¼¼°èÀÇ µå¶óÀÌ ¿¡Äª Àåºñ ½ÃÀå
Dry Etching Equipment
»óǰÄÚµå : 1747702
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 176 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,136,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,408,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ µå¶óÀÌ ¿¡Äª Àåºñ ½ÃÀåÀº 2030³â±îÁö 156¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 111¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â µå¶óÀÌ ¿¡Äª Àåºñ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 5.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 156¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ À¯µµ °áÇÕ ÇöóÁ Àåºñ´Â CAGR 5.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 60¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ë·® °áÇÕ ÇöóÁ Àåºñ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 7.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 29¾ï ´Þ·¯, Áß±¹Àº CAGR 5.7%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ µå¶óÀÌ ¿¡Äª Àåºñ ½ÃÀåÀº 2024³â¿¡ 29¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 5.7%·Î 2030³â±îÁö 25¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 5.4%¿Í 5.0%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.7%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ µå¶óÀÌ ¿¡Äª Àåºñ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

÷´Ü ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ µå¶óÀÌ ¿¡Äª Àåºñ°¡ Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

µå¶óÀÌ ¿¡Äª Àåºñ´Â ¹ÝµµÃ¼ Á¦Á¶¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖÀ¸¸ç, ±âÁ¸ ¿¡Äª °øÁ¤¿¡¼­ »ç¿ëµÇ´Â ½À½Ä È­Çй°Áú ´ë½Å ÇöóÁ³ª ¹ÝÀÀ¼º °¡½º¸¦ »ç¿ëÇÏ¿© ½Ç¸®ÄÜ ¿þÀÌÆÛ¿¡¼­ Àç·á ÃþÀ» Á¤È®ÇÏ°Ô Á¦°ÅÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. Ĩ ¾ÆÅ°ÅØÃ³°¡ Á¡Á¡ ´õ º¹ÀâÇØÁö°í ¹Ì¼¼È­µÇ¾î 5nm ÀÌÇÏÀÇ ³ëµå¸¦ ÁöÇâÇÏ´Â °¡¿îµ¥, µå¶óÀÌ ¿¡ÄªÀº ÷´Ü µð¹ÙÀ̽º ¼º´É¿¡ ÇÊ¿äÇÑ °íÇØ»óµµ ÆÐÅÍ´×, À̹漺 ÇÁ·ÎÆÄÀÏ, ¿øÀÚ ´ÜÀ§ÀÇ Á¤¹Ðµµ¸¦ ´Þ¼ºÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Àåºñ´Â DRAM, NAND Ç÷¡½Ã, ·ÎÁ÷ Ĩ Á¦Á¶¿¡¼­ °ÔÀÌÆ® ¿¡Äª, ÄÜÅÃÆ® Ȧ Çü¼º, ÇÏµå ¸¶½ºÅ© ÆÐÅÍ´× µîÀÇ °øÁ¤¿¡ ÇʼöÀûÀÔ´Ï´Ù. µå¶óÀÌ ¿¡ÄªÀº ½À½Ä ¿¡Äª°ú °°ÀÌ ¹æÇâ Á¦¾î°¡ ¾î·Á¿î ¿¡Äª°ú ´Þ¸® FinFET ¹× 3D NAND¿Í °°Àº ´ÙÃþ 3Â÷¿ø ±¸Á¶ÀÇ Á¦Á¶¿¡ ÇʼöÀûÀÎ °íµµ·Î Á¦¾îµÈ ¼öÁ÷ ¿¡Äª ÇÁ·ÎÆÄÀÏÀ» °¡´ÉÇÏ°Ô Çϸç, EUV ¸®¼Ò±×·¡ÇÇÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌÁ¾ ÅëÇÕÀ¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÊ¿¡ µû¶ó ÆÄ¿îµå¸® ¹× ÁýÀû µð¹ÙÀ̽º Á¦Á¶¾÷ü(IDM) Àü¹Ý¿¡ °ÉÃÄ µå¶óÀÌ ¿¡Äª ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ®Æù°ú ¼­¹ö¿¡¼­ Àü±âÀÚµ¿Â÷ ¹× ¾çÀÚ ÄÄÇ»ÅÍ¿¡ À̸£±â±îÁö ÀüÀÚÁ¦Ç°ÀÇ µ¿·Â¿øÀ¸·Î¼­ µå¶óÀÌ ¿¡Äª Àåºñ´Â ÄÄÇ»ÆÃ ÆÄ¿ö, µ¥ÀÌÅÍ ÀúÀå ¹× ¿¡³ÊÁö È¿À²ÀÇ ¹ßÀüÀ» À§ÇÑ ±â¼úÀû ±Ù°£À» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¾øÀÌ´Â ¹ÝµµÃ¼ »ê¾÷Àº Â÷¼¼´ë ÀüÀÚ Á¦Ç°ÀÇ ±âÇÏÇÐÀû ½ºÄÉÀϸµ ¹× ¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ¾øÀ» °ÍÀÔ´Ï´Ù.

±â¼ú Çõ½ÅÀº ¾î¶»°Ô µå¶óÀÌ ¿¡Äª ÀåºñÀÇ ´É·ÂÀ» Çâ»ó½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀ¸·Î °Ç½Ä ¿¡Äª Àåºñ´Â ¿øÀÚ ¼öÁØÀÇ Á¤¹Ðµµ¿Í ÀÚµ¿È­µÈ Á¦Á¶ ¿öÅ©Ç÷οì¿ÍÀÇ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÏ´Â °íµµ·Î Á¤±³ÇÑ µµ±¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ¹ÝÀÀ¼º À̿ ¿¡Äª(RIE) ¶Ç´Â À¯µµ °áÇÕ ÇöóÁ(ICP)¸¦ »ç¿ëÇÏ´Â ÇöóÁ °­È­ ¿¡Äª ½Ã½ºÅÛÀº °í¹Ðµµ ÇöóÁ ¼Ò½º, °í±Þ °¡½º °ø±Þ ½Ã½ºÅÛ, ´ÙÁß ¹ÙÀ̾ Á¦¾î¸¦ ÅëÇØ ¿¡Äª ¼Óµµ, ¼±Åüº ¹× ±ÕÀϼºÀ» Å« ¿þÀÌÆÛ Å©±â¿¡¼­ º¸´Ù ¼¼¹ÐÇÏ°Ô Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï °³¹ßµÇ¾ú½À´Ï´Ù. ¹Ì¼¼ÇÏ°Ô Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï °³¹ßµÇ¾ú½À´Ï´Ù. Â÷¼¼´ë µå¶óÀÌ ¿¡Äª ±â¼úÀÎ ¿øÀÚÃþ ¿¡Äª(ALE)Àº °íÁ¾È¾ºñ ÇÇóÀÇ ÆÐÅÍ´×°ú Ç¥¸é ¼Õ»óÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿øÀÚÃþ ´ÜÀ§ÀÇ Ãʹڸ· Àç·á Á¦°Å°¡ °¡´ÉÇØÁö¸é¼­ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÌ ¿¡Äª ½Ã½ºÅÛ¿¡ ÅëÇÕµÇ¾î ½Ç½Ã°£ °øÁ¤ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, ÀÚÀ²ÀûÀÎ ¸Å°³º¯¼ö Á¶Á¤ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. Àåºñ Á¦Á¶¾÷üµéÀº ¶ÇÇÑ Áø°ø è¹ö ¼³°è, ¿Âµµ Á¦¾î, ÀÜ·ù¹° °ü¸®¸¦ °­È­ÇÏ¿© ¼öÀ²°ú Àåºñ °¡µ¿ ½Ã°£À» °³¼±Çϰí ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¿¡Äª ÁõÂø ½Ã½ºÅÛÀÇ µµÀÔÀ¸·Î ¿¡Äª°ú ÆÐ½Ãº£À̼ÇÀ» µ¿½Ã¿¡ ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÇÁ·ÎÆÄÀÏ Á¦¾î°¡ °­È­µÇ°í °øÁ¤ °øÁ¤À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¹ÝµµÃ¼ÀÇ È®À强ÀÇ ÇѰ踦 ¶Ù¾î³ÑÀ» »Ó¸¸ ¾Æ´Ï¶ó °øÁ¤ ½Å·Ú¼º, 󸮷®, ÃѼÒÀ¯ºñ¿ë(TCO)À» Çâ»ó½ÃÄÑ Ã·´Ü µå¶óÀÌ ¿¡Äª Àåºñ´Â ¹ÝµµÃ¼ ºÐ¾ßÀÇ ±â¼ú ¹ßÀü°ú Á¦Á¶ È¿À²À» ¸ðµÎ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¿Ö ¿ëµµº° ¿ä±¸ »çÇ×°ú Áö¿ª µ¿ÇâÀÌ °Ç½Ä ¿¡Äª ÀåºñÀÇ »ç¿ëÀ» Çü¼ºÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

µå¶óÀÌ ¿¡Äª ÀåºñÀÇ ¿ëµµ¿Í »ç¾çÀº ·ÎÁ÷ Ĩ, ¸Þ¸ð¸® ÀåÄ¡, À̹ÌÁö ¼¾¼­, ÆÄ¿ö ¹ÝµµÃ¼ µî ¿ëµµÀÇ À¯Çü°ú Áö¿ª »ê¾÷ ¿ªÇп¡ µû¶ó Å©°Ô ´Þ¶óÁý´Ï´Ù. ÷´Ü ³ëµå ·ÎÁ÷ µð¹ÙÀ̽º´Â ³ª³ë ½ºÄÉÀÏ Æ¯¼ºÀ» À¯ÁöÇÏ°í Æ®·£Áö½ºÅÍÀÇ ¼º´ÉÀ» À¯ÁöÇϱâ À§ÇØ °íµµ·Î ¼±ÅÃÀûÀÌ°í ¼Õ»ó ¾ø´Â ¿¡ÄªÀÌ ÇÊ¿äÇϸç, NAND³ª DRAM°ú °°Àº ¸Þ¸ð¸® µð¹ÙÀ̽º´Â °í¹Ðµµ ¼öÁ÷ ±¸Á¶·Î ÀÎÇØ ±í°í ³ôÀº Á¾È¾ºñÀÇ ¿¡ÄªÀÌ ÇÊ¿äÇÕ´Ï´Ù. RF ¹× Àü·Â ¼ÒÀÚ¿¡ »ç¿ëµÇ´Â GaN ¹× SiC¿Í °°Àº È­ÇÕ¹° ¹ÝµµÃ¼´Â Ư¼öÇÑ ¿¡Äª È­Çй°Áú°ú Çϵå¿þ¾î ±¸¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â µ¶Æ¯ÇÑ Àç·á ¹®Á¦¸¦ Á¦½ÃÇÕ´Ï´Ù. Áö¸®ÀûÀ¸·Î´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ¼¼°è µå¶óÀÌ ¿¡Äª Àåºñ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, ´ë¸¸, Çѱ¹, Áß±¹, ÀϺ»ÀÌ ¼¼°è ÃÖ´ëÀÇ ¹ÝµµÃ¼ °øÀåÀ» º¸À¯Çϰí ÀÖ¾î ¼³ºñ ÅõÀÚÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ´ë¸¸ÀÇ TSMC¿Í Çѱ¹ÀÇ »ï¼ºÀº Àû±ØÀûÀÎ ½ºÄÉÀϸµ ·Îµå¸ÊÀ» Áö¿øÇϱâ À§ÇØ Ã·´Ü ¿¡Äª Åø¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â ÀÎÅÚ°ú GlobalFoundries¿Í °°Àº ±â¾÷µéÀÌ °ø±Þ¸Á º¸¾È ÀÌ´Ï¼ÅÆ¼ºê¿Í Ĩ ¹ýÁ¦È­¿¡ ´ëÀÀÇϱâ À§ÇØ »ý»ê ´É·ÂÀ» È®ÀåÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ±¹³» Àåºñ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â Â÷·®¿ë ¹ÝµµÃ¼ ¹× Ư¼ö ¿ëµµ¿¡ ÁýÁßÇϰí ÀÖÀ¸¸ç, ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º ¹× MEMS¿¡ ¸ÂÃá ¿¡Äª Àåºñ ¼ö¿ä¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿ªÀû Â÷À̴ Ĩ ±â¼úÀÇ ´Ù¾ç¼º°ú ÇÔ²² À¯¿¬¼º, Ä¿½ºÅ͸¶ÀÌ¡, Áö¿ªº° ¼­ºñ½º Áö¿øÀ» µå¶óÀÌ ¿¡Äª Àåºñ ¾÷°è¿¡¼­ ¼º°øÇϱâ À§ÇÑ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

