¼¼°èÀÇ ÀΰøÁö´É(AI) ÇÁ·Î¼¼¼­ ½ÃÀå
Artificial Intelligence Processors
»óǰÄÚµå : 1742849
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 379 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,163,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,489,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀΰøÁö´É(AI) ÇÁ·Î¼¼¼­ ½ÃÀåÀº 2030³â±îÁö 263¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 118¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀΰøÁö´É(AI) ÇÁ·Î¼¼¼­ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 14.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 263¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Çϵå¿þ¾î ÄÄÆ÷³ÍÆ®´Â CAGR 14.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 148¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ CAGR·Î 13.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 32¾ï ´Þ·¯, Áß±¹Àº CAGR 19.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀΰøÁö´É(AI) ÇÁ·Î¼¼¼­ ½ÃÀåÀº 2024³â¿¡ 32¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 57¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 19.1%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 10.4%¿Í 12.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÀΰøÁö´É(AI) ÇÁ·Î¼¼¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Ö AI ÇÁ·Î¼¼¼­°¡ Â÷¼¼´ë Áö´ÉÇü ÄÄÇ»ÆÃÀ» ½ÇÇöÇÏ´Â ÀåÄ¡¿Í µ¥ÀÌÅͼ¾ÅÍ Àü¹ÝÀÇ ÇÙ½ÉÀÌ µÉ ¼ö ÀÖÀ»±î?

ÀΰøÁö´É(AI) ÇÁ·Î¼¼¼­´Â º¹ÀâÇÑ ¼öÇÐ ¿¬»êÀ» ±âÁ¸ CPUº¸´Ù ´õ È¿À²ÀûÀ¸·Î ¼öÇàÇÏ¿© ¸Ó½Å·¯´×(ML) ¹× µö·¯´×(DL) ¿öÅ©·Îµå¸¦ °¡¼ÓÈ­Çϵµ·Ï ¼³°èµÈ Ư¼ö ¸¶ÀÌÅ©·ÎĨÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î¼¼¼­´Â ¿§Áö µð¹ÙÀ̽º, Ŭ¶ó¿ìµå µ¥ÀÌÅͼ¾ÅÍ, ¸ð¹ÙÀÏ Ç÷§Æû, ÀÚÀ² ¸Ó½Å, ÀÓº£µðµå ½Ã½ºÅÛ µî AI Áö¿ø ½Ã½ºÅÛÀÇ ÄÄÇ»ÆÃ ±â¹ÝÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ´õ ºü¸£°í Àü·Â È¿À²ÀûÀÎ AI Ãß·Ð ¹× ÇнÀ ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, AI ÇÁ·Î¼¼¼­´Â ¸ðµç ÄÄÇ»ÆÃ °èÃþ¿¡¼­ Áö´ÉÇü ¿ëµµ¸¦ ±¸ÇöÇÏ´Â ÇÙ½É ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¹ü¿ë ÇÁ·Î¼¼¼­¿Í ´Þ¸® AI ĨÀº Çà·Ä °ö¼À, ÅÙ¼­ °è»ê, ÄÁº¼·ç¼Ç ¿¬»ê°ú °°Àº º´·Ä ¿¬»êÀ» ³ôÀº 󸮷®, ³·Àº Áö¿¬ ½Ã°£À¸·Î ½ÇÇàÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. µû¶ó¼­ ÄÄÇ»ÅÍ ºñÀü, ÀÚ¿¬¾î ó¸®(NLP), À½¼º ÀνÄ, Ãßõ ¿£Áø µî¿¡ »ç¿ëµÇ´Â ½Å°æ¸Á ¸ðµ¨À» Áö¿øÇÏ´Â µ¥ ÀûÇÕÇϸç, AI ÇÁ·Î¼¼¼­´Â ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU) µî ´Ù¾çÇÑ ±â´ÉÀ» °®Ãß°í ÀÖ½À´Ï´Ù. TPU(Tensor Processing Unit), FPGA(Field Programmable Gate Array), ¸ÂÃãÇü ASIC(Application Specific Integrated Circuit) µî ´Ù¾çÇÑ ÇüÅ·ΠÁ¦°øµÇ¸ç, °¢±â ´Ù¸¥ µµÀÔ È¯°æ°ú ¼º´É ¿ä±¸»çÇ׿¡ ÃÖÀûÈ­µÇ¾î ÀÖ½À´Ï´Ù.

