¼¼°èÀÇ ADAS ¹× ÀÚÀ² ¼¾¼­ À¯Áöº¸¼ö Àåºñ ½ÃÀå
ADAS and Autonomous Sensor Maintenance Equipment
»óǰÄÚµå : 1739305
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 171 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,118,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,355,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ADAS ¹× ÀÚÀ² ¼¾¼­ À¯Áöº¸¼ö Àåºñ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 4,900¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 430¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ADAS ¹× ÀÚÀ² ¼¾¼­ À¯Áöº¸¼ö Àåºñ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 49.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4,900¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ·¹º§ 3 ÀÚÀ²¼ºÀº CAGR 54.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3,550¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ·¹º§ 4 ÀÚÀ²¼º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 40.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 110¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 46.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ADAS ¹× ÀÚÀ² ¼¾¼­ À¯Áöº¸¼ö Àåºñ ½ÃÀåÀº 2024³â¿¡ 110¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 710¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 46.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 45.8%¿Í 42.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 33.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ADAS ¹× ÀÚÀ² ¼¾¼­ À¯Áöº¸¼ö Àåºñ Àåºñ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ(ADAS)°ú ÀÚÀ²ÁÖÇàÂ÷ »ýŰ迡¼­ ¼¾¼­ À¯Áöº¸¼ö°¡ Áß¿äÇÑ ´ÏÁî°¡ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿Í ÀÚÀ²ÁÖÇàÂ÷(AV)´Â ¿ªµ¿ÀûÀÎ ÁÖÇà ȯ°æÀ» ÀνÄÇÏ°í ´ëÀÀÇϱâ À§ÇØ LiDAR, ·¹ÀÌ´õ, ÃÊÀ½ÆÄ ¼¾¼­, Ä«¸Þ¶ó µî °íÁ¤¹Ð ¼¾¼­ ³×Æ®¿öÅ©¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­µéÀº ¾î´ðƼºê Å©·çÁî ÄÁÆ®·Ñ, Â÷¼± À¯Áö Áö¿ø, º¸ÇàÀÚ °¨Áö, ¿ÏÀü ÀÚÀ²ÁÖÇà ³»ºñ°ÔÀ̼ǰú °°Àº Áß¿äÇÑ ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ¼¾¼­ÀÇ ¼º´ÉÀº ¸ÕÁö, ÁøÈë, ´«, ´«, ºñ, ¹ú·¹ µîÀÇ È¯°æ ¿À¿° ¹°Áú¿¡ ÀÇÇØ ½É°¢ÇÏ°Ô ¼Õ»óµÇ¾î ¼¾¼­ÀÇ ÀÔ·ÂÀ» ¹æÇØÇϰųª ¿Ö°î½Ãų ¼ö ÀÖ½À´Ï´Ù. Â÷·®ÀÌ º¸´Ù ³ôÀº ¼öÁØÀÇ ÀÚÀ²ÁÖÇà ¼öÁØ(L3-L5)À¸·Î À̵¿ÇÔ¿¡ µû¶ó ´Ü½Ã°£ÀÇ ¼¾¼­ Àå¾Öµµ ¾ÈÀü¼º, Á¤È®¼º, ±ÔÁ¤ Áؼö¸¦ ÀúÇØÇÒ ¼ö Àֱ⠶§¹®¿¡ ½Ç½Ã°£ ¼¾¼­ À¯Áöº¸¼ö°¡ Àý½ÇÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

±â°è½Ä ¿ÍÀÌÆÛ¿Í ¿¡¾îÁ¦Æ®¿¡¼­ ¼Ò¼ö¼º ÄÚÆÃ°ú ÀÚü ¼¼Ã´ Ç¥¸é±îÁö, ¼¾¼­ û¼Ò ¹× º¸È£ ½Ã½ºÅÛÀº ¸ðµç ÀÛµ¿ Á¶°Ç¿¡¼­ ¼¾¼­ÀÇ ±â´ÉÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. °íµµ·Î ÀÚµ¿È­µÈ Â÷·®¿¡¼­´Â ƯÈ÷ µµ½ÃÇü ¸ðºô¸®Æ¼, ·Îº¸ÅýÃ, Àå°Å¸® ÀÚÀ²ÁÖÇà Æ®·° ¿î¼Û, Ȥµ¶ÇÑ ³¯¾¾ Áö¿ªÀ» Æ÷ÇÔÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ Áö¼ÓÀûÀÎ °¡µ¿ ½Ã°£°ú Áß´Ü ¾ø´Â ¼¾¼­ Ãæ½Çµµ·Î À̾îÁý´Ï´Ù. ±ÔÁ¦ ±â°ü°ú OEM ¸ðµÎ ÀÚÀ²ÁÖÇà ±â¼ú¿¡ ´ëÇÑ ¾ÈÀü °ËÁõ ±âÁØÀ» °­È­ÇÏ´Â °¡¿îµ¥, È¿°úÀûÀÎ ¼¾¼­ À¯Áöº¸¼ö ¼Ö·ç¼ÇÀº ADAS/AV ¾ÆÅ°ÅØÃ³ ³»¿¡¼­ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ±¸¼º¿ä¼Ò·Î Àνĵǰí ÀÖ½À´Ï´Ù.

¼¾¼­ÀÇ Áö¼ÓÀûÀÎ °¡½Ã¼º°ú ½Ã½ºÅÛ ¹«°á¼ºÀ» Áö¿øÇÏ´Â ±â¼ú ¼Ö·ç¼ÇÀº ¾î¶»°Ô ÁøÈ­Çϰí Àִ°¡?

ADAS ¹× ÀÚÀ² ¼¾¼­ ¹× À¯Áöº¸¼ö Àåºñ ½ÃÀå¿¡¼­´Â ¼¾¼­ û¼Ò ¸ÞÄ¿´ÏÁò°ú º¸È£ ±â¼ú¿¡¼­ ±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÇöÀç Àû±ØÀûÀÎ ¼¼Ã´ ¼Ö·ç¼Ç¿¡´Â °í¾Ð ¼¼Ã´ ³ëÁñ, ¸¶ÀÌÅ©·Î ¼Ûdz±â¸¦ ÀