¼¼°èÀÇ ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ¿ë ÀΰøÁö´É(AI) ½ÃÀå
Artificial Intelligence (AI) in Computer Aided Synthesis Planning
»óǰÄÚµå : 1757978
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 267 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,068,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,204,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ¿ë ÀΰøÁö´É(AI) ½ÃÀåÀº 2030³â±îÁö ¹Ì±¹¿¡¼­ 138¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 20¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ¿ë ÀΰøÁö´É(AI) ½ÃÀåÀº 2024-2030³â¿¡ CAGR 38.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 138¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ À¯±â ÇÕ¼º ¾ÖÇø®ÄÉÀ̼ÇÀº CAGR 34.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 80¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÕ¼º ¼³°è ¾ÖÇø®ÄÉÀÌ¼Ç ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 45.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 5¾ï 3,210¸¸ ´Þ·¯, Áß±¹Àº CAGR 46.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ¿ë ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 5¾ï 3,210¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 32¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 46.5%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 32.8%¿Í 35.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 33.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ¿¡¼­ ¼¼°èÀÇ ÀΰøÁö´É(AI) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AI°¡ ÇÕ¼º È­ÇÐ ¼³°èÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿­ °ÍÀΰ¡?

ÀΰøÁö´É(AI)Àº ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ(CASP)¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ È­ÇÕ¹° ¼³°è, ºÐ¼® ¹× ÇÕ¼º ¹æ¹ýÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀ¸·Î ÇÕ¼º °èȹÀº À¯±âÈ­ÇÐÀÚÀÇ Àü¹® Áö½Ä¿¡ ÀÇÁ¸ÇØ ¿ÔÀ¸¸ç, À̵éÀº ¼ö½Ê³â°£ ÃàÀûµÈ Áö½Ä°ú Á÷°üÀ» Ȱ¿ëÇÏ¿© º¹ÀâÇÑ ¹ÝÀÀ °æ·Î¸¦ ¼öÀÛ¾÷À¸·Î ±×·Á¿Ô½À´Ï´Ù. ±×·¯³ª AI´Â ÇöÀç ÀÚÀ²ÀûÀ̰í È¿À²ÀûÀ¸·Î ÇÕ¼º °æ·Î¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ´Â ½Ã½ºÅÛÀ» ±¸ÇöÇÔÀ¸·Î½á ÀÌ ÆÐ·¯´ÙÀÓÀ» ÆÄ±«Çϰí ÀÖ½À´Ï´Ù. ¹æ´ëÇÑ ¹ÝÀÀ µ¥ÀÌÅͺ£À̽º·Î ÈÆ·ÃµÈ µö·¯´× ¾Ë°í¸®ÁòÀº ºÐÀÚ ±¸Á¶, ¿øÇÏ´Â ±â´É¼º, ½Ã¾àÀÇ °¡¿ë¼ºÀ» ±â¹ÝÀ¸·Î ¿ªÇÕ¼º °æ·Î¸¦ Á¦¾ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¹é¸¸ °³ÀÇ ¾Ë·ÁÁø È­ÇйÝÀÀÀ» ÇнÀÇÔÀ¸·Î½á AI ¸ðµ¨Àº ³ôÀº ¼öÀ², ÀûÀº °øÁ¤ ¼ö, ³·Àº ºñ¿ëÀ¸·Î ÃÖÀûÈ­µÈ ¹ÝÀÀ ¼ø¼­¸¦ Á¦¾ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Å°æ ±âÈ£ ½Ã½ºÅÛÀ̳ª ±×·¡ÇÁ ±â¹Ý ¸Ó½Å·¯´× ¾ÆÅ°ÅØÃ³¿Í °°Àº ¾ÆÅ°ÅØÃ³´Â AI ¸ðµ¨ÀÌ È­ÇÐÀû ±ÔÄ¢À» ÀÌÇØÇÏ°í ¹ÝÀÀÀÇ À¯ÇüÀ» ³Ñ¾î ÀϹÝÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡´Â ¹ÝÀÀ Á¶°Ç ÃÖÀûÈ­, ºÎ»ê¹° ¿¹Ãø, ȯ°æ ¿µÇâ Æò°¡µµ Æ÷ÇԵǾî ÀÖÀ¸¸ç, º¸´Ù °ß°íÇϰí ģȯ°æ È­ÇÐÀÇ ¸ñÇ¥¿¡ Àû¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. AI´Â ÀçÇÕ¼º»Ó¸¸ ¾Æ´Ï¶ó ½ÇÇè½Ç ÀÚµ¿È­¿Í Á¡Á¡ ´õ ÅëÇյǾî Á¦¾ÈµÈ ÇÕ¼º °èȹÀ» ·Îº¿ ½ÇÇè½Ç¿¡¼­ ½ÇÇàÇÏ°í °ËÁõÇÒ ¼ö ÀÖ´Â Æó¼âÇü ·çÇÁ ½Ã½ºÅÛÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±ä¹ÐÇÑ Çǵå¹é ·çÇÁ´Â ½Å¾à °³¹ß, Àç·á °úÇÐ ¹× ³ó¾à Çõ½ÅÀ» °¡¼ÓÈ­Çϰí, AI ½Ã½ºÅÛÀÌ ´õ ½±°Ô ¼³¸íÇϰí ÇØ¼®ÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó È­ÇÐÀÚµéÀº AI¸¦ ÇÕ¼º ¼³°è ÇÁ·Î¼¼½ºÀÇ °øµ¿ âÁ¶ÀÚ·Î ½Å·ÚÇϰí äÅÃÇϱ⠽ÃÀÛÇßÀ¸¸ç, ÀÌ´Â °è»ê È­ÇÐÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿­¾ú½À´Ï´Ù.