±â¾÷ ¹× ¼ÒºñÀÚ »ýÅÂ°è ¸ðµÎ¿¡¼­ AI ÇÁ·Î¼¼¼­´Â ½º¸¶Æ®Æù°ú ½º¸¶Æ® ½ºÇÇÄ¿¿¡¼­ °¨½Ã Ä«¸Þ¶ó, ÀÚÀ²ÁÖÇàÂ÷±îÁö ´Ù¾çÇÑ µð¹ÙÀ̽º¿¡ žÀçµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¹× ÇÏÀÌÆÛ½ºÄÉÀÏ È¯°æ¿¡¼­´Â ÀÌ·¯ÇÑ Ä¨ÀÌ ´ë±Ô¸ð AI ¸ðµ¨ ÈÆ·Ã ¹× ½Ç½Ã°£ Ãß·Ð ¼­ºñ½º¸¦ Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ä¨ÀÇ ÅëÇÕÀº ÄÄÇ»ÆÃ ¼º´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ¿¡³ÊÁö ¼Òºñ, Áö¿¬ ½Ã°£, ÃѼÒÀ¯ºñ¿ë(TCO)À» ÁÙ¿© AI ÇÁ·Î¼¼¼­¸¦ Àü ¼¼°è µðÁöÅÐ Çõ½Å, ÀÚµ¿È­, AI ¹ÎÁÖÈ­ ³ë·ÂÀÇ ±â¹ÝÀÌ µÇ´Â ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Ĩ ¼³°è Çõ½Å, ¼öÁ÷ ÅëÇÕ, µµ¸ÞÀΠƯȭ ¾ÆÅ°ÅØÃ³´Â ¾î¶»°Ô ±â´ÉÀû Áøº¸¸¦ ÃËÁøÇϰí Àִ°¡?

Ĩ ¼³°èÀÇ Çõ½ÅÀº AI ÇÁ·Î¼¼¼­ÀÇ ¼º´É ÇѰ踦 ºü¸£°Ô ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. °ø±Þ¾÷üµéÀº °í´ë¿ªÆø ¸Þ¸ð¸®(HBM), Ĩ·¿ ¾ÆÅ°ÅØÃ³, 3D ½ºÅÂÅ·À» µµÀÔÇÏ¿© µ¥ÀÌÅÍ Àü¼Û ¼Óµµ¿Í ó¸® ¹Ðµµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ÷´Ü Á¦Á¶ ³ëµå(5nm, 3nm µî)¸¦ ÅëÇØ Æ®·£Áö½ºÅÍ ¹Ðµµ¸¦ ³ôÀ̰í, ¿ÍÆ®´ç ¼º´ÉÀ» Çâ»ó½Ã۸ç, ¿­ Ãâ·ÂÀ» ³·Ãâ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼³°è °³¼±Àº ÇнÀ ¹× Ãß·Ð Ç÷§Æû ¸ðµÎ¿¡¼­ AI ¿öÅ©·Îµå¸¦ º¸´Ù ºü¸£°í È¿À²ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇϸç, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨ºÎÅÍ ÀÓº£µðµå ¿§Áö ºÐ¼®¿¡ À̸£±â±îÁö ¸ðµç °ÍÀ» Áö¿øÇÕ´Ï´Ù.

