¼¼°èÀÇ ¹ÝµµÃ¼¿ë ½Ç¸®Ä« À¯¸® ½ÃÀå
Silica Glass for Semiconductors
»óǰÄÚµå : 1758861
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 175 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¹ÝµµÃ¼¿ë ½Ç¸®Ä« À¯¸® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 12¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 7¾ï 40¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹ÝµµÃ¼¿ë ½Ç¸®Ä« À¯¸® ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 9.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 12¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °í¿Â ÇÁ·Î¼¼½º´Â CAGR 10.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 9,260¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àú¿Â ÇÁ·Î¼¼½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 6.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 8,410¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹ÝµµÃ¼¿ë ½Ç¸®Ä« À¯¸® ½ÃÀåÀº 2024³â¿¡ 1¾ï 8,410¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 8.9%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â 1¾ï 8,890¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 8.6%¿Í 7.7%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 7.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è '¹ÝµµÃ¼¿ë ½Ç¸®Ä« À¯¸®' ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

½Ç¸®Ä« À¯¸®°¡ ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ ´ëü ºÒ°¡´ÉÇÑ Àç·áÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

½Ç¸®Ä« À¯¸®´Â ƯÈ÷ ¿ì¼öÇÑ ¼øµµ, ³»¿­¼º ¹× È­ÇÐÀû ºÒȰ¼º Ư¼ºÀ¸·Î ÀÎÇØ ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Ç¥ÁØ À¯¸®¿Í ´Þ¸® ½Ç¸®Ä« À¯¸®´Â »êÈ­, È®»ê, ÇöóÁ ¿¡Äª°ú °°Àº °øÁ¤¿¡¼­ »ç¿ëµÇ´Â ±ØÇÑÀÇ ¿Âµµ¿Í °ø°ÝÀûÀÎ È­ÇÐÀû ¼ºÁúÀ» °ßµô ¼ö ÀÖ½À´Ï´Ù. ¿­ÆØÃ¢ °è¼ö°¡ ³·±â ¶§¹®¿¡ ±¤¹üÀ§ÇÑ ¿­ »çÀÌŬ¿¡¼­ Ä¡¼ö ¾ÈÁ¤¼ºÀÌ º¸ÀåµÇ¸ç, ÀÌ´Â ³ª³ë¹ÌÅÍ ´ÜÀ§ÀÇ Æ¯¼ºÀ» ´Ù·ê ¶§ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ½Ç¸®Ä« À¯¸®ÀÇ ¹ÝµµÃ¼ ÀÀ¿ë ºÐ¾ß¿¡´Â ¼®¿µ Á¦Ç°, Æ÷Å丶½ºÅ© ±âÆÇ, ÁõÂø è¹ö À©µµ¿ì, ¿þÀÌÆÛ Ä³¸®¾î µîÀÌ ÀÖ½À´Ï´Ù. ÷´Ü ¸®¼Ò±×·¡ÇÇ, ƯÈ÷ EUV(±ØÀڿܼ±)¿¡¼­ Ãʼø¼ö ÇÕ¼º ½Ç¸®Ä« À¯¸®´Â ¿ì¼öÇÑ Åõ°úÀ²°ú ³·Àº º¹±¼Àý·ü·Î ÀÎÇØ ±¤ÇÐ ºÎǰ ¹× ·¹Æ¼Å¬ ±âÆÇ¿¡ »ç¿ëµË´Ï´Ù. ¾÷°è°¡ ´õ ±î´Ù·Î¿î Çü»ó, ´õ ³ôÀº ¿þÀÌÆÛ Ã³¸®·®, ¿À¿°ÀÌ ¾ø´Â ȯ°æÀ¸·Î À̵¿ÇÔ¿¡ µû¶ó ½Ç¸®Ä« À¯¸®´Â ¸ðµç Á¦Á¶ ´Ü°è¿¡¼­ Á¤¹Ðµµ¿Í °øÁ¤ ¹«°á¼ºÀ» µÞ¹ÞħÇÏ´Â ÇʼöÀûÀÎ Àç·á°¡ µÇ¾ú½À´Ï´Ù.

ÃʼøÈ­ ¹× Á¦Á¶ÀÇ ¹ßÀüÀº ½Ç¸®Ä« À¯¸®ÀÇ Ç¥ÁØÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

³ëµå ¼ÒÇüÈ­ ¹× ¹«°áÁ¡ Á¦Á¶ÀÇ ÃßÁøÀ¸·Î ºÒ¼ø¹° ¼öÁØÀÌ ppm ÀÌÇÏÀÎ Ãʼøµµ ¹× Àú°áÇÔ ½Ç¸®Ä« À¯¸®¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ¿ëÀ¶ ¹× ¼ºÇü °øÁ¤À» ¹ßÀü½ÃÄÑ ¼ö»ê±â ÇÔ·®À» Á¦¾îÇϰí, ±âÆ÷ È¥ÀÔÀ» Á¦°ÅÇϸç, ±¤ÇÐ Åõ¸íµµ ¹× ±¸Á¶Àû ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ¹Ì¼¼ °áÇÔÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. È­¿° °¡¼öºÐÇØ ħÀü ¹× Àü±â À¶ÇÕ°ú °°Àº ±â¼úÀº ¸Å¿ì ±ÕÁúÇϰí Àڿܼ± Åõ°úÀ²ÀÌ ³ôÀº ÇÕ¼º ½Ç¸®Ä« À¯¸®¸¦ »ý»êÇϱâ À§ÇØ °³¼±µÇ¾úÀ¸¸ç, CNC °¡°ø ¹× Á¤¹Ð ¿¬¸¶ ±â¼úÀ» ÅëÇØ Áø°ø ¹× °í¿¡³ÊÁö ÇöóÁ ȯ°æ¿¡ ÀûÇÕÇÑ ¾ö°ÝÇÑ °øÂ÷¿Í Ç¥¸é ¸¶°¨À» °¡Áø ¸ÂÃãÇü ¼®¿µ Á¦Ç° ºÎǰÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¼öÀ²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¹Ì¼¼ÇÑ ¿À¿°µµ ¼öÀ²¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ¹ÝµµÃ¼ ¿¡Äª ¹× ÁõÂø Àåºñ¿¡¼­´Â ÀÔÀÚ ¹ß»ýÀ» ÃÖ¼ÒÈ­ÇÏ°í ³»È­ÇмºÀÌ ¿ì¼öÇÑ °í±Þ ½Ç¸®Ä« ºÎǰÀÌ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ½Ç¸®Ä« À¯¸®´Â ¼öµ¿ÀûÀÎ ±âÆÇ¿¡¼­ °¡È¤ÇÑ Á¶°Ç¿¡¼­ ¾ÈÁ¤¼º, Åõ¸í¼º, ź·Â¼ºÀ» Ãß±¸ÇÏ´Â °í¼º´É ºÎǰÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù.

EUV ¸®¼Ò±×·¡ÇÇ¿Í 3D ÅëÇÕÀÇ ÃßÁøÀº ½Ç¸®Ä« À¯¸® ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀΰ¡?

¹ÝµµÃ¼ »ê¾÷ÀÌ EUV ¸®¼Ò±×·¡ÇÇ¿Í 3D IC ÀûÃþÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ±¤ÇÐ Àç·á¿Í ±¸Á¶ Àç·á¿¡ ´ëÇÑ ¼º´É ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ½Ç¸®Ä« À¯¸®´Â EUV ½Ã½ºÅÛ¿¡¼­ Á¤¹Ð Æ÷Å丶½ºÅ©, ±¤ÇÐ ·»Áî, ¿þÀÌÆÛ ½ºÅ×ÀÌÁö À©µµ¿ìÀÇ ±âÆÇÀ¸·Î Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¸¼º ¿ä¼Ò´Â Àå½Ã°£ÀÇ ³ë±¤ »çÀÌŬ µ¿¾È ³ª³ë¹ÌÅÍ ÇØ»óµµ¿¡¼­ ±¤ÇÐ ±ÕÀϼº°ú ¿­ ¾ÈÁ¤¼ºÀ» À¯ÁöÇØ¾ß Çϸç, 3D Æ÷Àå¿¡¼­ ½Ç¸®Ä« À¯¸®´Â Àü±â Àý¿¬¼º, ¿­ ¾ÈÁ¤¼º, ½Ç¸®ÄܰúÀÇ CTE ȣȯ¼ºÀ¸·Î ÀÎÇØ ÀÎÅÍÆ÷Àú ¹× ÀçºÐ¹èÃþ ij¸®¾î·Î »ç¿ëµË´Ï´Ù. »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ·ÎÁ÷ ¹× ¸Þ¸ð¸® µð¹ÙÀ̽º°¡ ´õ ÀûÃþµÇ°í ¼ÒÇüÈ­µÈ ±¸¼ºÀ» äÅÃÇÔ¿¡ µû¶ó ¿Ö°îÀ̳ª À¯Àüü °£¼· ¾øÀÌ ¼öÁ÷ ÁýÀûÈ­¸¦ Áö¿øÇÏ´Â Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç¸®Ä« ±â¹Ý Æ÷Åäºí·©Å© ¹× ¸µ ºÎǰÀº ¿þÀÌÆÛ °Ë»ç, ÃøÁ¤ ¹× ÆÐÅÍ´× Åø¿¡¼­µµ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­·Î ÀÎÇØ ÷´Ü ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ ½Ç¸®Ä« À¯¸®ÀÇ ±â´ÉÀû ¿ªÇÒ°ú ¼ö·®Àû ¿ä±¸»çÇ×ÀÌ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼¿ë ½Ç¸®Ä« À¯¸® ½ÃÀåÀÇ ¼¼°è È®´ë ¿øµ¿·ÂÀº?