½Å¾à°³¹ß°ú Àç·á°úÇÐÀÇ º¯È­´Â ¾î¶»°Ô ¼ö¿ä¸¦ ÃËÁøÇϰí Àִ°¡?

º¸´Ù ºü¸£°í È¿À²ÀûÀÎ ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀο¡ ´ëÇÑ ¼ö¿ä°¡ Æø¹ßÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ¿¡¼­ AIÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. AI ±â¹Ý ÇÕ¼º Ç÷¡³Ê¸¦ ÅëÇØ Á¦¾à È­ÇÐÀÚµéÀº ±¸Á¶ÀûÀ¸·Î »õ·Î¿î ºÐÀÚ, ÇÕ¼ºÇÐÀûÀ¸·Î ¾î·Á¿î ºÐÀÚ, ¹®Çå¿¡ Àß ¼³¸íµÇÁö ¾ÊÀº ºÐÀÚÀÇ ÇÕ¼º °æ·Î¸¦ Á¦¾ÈÇÔÀ¸·Î½á ´õ ³ÐÀº È­ÇÐÀû °ø°£À» Ž»öÇÒ ¼ö ÀÖ½À´Ï´Ù. °æ·Î¸¦ Á¦¾ÈÇÔÀ¸·Î½á ´õ ³ÐÀº È­ÇÐÀû °ø°£À» Ž»öÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. À̸¦ ÅëÇØ Èñ±ÍÁúȯ Ä¡·áÁ¦ °³¹ßÀ̳ª ½Å¼ÓÇÑ ´ëÀÀÀÌ Áß¿äÇÑ ¸ÂÃãÀÇ·á¿¡ »õ·Î¿î ±æÀ» ¿­¾ú½À´Ï´Ù. ¸¶Âù°¡Áö·Î ¿¬±¸ÀÚµéÀÌ ²÷ÀÓ¾øÀÌ »õ·Î¿î Æú¸®¸Ó, Ã˸Å, ÀüÀÚ Àç·á¸¦ ã°í ÀÖ´Â Àç·á°úÇÐ ºÐ¾ß¿¡¼­µµ AI´Â Àü·Ê ¾ø´Â º¹ÀâÇÑ È­ÇÕ¹°ÀÇ ÇÕ¼º °æ·Î¸¦ ¿¹ÃøÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖÀ¸¸ç, AI ÅøÀÌ ÇÏÀ̽º·çDz ½ºÅ©¸®´× Ç÷§Æû°ú ÅëÇÕµÇ¾î ¹ÝÀÀ Á¶°ÇÀ» ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖÀ¸¹Ç·Î ¿¬±¸ÀÚµéÀº ½ÇÇèÀû °ËÁõ¿¡¼­ ¾Õ¼­³ª°¥ ¼ö ÀÖ½À´Ï´Ù. ½ÇÇèÀû °ËÁõ¿¡¼­ ¾Õ¼­³ª°¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ý¸í°øÇÐ ¹× È­ÇÐ »ê¾÷ÀÌ Áö¼Ó°¡´ÉÇÑ Çõ½Å¿¡ ´ëÇÑ ¾Ð¹Ú¿¡ Á÷¸éÇϰí ÀÖ´Â °¡¿îµ¥, AI ÅøÀº º¸´Ù ȯ°æ ģȭÀûÀÌ°í ¾ÈÀüÇÑ ¹ÝÀÀ °æ·Î¸¦ ½Äº°ÇÏ¿© ȯ°æ ¿µÇâ°ú ±ÔÁ¦ À庮À» ÁÙÀÏ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. Çаè, Á¦¾à»ç, AI °³¹ßÀÚ°¡ Âü¿©ÇÏ´Â ÄÁ¼Ò½Ã¾öÀÌ Çù·ÂÇÏ¿© ¹ÝÀÀ µ¥ÀÌÅͺ£À̽º¸¦ È®ÀåÇÏ°í ¸ðµ¨ÀÇ °ß°í¼ºÀ» Çâ»ó½ÃŰ´Â µî ¾÷°è °£ Çù¾÷µµ ÇѸòÀ» Çϰí ÀÖ½À´Ï´Ù. Çö´ë ºÐÀÚ Ç¥ÀûÀÇ º¹À⼺°ú ¸ÂÃãÇü È­ÇÐ ¹°Áú¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ AI ±â¹Ý ÇÕ¼º °èȹÀº »ý¸í°úÇÐ ¹× ÷´Ü ¼ÒÀç ºÐ¾ßÀÇ Çõ½Å¿¡ µµ¿òÀÌ µÉ »Ó¸¸ ¾Æ´Ï¶ó ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

AI°¡ È­ÇÐ ÇÕ¼ºÀÇ °æÁ¦¼º°ú ¿öÅ©Ç÷ο츦 ¹Ù²Ü °ÍÀΰ¡?

