongoing technological advancements in AI, machine learning, and satellite-based navigation, are expected to drive robust growth in the air traffic management market for years to come.

SCOPE OF STUDY:

The report analyzes the Air Traffic Management market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Hardware, Software & Solutions); Airspace (Air Traffic Services (ATS), Air Traffic Flow Management (ATFM), Airspace Management (ASM), Aeronautical Information Management (AIM)); Application (Automation, Communication, Navigation, Surveillance)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â