ºñÀü, NLP, ·Îº¿°øÇÐ, µðÁöÅÐ ½ÅÈ£ ó¸® µî AI ÀÌ¿ë »ç·Ê¿¡ ¸Â°Ô ¼³°èµÈ ÇÁ·Î¼¼¼­·Î ÀÎÇØ µµ¸ÞÀÎ °íÀ¯ ¾ÆÅ°ÅØÃ³(DSA)¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. À̹ÌÁö ºÐ·ù, ¹°Ã¼ °¨Áö, ¾ð¾î ¹ø¿ª, »ý¼ºÇü AI µîÀÇ ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÈ µ¶ÀÚÀûÀΠĨÀ» °³¹ßÇÏ´Â ±â¾÷ÀÌ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯È­µÈ ĨÀº ´ë»ó ¿ëµµÀÇ ¼Óµµ, ¿¡³ÊÁö È¿À²¼º, ºñ¿ë Ãø¸é¿¡¼­ ¹ü¿ë °¡¼Ó±â¸¦ ´É°¡Çϸç, ¿§Áö AI µµÀÔ ¹× ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷, Á¦Á¶ µî »ê¾÷º° ¼Ö·ç¼Ç¿¡ ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù.

¼öÁ÷Àû ÅëÇÕÀº °æÀï ±¸µµ¸¦ ÀçÆíÇϰí ÀÖ½À´Ï´Ù. ±¸±Û(TPU), ¾Æ¸¶Á¸(Inferentia, Trainium), ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®(Athena)¿Í °°Àº Ŭ¶ó¿ìµå Á¦°ø¾÷üµéÀº ƯÁ¤ ÀÎÇÁ¶ó¿Í ¼­ºñ½º¿¡ ¸Â°Ô ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ´Â ÀÚü AI ÇÁ·Î¼¼¼­¸¦ ¼³°èÇϰí ÀÖ½À´Ï´Ù. ÀÌ Àü·«Àº »ýŰ迡 ´ëÇÑ ÅëÁ¦·ÂÀ» °­È­Çϰí, Ÿ»ç Ĩ Á¦Á¶¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç, ´õ ³ªÀº AI ¸ðµ¨ ½ÇÇàÀ» À§ÇÑ Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ °øµ¿ ¼³°è¸¦ ÁغñÇÕ´Ï´Ù. ÇÑÆí, ÆÕ¸®½º Ĩ Á¦Á¶¾÷ü¿Í ½ºÅ¸Æ®¾÷µéÀº ´º·Î¸ðÇÈ ÄÄÇ»ÆÃ, ±¤Ã³¸®, ¾Æ³¯·Î±× AI ĨÀ» Áß½ÉÀ¸·Î Çõ½ÅÀ» ÃßÁøÇϰí ÀÖÀ¸¸ç, ÃÊÀúÀü·Â ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º¸¦ À§ÇØ Á¶Á¤µÈ ÇÁ·Î¼¼¼­ ¾ÆÅ°ÅØÃ³ÀÇ ´ÙÀ½ ¹°°áÀ» ¾Ï½ÃÇϰí ÀÖ½À´Ï´Ù.

AI ÇÁ·Î¼¼¼­¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çϰí ÀÖ´Â ÃÖÁ¾ ¿ëµµ ½ÃÀå°ú Áö¿ª »ýŰè´Â?

AI ÇÁ·Î¼¼¼­¿¡ ´ëÇÑ °¡Àå Å« ¼ö¿ä´Â µ¥ÀÌÅͼ¾ÅÍ¿Í Å¬¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü¿¡ ÀÇÇØ ¹ß»ýÇϸç, ´ë±Ô¸ð AI ¸ðµ¨ ÇнÀ ¹× Ãß·ÐÀ» À§Çؼ­´Â °í¼º´ÉÀÇ È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ¿ë·®ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÇÏÀÌÆÛ½ºÄÉÀÏ·¯´Â »ý¼ºÇü ÀΰøÁö´É(AI) ¿öÅ©·Îµå, Ãßõ ½Ã½ºÅÛ, »ç±â °¨Áö, ÀÚÀ²Àû ¼­ºñ½º Á¦°øÀ» Áö¿øÇϱâ À§ÇØ AI °¡¼Ó±â ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, AI ĨÀº ½Ç½Ã°£ Ã߷аú ÀúÀü·Â ¼Òºñ°¡ ÇʼöÀûÀÎ ½º¸¶Æ® ½ÃƼ, Á¦Á¶ ÀÚµ¿È­, ºñµð¿À ºÐ¼®, Á¦Á¶, Á¦Á¶ ÀÚµ¿È­, ºñµð¿À ºÐ¼® µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶ ÀÚµ¿È­, ºñµð¿À ºÐ¼®, ȯ°æ ¸ð´ÏÅ͸µ µî ¿§Áö ÄÄÇ»ÆÃ ÀÌ¿ë »ç·Ê¿¡µµ ÇʼöÀûÀÔ´Ï´Ù.