ÇÕ¼º °èȹ¿¡ AI¸¦ ÅëÇÕÇÏ´Â °ÍÀº ´Ù¾çÇÑ »ê¾÷¿¡¼­ È­ÇÐ »ý»ê °øÁ¤ÀÇ °æÁ¦¼º, È®À强, È¿À²¼ºÀ» Å©°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ ȯ°æ¿¡¼­´Â »õ·Î¿î ºÐÀÚÀÇ ÇÕ¼º °æ·Î¸¦ °èȹÇϱâ À§ÇØ Àü¹®°¡°¡ ¸çÄ¥¿¡¼­ ¸î ÁÖ¿¡ °ÉÃÄ ¼÷°íÇØ¾ß Çß½À´Ï´Ù. ÀÌÁ¦ AI ±â¹Ý Ç÷§ÆûÀº ¸î ºÐ ¾È¿¡ ¿©·¯ °³ÀÇ ½ÇÇà °¡´ÉÇÑ ÇÕ¼º °èȹÀ» »ý¼ºÇÏ°í ºñ±³ÇÏ¿© ¸®µå ŸÀÓÀ» ȹ±âÀûÀ¸·Î ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº CRO(ÀÓ»ó½ÃÇè ¼öʱâ°ü), Çмú¿¬±¸¼Ò, ¼Ò±Ô¸ð Á¦¾à»ç µî ÀڱݷÂÀÌ Ç³ºÎÇÑ ´ë±â¾÷°ú °æÀïÇϸ鼭 ÀÚ¿ø »ç¿ëÀ» ÃÖÀûÈ­ÇØ¾ß ÇÏ´Â ±â¾÷¿¡°Ô ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ºñ¿ë È¿À²ÀûÀÎ ½Ã¾àÀ» ÃßõÇϰí, ³¶ºñ¸¦ ÃÖ¼ÒÈ­Çϸç, ¹ÝÀÀ Á¶°ÇÀ» ÃÖÀûÈ­ÇÏ´Â AIÀÇ ´É·ÂÀº ¿øÀÚÀç, ³ëµ¿·Â, ¿¡³ÊÁö Àý¾à°ú Á÷°áµË´Ï´Ù. ¶ÇÇÑ CASP Ç÷§ÆûÀ» µðÁöÅÐ ·¦³ëÆ®, ¹ÝÀÀ ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î, °ø±Þ¸Á µ¥ÀÌÅͺ£À̽º¿Í ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº ºÐÀÚ ¼³°è¿¡¼­ È­ÇÕ¹° Àü´Þ¿¡ À̸£´Â ¿£µåÅõ¿£µå ¿öÅ©Ç÷ο츦 °£¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿£µåÅõ¿£µå µðÁöÅÐÈ­´Â ÀǾàǰ ¹× Á¤¹ÐÈ­ÇÐÁ¦Ç°ÀÇ ±ÔÁ¦ ½ÂÀο¡ ÇʼöÀûÀÎ ÀçÇö¼º°ú ¹®¼­ ÄÄÇöóÀ̾𽺵µ Áö¿øÇÕ´Ï´Ù. Áß¿äÇÑ °ÍÀº AI°¡ È­ÇÐ ºÐ¾ßÀÇ ±â¼ú °ÝÂ÷¸¦ ÇØ¼ÒÇÏ´Â µ¥ µµ¿òÀ» ÁÖ¾î ºñÀü¹®°¡³ª ´ÙÇÐÁ¦Àû ÆÀÀÌ Àü¹® Áö½Ä ¾øÀ̵µ ÇÕ¼º °èȹ¿¡ Âü¿©ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù´Â Á¡ÀÔ´Ï´Ù. ÀϺΠÇ÷§ÆûÀº »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¸¦ ÅëÇØ ±¸Á¶Àû ÀԷ°ú Ÿ°Ù Ư¼ºÀ» AI°¡ ó¸®ÇÏ°í ½Ç½Ã°£ ÇÕ¼º Á¦¾ÈÀ» »ý¼ºÇÏ¿© È­ÇÐÀÚ, µ¥ÀÌÅÍ »çÀ̾ð½ºÀÚ, ¿£Áö´Ï¾î °£ÀÇ Çù¾÷À» ÃËÁøÇÏ´Â »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¸¦ Á¦°øÇϱ⵵ ÇÕ´Ï´Ù. AI´Â ÁøÀÔ À庮À» ³·Ãß°í ÇÁ·Î¼¼½ºÀÇ ¿¹Ãø °¡´É¼ºÀ» Çâ»ó½ÃÅ´À¸·Î½á ÇÕ¼º °èȹÀ» ÀåÀÎÀû ±â¼ú¿¡¼­ È®Àå °¡´ÉÇÑ µ¥ÀÌÅͺ£À̽º ±â¾÷ ÀÚ»êÀ¸·Î ¹Ù²Ù°í ÀÖ½À´Ï´Ù.