µå¶óÀÌ ¿¡Äª Àåºñ ¼¼°è ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

µå¶óÀÌ ¿¡Äª Àåºñ ½ÃÀåÀÇ ¼ºÀåÀº ¹ÝµµÃ¼ ±â¼ú Çõ½Å, ¼ÒÀÚÀÇ º¹À⼺ Áõ°¡, »ê¾÷ Àü¹Ý¿¡ °ÉÄ£ ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¼ºÀå ¿äÀÎ Áß Çϳª´Â ´õ ÀÛ°í, ´õ ºü¸£°í, ´õ ¿¡³ÊÁö È¿À²ÀûÀΠĨÀÇ Áö¼ÓÀûÀÎ ÃßÁøÀ̸ç, ÀÌ·¯ÇÑ Ä¨Àº °í±Þ µå¶óÀÌ ¿¡ÄªÀ» ÅëÇØ¼­¸¸ ´Þ¼ºÇÒ ¼ö ÀÖ´Â ±× ¾î´À ¶§º¸´Ù Á¤¹ÐÇÑ ÆÐÅÏ Àü»ç ±â¼úÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå µ¥ÀÌÅͼ¾ÅÍ, ÀÚÀ²ÁÖÇàÂ÷, »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ºÎ»óÀ¸·Î °í¼º´É ¹ÝµµÃ¼¿¡ ´ëÇÑ ¿ä±¸°¡ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó Àü °øÁ¤ Á¦Á¶ Àåºñ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, FinFET ¹× GAA(Gate-All-Around) Æ®·£Áö½ºÅÍ¿Í °°Àº Æò¸é¿¡¼­ 3D ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀ¸·Î ¿¡Äª °øÁ¤ÀÌ º¹ÀâÇØÁö¸é¼­ ´Ù±â´É ¿¡Äª Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ÀÇ CHIPS¹ý, À¯·´ÀÇ IPCEI(À¯·´ °øÅë ÇÙ½É ÇÁ·ÎÁ§Æ®)¿Í °°Àº Á¤ºÎ Áö¿ø ÀÌ´Ï¼ÅÆ¼ºêµµ ¹ÝµµÃ¼ ÁÖ±ÇÀ» ÃËÁøÇÏ°í °øÀå ¹× Åø¸µ¿¡ ´ëÇÑ ±¹³» ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ Ĩ Á¦Á¶¾÷üµéÀº »ý»ê ´Ù°¢È­¿Í Áö¸®ÀûÀ¸·Î ºÐ»êµÈ »ý»ê ´É·Â¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí, ¿¡Äª Àåºñ °ø±Þ¾÷üµéÀÇ °í°´ ±â¹ÝÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ȯ°æÀû °í·Á´Â Àåºñ ¼³°è¿¡µµ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, ¿¡³ÊÁö È¿À²°ú °øÁ¤ °¡½º ÀçȰ¿ëÀÌ Áß¿äÇÑ Â÷º°È­ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Ȱ¹ßÇÑ ¼³ºñ ÅõÀÚ »çÀÌŬ°ú ±â¼úÀû ¸ð¸àÅÒÀ¸·Î ÀÎÇØ µå¶óÀÌ ¿¡Äª Àåºñ ½ÃÀåÀº Â÷¼¼´ë ÄÄÇ»ÆÃ ¹× Ä¿³ØÆ¼ºñƼ¸¦ ÇâÇÑ ¹ÝµµÃ¼ »ê¾÷ÀÇ Çຸ¿Í ÇÔ²² ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