°¡ÀüÁ¦Ç°Àº ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â ºÐ¾ß·Î, AI ÇÁ·Î¼¼¼­´Â ½º¸¶Æ®Æù, ½º¸¶Æ® TV, AR/VR Çìµå¼Â, °³Àκñ¼­ µî¿¡ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ Ä¨Àº À½¼º ÀνÄ, ¾ó±¼ Àá±Ý ÇØÁ¦, ¿¹Ãø ÅØ½ºÆ®, ½Ç½Ã°£ À̹ÌÁö °­Á¶ µîÀÇ ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÚµ¿Â÷¿¡¼­ AI ÇÁ·Î¼¼¼­´Â ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿Í ÀÚÀ²ÁÖÇà ½ºÅÃÀÇ ÇÙ½ÉÀ¸·Î, ¿©·¯ ¼¾¼­ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ÃÊÀúÁö¿¬À¸·Î ÀÎÁö, °èȹ, Á¦¾î ±â´ÉÀ» Áö¿øÇÕ´Ï´Ù.

Áö¿ªº°·Î´Â ¹Ì±¹ÀÌ ½Ç¸®Äܹ븮ÀÇ Ä¨ Á¦Á¶¾÷ü, ÇÏÀÌÆÛ½ºÄÉÀÏ Å¬¶ó¿ìµå ±â¾÷, źźÇÑ ¹ÝµµÃ¼ R&&D »ýŰ踦 ÅëÇØ AI ÇÁ·Î¼¼¼­ °³¹ßÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Áß±¹Àº ±¹°¡ AI Àü·«°ú ÆÕ¸®½º ½ºÅ¸Æ®¾÷ ¹× ±¹¿µ Á¦Á¶¾÷ü¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÅëÇØ ±¹³» AI Ĩ ¿ª·®À» ºü¸£°Ô È®ÀåÇϰí ÀÖ½À´Ï´Ù. Çѱ¹°ú ´ë¸¸Àº Á¦Á¶ ¹× ¸Þ¸ð¸® ÅëÇÕ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, À¯·´Àº ¹Î°ü ÆÄÆ®³Ê½Ê°ú Àü·«Àû ÀÚ±Ý Á¶´Þ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ÁÖ±Ç AI Ĩ °³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¼¼°è ¼ö¿ä°¡ °¡¼ÓÈ­µÊ¿¡ µû¶ó Áö¸®Àû ´Ùº¯È­¿Í ¹ÝµµÃ¼ ÁÖ±Ç È®º¸´Â Àå±âÀûÀÎ AI Ĩ °ø±Þ ¾Èº¸¿¡ ¸Å¿ì Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

»ýŰè Çù¾÷, ¼ÒÇÁÆ®¿þ¾î ÃÖÀûÈ­, Áö¼Ó°¡´É¼º ¸ñÇ¥°¡ ¾î¶»°Ô Àü·«Àû ¹æÇâÀ» Çü¼ºÇϰí Àִ°¡?