CASP¿¡¼­ AI¸¦ °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÄÄÇ»ÅÍ Áö¿ø ÇÕ¼º °èȹ¿ë ÀΰøÁö´É(AI) ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¼º¼÷µµ, »ê¾÷°èÀÇ ¿ä±¸, ¿¬±¸ ÆÐ·¯´ÙÀÓÀÇ ÁøÈ­¿Í °ü·ÃµÈ ¸î °¡Áö »óÈ£ ¿¬°üµÈ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿øµ¿·ÂÀº Reaxys ¹× PubChem°ú °°Àº ¿ÀÇ ¾×¼¼½º µ¥ÀÌÅͺ£À̽º¿Í Á¦¾à ¹× È­ÇРȸ»çÀÇ µ¶Á¡ µ¥ÀÌÅͼ¼Æ®¿¡ ÈûÀÔ¾î »ç¿ë °¡´ÉÇÑ È­ÇÐ ¹ÝÀÀ µ¥ÀÌÅÍÀÇ ±Þ°ÝÇÑ Áõ°¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅͼ¼Æ®´Â »õ·Î¿î ¹ÝÀÀ °úÁ¦¿¡ ÀϹÝÈ­ ¹× ÀûÀÀÇÒ ¼ö ÀÖ´Â AI ¸ðµ¨À» ÈÆ·ÃÇÏ´Â µ¥ ÇÊ¿äÇÑ ¿øÀç·á°¡ µË´Ï´Ù. µ¿½Ã¿¡, ÁÖÀÇ ±â¹Ý ¸ðµ¨°ú Æ®·£½ºÆ÷¸Ó ³×Æ®¿öÅ©¿Í °°Àº µö·¯´× ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ½Ã½ºÅÛÀÌ ºÐÀÚ ±×·¡ÇÁ¿Í ¹ÝÀÀ ±ÔÄ¢À» ´õ ¹Ì¹¦Çϰí À¯¿¬ÇÏ°Ô Ã³¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò´Â È­ÇÐ ½ÇÇè½Ç¿¡¼­ ÀÚµ¿È­ÀÇ ºÎ»óÀÔ´Ï´Ù. AI ±â¹Ý CASP ÅøÀº ·Îº¿ ÇÕ¼º ¹× ÀÚµ¿ ½ºÅ©¸®´× ½Ã½ºÅÛ°ú °áÇÕÇÏ¿© ¿ÏÀüÈ÷ ÀÚÀ²ÀûÀÎ ¿¬±¸ ȯ°æÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â È­ÇÐ Á¦Á¶ ºÐ¾ßÀÇ µðÁöÅÐ ½ÇÇè½Ç ¹× Àδõ½ºÆ®¸® 4.0¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ ³ë·Â°ú ÀÏÄ¡ÇÕ´Ï´Ù. ¶ÇÇÑ AI ±â¾÷°ú È­ÇÐ ¾÷°è ¸®´õµéÀÌ Çù¾÷ÇÏ¿© ƯÁ¤ Ä¡·á ºÐ¾ß, Àç·á À¯Çü, »ê¾÷ ±Ô¸ð¿¡ ¸Â´Â ¸ÂÃãÇü CASP ÅøÀ» °³¹ßÇϰí ÀÖ´Â °Íµµ äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ R&D ºñ¿ëÀÇ »ó½Â°ú Çõ½Å Áֱ⸦ ´ÜÃàÇØ¾ß ÇÒ Çʿ伺ÀÌ ÇÕ¼º °èȹÀÇ ½ÃÇàÂø¿À¸¦ ÁÙÀÏ ¼ö ÀÖ´Â AI Åø¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹µµ AI Áö¿ø ¿öÅ©Ç÷οì, ƯÈ÷ ÀǾàǰ ÇÕ¼ºÀÇ ¹®¼­È­ ¹× ÀçÇö¼ºÀ» Áö¿øÇÏ´Â µ¥ »ç¿ëµÇ´Â °æ¿ì AI Áö¿ø ¿öÅ©Ç÷ο츦 ÀνÄÇϱ⠽ÃÀÛÇßÀ¸¸ç, AI ¸ðµ¨ÀÇ Åõ¸í¼º°ú ¼³¸í °¡´É¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó Ç¥ÁØ È­ÇÐ ¿öÅ©Ç÷ο쿡 ´ëÇÑ ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÈûÀ» Á¾ÇÕÇϸé AI ±â¹Ý ÇÕ¼º °èȹÀº Â÷¼¼´ë È­ÇÐ Çõ½ÅÀÇ Ãʼ®À¸·Î ÀÚ¸®¸Å±èÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÎ¹®