À¯Çü(À¯µµ °áÇÕ ÇöóÁ, ¿ë·® °áÇÕ ÇöóÁ, ¹ÝÀÀ¼º À̿ ¿¡Äª, ½ÉºÎ ¹ÝÀÀ¼º À̿ ¿¡Äª, ±âŸ À¯Çü), ¿ëµµ(·ÎÁ÷£¦¸Þ¸ð¸®, MEMS, ÆÄ¿ö µð¹ÙÀ̽º, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 32°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Dry Etching Equipment Market to Reach US$15.6 Billion by 2030

The global market for Dry Etching Equipment estimated at US$11.1 Billion in the year 2024, is expected to reach US$15.6 Billion by 2030, growing at a CAGR of 5.8% over the analysis period 2024-2030. Inductively Coupled Plasma Equipment, one of the segments analyzed in the report, is expected to record a 5.4% CAGR and reach US$6.0 Billion by the end of the analysis period. Growth in the Capacitive Coupled Plasma Equipment segment is estimated at 7.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.9 Billion While China is Forecast to Grow at 5.7% CAGR

The Dry Etching Equipment market in the U.S. is estimated at US$2.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.5 Billion by the year 2030 trailing a CAGR of 5.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.4% and 5.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.7% CAGR.

Global Dry Etching Equipment Market - Key Trends & Drivers Summarized

Why Is Dry Etching Equipment Pivotal in Advanced Semiconductor Manufacturing?

Dry etching equipment plays a critical role in semiconductor fabrication, enabling the precise removal of material layers from silicon wafers using plasma or reactive gases, rather than the wet chemicals used in traditional etching processes. As chip architectures grow increasingly complex and miniaturized-pushing toward nodes below 5nm-dry etching becomes essential for achieving the high-resolution patterning, anisotropic profiles, and atomic-level accuracy required for advanced device performance. This equipment is indispensable for processes such as gate etching, contact hole formation, and hard mask patterning in the production of DRAM, NAND flash, and logic chips. Unlike wet etching, which lacks directional control, dry etching enables highly controlled, vertical etch profiles crucial for fabricating multi-layered, three-dimensional structures like FinFETs and 3D NAND. With the growing adoption of EUV lithography and the move toward heterogeneous integration, demand for dry etching systems is surging across foundries and integrated device manufacturers (IDMs). Furthermore, as electronics power everything from smartphones and servers to electric vehicles and quantum computers, dry etching equipment forms the technological backbone of progress in computing power, data storage, and energy efficiency. Without it, the semiconductor industry would be unable to meet the geometric scaling and performance requirements of next-generation electronics.

How Are Technological Innovations Enhancing the Capabilities of Dry Etching Equipment?