Çϵå¿þ¾î º¥´õ, ¼ÒÇÁÆ®¿þ¾î °³¹ßÀÚ, ½Ã½ºÅÛ ÅëÇÕ»ç¾÷ÀÚ, AI ¿¬±¸ Ä¿¹Â´ÏƼ µî AI ÇÁ·Î¼¼¼­ »ýŰè Àü¹Ý¿¡ °ÉÄ£ Çù¾÷Àº ¼º´ÉÀÇ ÀáÀç·ÂÀ» ±Ø´ëÈ­Çϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ÇÁ·Î¼¼¼­ º¥´õµéÀº ¼ÒÇÁÆ®¿þ¾î °ø±Þ¾÷ü¿Í Çù·ÂÇÏ¿© TensorFlow, PyTorch, ONNX¿Í °°Àº ÇÁ·¹ÀÓ¿öÅ©¸¦ ÀÚ»ç Ĩ ¾ÆÅ°ÅØÃ³¿¡ ¸Â°Ô °øµ¿ ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼öÁ÷Àû ÃÖÀûÈ­¸¦ ÅëÇØ ¸ðµ¨ ÈÆ·Ã ¼Óµµ Çâ»ó, Ãß·Ð Áö¿¬ ½Ã°£ °¨¼Ò, Àüü ±¸Ãà ȯ°æÀÇ ¿¡³ÊÁö È¿À²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

AI ¿öÅ©·ÎµåÀÇ ÄÄÇ»ÆÃ Áý¾àµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó Áö¼Ó°¡´É¼ºÀº Á¡Á¡ ´õ Áß¿äÇÑ ¼³°è ¸ñÇ¥°¡ µÇ°í ÀÖÀ¸¸ç, AI ÇÁ·Î¼¼¼­´Â µ¿Àû Àü¾Ð ½ºÄÉÀϸµ, ¿öÅ©·Îµå¸¦ °í·ÁÇÑ ½ºÄÉÁÙ¸µ, ÀúÀü·Â »óŸ¦ ÅëÇØ ¼º´É ÀúÇÏ ¾øÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. ÀϺΠº¥´õµéÀº ƯÈ÷ ±×¸° µ¥ÀÌÅͼ¾ÅÍ ¹× ¸ð¹ÙÀÏ µð¹ÙÀ̽º¿¡ Àû¿ëÇϱâ À§ÇØ Åº¼Ò ¹èÃâ·®À» °í·ÁÇÑ °è»ê ÁöÇ¥¿Í ¿¡³ÊÁö °í·Á ±³À° ¸ðµå¸¦ µµÀÔÇϰí ÀÖÀ¸¸ç, ESG¿¡ ºÎÇÕÇÏ´Â Á¦Ç° ·Îµå¸ÊÀÇ ÀÏȯÀ¸·Î ĨÀÇ ÀçȰ¿ë¼º, ¼ö¸íÁֱ⠿¬Àå, Áö¿ø ¹× ¼ö¸® Áö¿ø ¿¬Àå, ¼ö¸® °¡´É¼ºµµ ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù.

º¸¾È°ú ÇÁ¶óÀ̹ö½Ã´Â ƯÈ÷ ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ ´Ù·ç´Â ¿ëµµÀÇ °æ¿ì, AI ÇÁ·Î¼¼¼­°¡ ¿ÂĨ ¾Ïȣȭ, º¸¾È ÀÎŬ·ÎÀú, Çù¾÷ ÇнÀ ±â´ÉÀ» ÅëÇØ ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£ÇÏ´Â AI ¿öÅ©Ç÷ο츦 Áö¿øÇÏ´Â µî ÇÁ·Î¼¼¼­ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ÇコÄɾî, ±ÝÀ¶, ±¹¹æ, ½º¸¶Æ®È¨ »ýÅÂ°è µî ½Å·Ú¼º, ÄÄÇöóÀ̾ð½º, µ¥ÀÌÅÍ ÁÖ±ÇÀÌ °¡Àå Áß¿äÇÑ ºÐ¾ß¿¡¼­ ƯÈ÷ Áß¿äÇϸç, AI ÇÁ·Î¼¼¼­ ½ÃÀåÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó Â÷º°È­´Â ¿£µåÅõ¿£µå ¼º´É, ÀûÀÀ¼º, Ã¥ÀÓ°¨ ÀÖ´Â AI ±¸Çö°ú Á¡Á¡ ´õ ¹ÐÁ¢ÇÏ°Ô ¿¬°üµÇ¾î ÀÖ½À´Ï´Ù. Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