¿ëµµ(À¯±â ÇÕ¼º ¿ëµµ, ÇÕ¼º ¼³°è ¿ëµµ); ÃÖÁ¾ ¿ëµµ(ÇコÄɾî ÃÖÁ¾ ¿ëµµ, È­ÇÐ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ 33»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence (AI) in Computer Aided Synthesis Planning Market to Reach US$13.8 Billion by 2030

The global market for Artificial Intelligence (AI) in Computer Aided Synthesis Planning estimated at US$2.0 Billion in the year 2024, is expected to reach US$13.8 Billion by 2030, growing at a CAGR of 38.5% over the analysis period 2024-2030. Organic Synthesis Application, one of the segments analyzed in the report, is expected to record a 34.4% CAGR and reach US$8.0 Billion by the end of the analysis period. Growth in the Synthesis Design Application segment is estimated at 45.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$532.1 Million While China is Forecast to Grow at 46.5% CAGR

The Artificial Intelligence (AI) in Computer Aided Synthesis Planning market in the U.S. is estimated at US$532.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.2 Billion by the year 2030 trailing a CAGR of 46.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 32.8% and 35.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 33.8% CAGR.

Global Artificial Intelligence (AI) in Computer-Aided Synthesis Planning Market - Key Trends & Drivers Summarized

Is AI Unlocking a New Era in Synthetic Chemistry Design?

Artificial Intelligence (AI) is revolutionizing computer-aided synthesis planning (CASP), offering a transformative approach to the way chemical compounds are designed, analyzed, and synthesized. Traditionally, synthesis planning has relied on the expertise of organic chemists, who manually chart complex reaction pathways using decades of accumulated knowledge and intuition. However, AI is now disrupting this paradigm by enabling systems that can predict synthetic routes autonomously and efficiently, often uncovering novel pathways that human experts might overlook. Deep learning algorithms trained on vast reaction databases are capable of suggesting retrosynthetic routes based on molecular structure, desired functionality, and reagent availability. By learning from millions of known chemical reactions, AI models can propose optimized reaction sequences with high yields, fewer steps, and lower cost. Tools such as neural-symbolic systems and graph-based machine learning architectures are helping AI models understand chemical rules and generalize across reaction types. These systems also incorporate reaction condition optimization, side product prediction, and environmental impact assessment, making them more robust and applicable to green chemistry goals. Beyond retrosynthesis, AI is increasingly integrated with laboratory automation, enabling closed-loop systems where suggested synthesis plans can be executed and validated in robotic labs. This tight feedback loop accelerates drug discovery, materials science, and agrochemical innovation. As AI systems become more explainable and interpretable, chemists are beginning to trust and adopt them as co-creators in the synthetic design process, heralding a new era in computational chemistry.

How Are Shifts in Drug Discovery and Materials Science Fueling Demand?