Technological advancements are transforming dry etching equipment into highly sophisticated tools capable of atomic-scale precision and integration with automated fabrication workflows. Plasma-enhanced etching systems, which use reactive ion etching (RIE) or inductively coupled plasma (ICP), are now being developed with high-density plasma sources, advanced gas distribution systems, and multiple bias controls to allow finer tuning of etch rates, selectivity, and uniformity across large wafer sizes. Atomic Layer Etching (ALE), a next-generation dry etching technique, is gaining momentum for enabling ultra-thin material removal one atomic layer at a time, which is essential for patterning high-aspect-ratio features and minimizing surface damage. In addition, artificial intelligence and machine learning are being integrated into etching systems to provide real-time process monitoring, predictive maintenance, and autonomous parameter adjustments. Equipment manufacturers are also enhancing vacuum chamber design, temperature control, and residue management to improve yield and tool uptime. The introduction of hybrid etch-deposition systems allows simultaneous etching and passivation, enhancing profile control and reducing process steps. These innovations are not only pushing the boundaries of semiconductor scalability but also improving process reliability, throughput, and total cost of ownership-making advanced dry etching equipment an enabler of both technical progress and manufacturing efficiency in the semiconductor sector.

Why Do Application-Specific Demands and Regional Trends Shape Dry Etching Equipment Usage?

The usage and specification of dry etching equipment vary significantly by application type-such as logic chips, memory devices, image sensors, and power semiconductors-as well as by regional industry dynamics. Logic devices at advanced nodes require highly selective, damage-free etching to preserve nanoscale features and maintain transistor performance, while memory devices like NAND and DRAM demand deep, high-aspect-ratio etching for dense vertical structures. Compound semiconductors such as GaN and SiC, used in RF and power devices, present unique material challenges requiring specialized etching chemistries and hardware configurations. Geographically, Asia-Pacific leads the global dry etching equipment market, with Taiwan, South Korea, China, and Japan hosting the world’s largest semiconductor fabs and contributing the majority of capital equipment spending. In particular, Taiwan’s TSMC and South Korea’s Samsung are heavily investing in advanced etch tools to support their aggressive scaling roadmaps. In North America, companies like Intel and GlobalFoundries are expanding capacity in response to supply chain security initiatives and chip act legislation, which is boosting domestic equipment demand. Europe focuses on automotive-grade semiconductors and specialty applications, contributing to demand for etching tools tailored to power electronics and MEMS. These regional variations, combined with the diversity of chip technologies, make flexibility, customization, and localized service support essential factors for success in the dry etching equipment industry.

What Are the Key Drivers Fueling Growth in the Global Dry Etching Equipment Market?

The growth in the dry etching equipment market is being propelled by a convergence of semiconductor innovation, expanding device complexity, and escalating global demand for electronics across industries. One of the most significant growth drivers is the continual push for smaller, faster, and more energy-efficient chips, which require ever more precise pattern transfer technologies achievable only through advanced dry etching. The rise of 5G networks, AI computing, cloud data centers, autonomous vehicles, and the Internet of Things (IoT) is accelerating the need for high-performance semiconductors, thereby increasing investment in front-end fabrication equipment. Additionally, the shift from planar to 3D architectures-like FinFETs and Gate-All-Around (GAA) transistors-has elevated the complexity of etch steps, leading to higher demand for multi-function etching platforms. Government-backed initiatives such as the U.S. CHIPS Act and Europe’s IPCEI (Important Projects of Common European Interest) are also driving semiconductor sovereignty and spurring domestic investments in fabs and tooling. Moreover, global supply chain disruptions have prompted chipmakers to diversify production and invest in more geographically distributed capacity, expanding the customer base for etching equipment providers. Environmental considerations are influencing equipment design as well, with energy efficiency and process gas recycling becoming important differentiators. With strong capital expenditure cycles and technological momentum, the dry etching equipment market is set to grow in tandem with the semiconductor industry’s march toward next-generation computing and connectivity.

SCOPE OF STUDY:

The report analyzes the Dry Etching Equipment market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Inductively Coupled Plasma, Capacitive Coupled Plasma, Reactive Ion Etching, Deep Reactive Ion Etching, Other Types); Application (Logic & Memory, MEMS, Power Device, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 32 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â