AI ÇÁ·Î¼¼¼­ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¼¼°è AI ÇÁ·Î¼¼¼­ ½ÃÀåÀº AI ¸ðµ¨ÀÇ º¹À⼺, ½Ç½Ã°£ ¿§Áö ÀÎÅÚ¸®Àü½º¿¡ ´ëÇÑ ¼ö¿ä, ¼öÁ÷Àû µðÁöÅÐ ÀüȯÀÇ ºñ¾àÀûÀÎ ¼ºÀå¿¡ ÈûÀÔ¾î ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î¼¼¼­´Â Ŭ¶ó¿ìµå Æ®·¹ÀÌ´× Å¬·¯½ºÅÍ, ÀÓº£µðµå IoT ½Ã½ºÅÛ, ÀÚÀ² ÁÖÇà, ÀÇ·á Áø´Ü°ú °°Àº ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿ëµµ°ú °°Àº ´ë±Ô¸ð ¸Ó½Å·¯´× ¾Ë°í¸®Áò¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â AI Áö¿ø ±â±âÀÇ º¸±Þ, »ý¼ºÇü AIÀÇ ´ëÁßÈ­, ÀÚµ¿È­¿¡ ´ëÇÑ ±â¾÷ÀÇ ÅõÀÚ Áõ°¡, ¼ÒÇÁÆ®¿þ¾î¿Í Çϵå¿þ¾îÀÇ Çù¾÷ ¼³°è ¿øÄ¢ÀÇ ÁøÈ­ µîÀÌ ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ ¿ÍÆ®´ç ¼º´É, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ¹èÆ÷ À¯¿¬¼ºÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ÄÄÇ»ÆÃ ¹× ÄÁÅØ½ºÆ® ÀÎÅÚ¸®Àü½º ¿ä±¸»çÇ×À» ¸ðµÎ ÃæÁ·ÇÏ´Â AI ÇÁ·Î¼¼¼­ÀÇ Àü·«Àû °¡Ä¡°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

ÇâÈÄ ½ÃÀå ±ËÀûÀº Á¦Á¶¾÷ü°¡ Àü¹®¼º°ú È®À强ÀÇ ±ÕÇüÀ» ¾ó¸¶³ª È¿°úÀûÀ¸·Î ¸ÂÃß°í, À̱âÁ¾ ÄÄÇ»ÆÃ ȯ°æ Àü¹Ý¿¡ °ÉÃÄ AI 󸮸¦ ÅëÇÕÇϰí, Ĩ Çõ½ÅÀ» ½Å·Ú¼º, Á¢±Ù¼º, Áö¼Ó °¡´ÉÇÑ AI µµÀÔÀ̶ó´Â ±¤¹üÀ§ÇÑ ¿ä±¸»çÇ׿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´ÂÁö¿¡ µû¶ó °áÁ¤µÉ °ÍÀÔ´Ï´Ù. ÇÁ·Î¼¼¼­°¡ Â÷¼¼´ë ±â¼ú ½Ã´ëÀÇ °¡Àå Àü·«ÀûÀÎ ÄÄÇ»ÆÃ ÀÚ»êÀÌ µÉ ¼ö ÀÖÀ»±î?