The explosion of demand for faster, more efficient drug development pipelines is a major catalyst behind the growing adoption of AI in computer-aided synthesis planning. In pharmaceutical R&D, the ability to rapidly identify and synthesize viable drug candidates can significantly cut down development timelines and costs. AI-powered synthesis planners enable medicinal chemists to explore a much larger chemical space by proposing routes for molecules that are structurally novel, synthetically challenging, or poorly documented in literature. This has opened up new avenues for orphan drug development and personalized medicine, where rapid turnaround is crucial. Similarly, in materials science, where researchers are constantly seeking novel polymers, catalysts, and electronic materials, AI assists in predicting synthetic pathways for complex compounds with little or no precedent. The ability of AI tools to integrate with high-throughput screening platforms and simulate reaction conditions gives researchers a head start in experimental validation. Additionally, as the biotech and chemical industries face pressure to innovate sustainably, AI tools help identify greener and safer reaction pathways, reducing environmental impact and regulatory hurdles. Cross-industry collaboration is also playing a role, with consortia involving academia, pharma companies, and AI developers working together to expand reaction databases and improve model robustness. The increasing complexity of modern molecular targets and the demand for customized chemical entities are making AI-driven synthesis planning not just helpful but essential for innovation in the life sciences and advanced materials domains.

Is AI Changing the Economics and Workflow of Chemical Synthesis?

AI's integration into synthesis planning is significantly reshaping the economics, scalability, and efficiency of chemical production processes across various industries. In a traditional setting, planning a synthetic route for a novel molecule could take days or even weeks of expert deliberation. Now, AI-enabled platforms can generate and compare multiple viable synthesis plans within minutes, dramatically compressing lead times. This capability is especially valuable for contract research organizations (CROs), academic labs, and smaller pharmaceutical firms that need to optimize resource use while competing against larger, better-funded entities. AI’s capacity to recommend cost-efficient reagents, minimize waste, and optimize reaction conditions translates directly into savings on raw materials, labor, and energy. Moreover, by integrating CASP platforms with digital lab notebooks, reaction simulation software, and supply chain databases, organizations are streamlining end-to-end workflows from molecular design to compound delivery. This end-to-end digitization also supports reproducibility and documentation compliance, which are critical for regulatory approval in pharmaceuticals and fine chemicals. Importantly, AI is helping bridge the skills gap in chemistry, enabling non-experts and interdisciplinary teams to participate in synthesis planning without deep domain expertise. Some platforms even offer user-friendly interfaces where structure input and target properties are processed by AI to produce real-time synthesis suggestions, increasing collaboration between chemists, data scientists, and engineers. By lowering the barriers to entry and improving process predictability, AI is transforming synthesis planning from an artisanal skill into a scalable, data-driven enterprise asset.

What Key Forces Are Driving the Acceleration of AI in CASP?

The growth in the artificial intelligence (AI) in computer-aided synthesis planning market is driven by several interconnected factors related to technological maturity, industrial needs, and evolving research paradigms. A primary driver is the exponential growth in available chemical reaction data, fueled by open-access databases like Reaxys, PubChem, and proprietary datasets from pharma and chemical firms. These datasets provide the raw material for training AI models that can generalize and adapt to new reaction challenges. Simultaneously, advancements in deep learning architectures, such as attention-based models and transformer networks, are enabling systems to process molecular graphs and reaction rules with greater nuance and flexibility. Another critical factor is the rise of automation in chemical laboratories, where AI-powered CASP tools are being paired with robotic synthesis and automated screening systems to create fully autonomous research environments. This trend aligns with the broader push toward digital labs and Industry 4.0 initiatives in chemical manufacturing. Increasing collaboration between AI firms and chemical industry leaders is also boosting adoption, as bespoke CASP tools are developed for specific therapeutic areas, material classes, or industrial scales. Furthermore, rising R&D costs and the need for faster innovation cycles are encouraging investment in AI tools that can reduce trial-and-error in synthetic planning. Regulatory bodies are also beginning to recognize AI-assisted workflows, particularly when used to support documentation and reproducibility in drug synthesis. As AI models become more transparent and explainable, their integration into standard chemistry workflows is accelerating. Collectively, these forces are positioning AI-driven synthesis planning as a cornerstone of next-generation chemical innovation.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence (AI) in Computer Aided Synthesis Planning market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Organic Synthesis Application, Synthesis Design Application); End-Use (Healthcare End-Use, Chemicals End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 33 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â