¼¼°è ¹ÝµµÃ¼¿ë ½Ç¸®Ä« À¯¸® ½ÃÀåÀÇ ¼ºÀåÀº ÷´Ü ³ëµå·ÎÀÇ Àüȯ, EUV ¸®¼Ò±×·¡ÇÇ Ã¤Åà Ȯ´ë, ¼¼°è °øÀå ÅõÀÚ È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Ĩ Á¦Á¶¾÷üµéÀÌ 5nm ÀÌÇÏ·Î ÀüȯÇÔ¿¡ µû¶ó ÇÙ½É °øÁ¤ Åø¿¡¼­ °í¼øµµ ½Ç¸®Ä« À¯¸® ¹× ÇÕ¼º ½Ç¸®Ä«¿¡ ´ëÇÑ ¼ö¿ä°¡ ±Þ°ÝÈ÷ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI, HPC, ÷´Ü ¸Þ¸ð¸®ÀÇ ¼ºÀåÀ¸·Î ¿þÀÌÆÛÀÇ ¾çÀÌ Áõ°¡ÇÏ°í °øÁ¤ °øÁ¤ °øÁ¤ÀÌ º¹ÀâÇØÁü¿¡ µû¶ó ³»±¸¼ºÀÌ ¶Ù¾î³ª°í ¿À¿°ÀÌ ÀûÀº Àç·á°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÁÖÁ¶¾÷üµéÀÇ EUV äÅÃÀº Ãʼø¼ö ½Ç¸®Ä«·Î ¸¸µç Á¤¹Ð ±¤ÇÐ ºÎǰ°ú ±âÆÇ Àç·á ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹Ì±¹, ´ë¸¸, Çѱ¹, Áß±¹À» Áß½ÉÀ¸·Î ÇÑ ÆÕ °Ç¼³ÀÇ ±ÞÁõµµ ¼®¿µ ºÎǰ°ú ½Ç¸®Ä« À¯¸® ¼Ò¸ðǰÀÇ ´ë·® Á¶´ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 3D NAND, ÷´Ü Æ÷Àå, ÃøÁ¤ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Àç·á Á¦Á¶¾÷üÀÇ ±â¼ú Çõ½Å°ú »ý»ê ±Ô¸ð È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶°¡ ´õ¿í ¾ö°ÝÇØÁö°í ¼¼°èÈ­µÊ¿¡ µû¶ó ½Ç¸®Ä« À¯¸®´Â °øÁ¤ ¹«°á¼º, Á¤¹Ð ±¤ÇÐ, ¹«¿À¿° Á¦Á¶¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(°í¿Â ÇÁ·Î¼¼½º, Àú¿Â ÇÁ·Î¼¼½º), ¿ëµµ(¹ÝµµÃ¼ Á¦Á¶ Àåºñ Á¦Á¶¾÷ü, ¿þÀÌÆÛ Á¦Á¶ Á¦Á¶¾÷ü, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 43°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Silica Glass for Semiconductors Market to Reach US$1.2 Billion by 2030

The global market for Silica Glass for Semiconductors estimated at US$700.4 Million in the year 2024, is expected to reach US$1.2 Billion by 2030, growing at a CAGR of 9.2% over the analysis period 2024-2030. High Temperature Process, one of the segments analyzed in the report, is expected to record a 10.4% CAGR and reach US$892.6 Million by the end of the analysis period. Growth in the Low Temperature Process segment is estimated at 6.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$184.1 Million While China is Forecast to Grow at 8.9% CAGR

The Silica Glass for Semiconductors market in the U.S. is estimated at US$184.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$188.9 Million by the year 2030 trailing a CAGR of 8.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.6% and 7.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.3% CAGR.

Global "Silica Glass for Semiconductors" Market - Key Trends & Drivers Summarized

Why Is Silica Glass an Irreplaceable Material in Semiconductor Manufacturing?

Silica glass, particularly in its fused and synthetic forms, plays a foundational role in semiconductor fabrication due to its exceptional purity, thermal resistance, and chemical inertness. Unlike standard glass, silica glass can withstand extreme temperatures and aggressive chemistries used in processes such as oxidation, diffusion, and plasma etching. Its low coefficient of thermal expansion ensures dimensional stability across wide thermal cycles, which is critical when dealing with nanometer-scale features. Semiconductor applications for silica glass include quartzware, photomask substrates, deposition chamber windows, and wafer carriers. In advanced lithography, especially EUV (Extreme Ultraviolet), ultra-high-purity synthetic silica glass is used for optics and reticle substrates due to its superior transmission and low birefringence. As the industry moves toward tighter geometries, higher wafer throughput, and contamination-free environments, silica glass has become an essential enabling material that underpins precision and process integrity at every fabrication stage.

How Are Ultra-Purity and Fabrication Advancements Elevating Silica Glass Standards?

The drive toward smaller node sizes and defect-free manufacturing is accelerating demand for ultra-pure, low-defect silica glass with sub-ppm impurity levels. Manufacturers are advancing their melting and forming processes to control hydroxyl content, eliminate bubble inclusions, and minimize micro-defects that could affect optical clarity or structural performance. Technologies such as flame hydrolysis deposition and electric fusion are being refined to produce synthetic silica glass with extreme homogeneity and UV transmission capabilities. CNC machining and precision polishing techniques enable custom quartzware components with tight tolerances and surface finishes suitable for vacuum and high-energy plasma environments. In semiconductor etch and deposition tools, where even microscopic contamination can impact yield, high-grade silica components are preferred for their minimal particle generation and chemical resistance. These advancements are transforming silica glass from a passive substrate to a high-performance component engineered for stability, transparency, and resilience under punishing conditions.

Is the Push for EUV Lithography and 3D Integration Raising Silica Glass Demand?

With the semiconductor industry’s transition to EUV lithography and 3D IC stacking, the performance requirements for optical and structural materials have intensified. Silica glass plays a critical role in EUV systems-serving as the base material for precision photomasks, optical lenses, and wafer stage windows. These components must maintain optical uniformity and thermal stability at nanometer resolution over extended exposure cycles. In 3D packaging, silica glass is used as an interposer and redistribution layer carrier due to its electrical insulation, thermal stability, and CTE compatibility with silicon. As logic and memory devices adopt more stacked, miniaturized configurations, the demand for materials that support vertical integration without distortion or dielectric interference is rising. Additionally, silica-based photo blanks and ring components are gaining traction in wafer inspection, metrology, and patterning tools. These shifts are significantly expanding the functional roles and volume requirements of silica glass in advanced semiconductor manufacturing.

What’s Fueling the Global Expansion of the Silica Glass for Semiconductors Market?

The growth in the global silica glass for semiconductors market is driven by several factors including the shift to advanced nodes, increased adoption of EUV lithography, and expanding fab investments worldwide. As chipmakers move to 5nm and below, the need for high-purity quartzware and synthetic fused silica in critical process tools is rising sharply. The growth of AI, HPC, and advanced memory is driving higher wafer volumes and more complex process steps, which in turn require durable, low-contamination materials. EUV adoption among major foundries is fueling demand for precision optics and substrate materials made from ultra-pure silica. The surge in fab construction-particularly in the U.S., Taiwan, South Korea, and China-is also driving bulk procurement of quartz components and silica glass consumables. Furthermore, rising demand for 3D NAND, advanced packaging, and metrology tools is pushing material providers to innovate and scale production. As semiconductor production becomes more exacting and globalized, silica glass remains indispensable for process integrity, precision optics, and contamination-free manufacturing.

SCOPE OF STUDY:

The report analyzes the Silica Glass for Semiconductors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (High Temperature Process, Low Temperature Process); Application (Semiconductor Equipment Manufacturer, Wafer Production Manufacturer, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â