ºÎ¹®

Á¦¾È ¸µ(Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º);±â¼ú(¸Ó½Å·¯´×, µö·¯´×, ¸Ó½Å ºñÀü, ÀÚ¿¬ °úÁ¤ ÇнÀ);ÃÖÁ¾ »ç¿ë(ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI), IT ¹× ÅÚ·¹ÄÞ, ÇコÄɾî, ¼Ò¸Å, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ±âŸ ÃÖÁ¾ »ç¿ë)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 34°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ® ±×·ìÀ» Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence Processors Market to Reach US$26.3 Billion by 2030

The global market for Artificial Intelligence Processors estimated at US$11.8 Billion in the year 2024, is expected to reach US$26.3 Billion by 2030, growing at a CAGR of 14.2% over the analysis period 2024-2030. Hardware Component, one of the segments analyzed in the report, is expected to record a 14.9% CAGR and reach US$14.8 Billion by the end of the analysis period. Growth in the Software Component segment is estimated at 13.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.2 Billion While China is Forecast to Grow at 19.1% CAGR

The Artificial Intelligence Processors market in the U.S. is estimated at US$3.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$5.7 Billion by the year 2030 trailing a CAGR of 19.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.4% and 12.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.3% CAGR.

Global Artificial Intelligence Processors Market - Key Trends & Drivers Summarized

Why Are AI Processors Central to Enabling the Next Generation of Intelligent Computing Across Devices and Data Centers?

Artificial Intelligence (AI) processors are specialized microchips designed to accelerate machine learning (ML) and deep learning (DL) workloads by performing complex mathematical operations more efficiently than traditional CPUs. These processors form the computational backbone of AI-enabled systems across edge devices, cloud data centers, mobile platforms, autonomous machines, and embedded systems. As demand intensifies for faster, more power-efficient AI inference and training capabilities, AI processors have emerged as critical enablers of intelligent applications across every computing tier.

Unlike general-purpose processors, AI chips are architected for high-throughput, low-latency execution of parallel operations such as matrix multiplications, tensor calculations, and convolutional operations. This makes them ideal for supporting neural network models used in computer vision, natural language processing (NLP), speech recognition, and recommendation engines. AI processors are available in various forms-including Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), Field Programmable Gate Arrays (FPGAs), and custom Application-Specific Integrated Circuits (ASICs)-each optimized for different deployment environments and performance needs.

In both enterprise and consumer ecosystems, AI processors are embedded in devices ranging from smartphones and smart speakers to surveillance cameras and autonomous vehicles. In cloud and hyperscale environments, these chips power large-scale AI model training and real-time inference services. Their integration not only improves compute performance but also reduces energy consumption, latency, and total cost of ownership (TCO)-positioning AI processors as foundational components in digital transformation, automation, and AI democratization efforts worldwide.

How Are Chip Design Innovation, Vertical Integration, and Domain-Specific Architectures Driving Functional Advancements?

Innovation in chip design is rapidly pushing the limits of AI processor performance. Vendors are incorporating high-bandwidth memory (HBM), chiplet architectures, and 3D stacking to enhance data transfer speeds and processing density. Advanced fabrication nodes (e.g., 5nm, 3nm) allow for greater transistor density, which boosts performance-per-watt and reduces thermal output. These design improvements are enabling AI workloads to run faster and more efficiently on both training and inference platforms-supporting everything from large language models to embedded edge analytics.

Domain-specific architectures (DSAs) are a growing focus, with processor designs tailored to distinct AI use cases such as vision, NLP, robotics, or digital signal processing. Companies are increasingly developing proprietary chips optimized for workloads such as image classification, object detection, language translation, or generative AI. These specialized chips outperform general-purpose accelerators in speed, energy efficiency, and cost for targeted applications-making them attractive for edge AI deployments and industry-specific solutions in healthcare, finance, automotive, and manufacturing.

Vertical integration is reshaping the competitive landscape. Cloud providers like Google (TPU), Amazon (Inferentia and Trainium), and Microsoft (Athena) are designing in-house AI processors to optimize performance for their specific infrastructure and services. This strategy enhances ecosystem control, reduces dependency on third-party chipmakers, and aligns hardware-software co-design for better AI model execution. Meanwhile, fabless chipmakers and startups are innovating around neuromorphic computing, optical processing, and analog AI chips, signaling the next wave of processor architectures tailored for ultra-low-power, real-time intelligence.

Which End-Use Markets and Regional Ecosystems Are Accelerating Demand for AI Processors?

The largest demand for AI processors comes from data centers and cloud service providers, where training and inference of massive AI models require high-performance, scalable compute capacity. Hyperscalers are investing heavily in AI accelerator infrastructure to support generative AI workloads, recommendation systems, fraud detection, and autonomous service delivery. AI chips are also essential to edge computing use cases in smart cities, manufacturing automation, video analytics, and environmental monitoring-where real-time inference and low power consumption are mission-critical.

Consumer electronics is a fast-growing segment, with AI processors integrated into smartphones, smart TVs, AR/VR headsets, and personal assistants. These chips enable features such as voice recognition, facial unlock, predictive text, and real-time image enhancement. In automotive, AI processors are core to advanced driver-assistance systems (ADAS) and autonomous driving stacks, where they process data from multiple sensors to support perception, planning, and control functions with ultra-low latency.

Regionally, the U.S. dominates AI processor development, driven by Silicon Valley chipmakers, hyperscale cloud firms, and a robust semiconductor R&D ecosystem. China is rapidly expanding its domestic AI chip capabilities through national AI strategies and investments in fabless startups and state-backed manufacturers. South Korea and Taiwan play critical roles in fabrication and memory integration, while Europe is investing in sovereign AI chip development through public-private partnerships and strategic funding initiatives. As global demand accelerates, geographic diversification and semiconductor sovereignty are becoming pivotal to long-term AI chip supply security.

How Are Ecosystem Collaboration, Software Optimization, and Sustainability Objectives Shaping Strategic Direction?

Collaboration across the AI processor ecosystem-spanning hardware vendors, software developers, system integrators, and AI research communities-is essential for unlocking full performance potential. Processor vendors are partnering with software providers to co-optimize frameworks such as TensorFlow, PyTorch, and ONNX for their chip architectures. This vertical optimization ensures faster model training, lower inference latency, and improved energy efficiency across deployment environments.

Sustainability is an increasingly important design objective as AI workloads become more compute-intensive. AI processors are being engineered with dynamic voltage scaling, workload-aware scheduling, and low-power states to minimize environmental impact without compromising performance. Some vendors are introducing carbon-conscious compute metrics and energy-aware training modes, particularly for deployment in green data centers and mobile devices. Chip recyclability, extended lifecycle support, and repairability are also gaining attention as part of ESG-aligned product roadmaps.

Security and privacy are also driving processor innovation, particularly in applications involving sensitive data. AI processors are being equipped with on-chip encryption, secure enclaves, and federated learning capabilities to support privacy-preserving AI workflows. These features are especially relevant in sectors such as healthcare, finance, defense, and smart home ecosystems-where trust, compliance, and data sovereignty are paramount. As the AI processor market matures, differentiation is increasingly tied to end-to-end performance, adaptability, and responsible AI enablement.

What Are the Factors Driving Growth in the AI Processors Market?

The global AI processors market is expanding rapidly, propelled by exponential growth in AI model complexity, demand for real-time edge intelligence, and digital transformation across verticals. These processors are indispensable to powering machine learning algorithms at scale-whether in cloud training clusters, embedded IoT systems, or mission-critical applications such as autonomous mobility and medical diagnostics.

Key growth drivers include the proliferation of AI-enabled devices, the mainstream adoption of generative AI, increasing enterprise investment in automation, and the evolution of software-hardware co-design principles. As organizations prioritize performance-per-watt, data privacy, and deployment flexibility, AI processors that meet both compute and contextual intelligence demands are rising in strategic value.

Looking forward, the market’s trajectory will be shaped by how effectively manufacturers balance specialization with scalability, integrate AI processing across heterogeneous compute environments, and align chip innovation with the broader imperatives of trust, accessibility, and sustainable AI deployment. Could AI processors become the most strategic computing asset of the next technological era?

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence Processors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Offering (Hardware, Software, Services); Technology (Machine Learning, Deep Learning, Machine Vision, Natural Process Learning); End-Use (BFSI, IT & Telecom, Healthcare, Retail, Media & Entertainment, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â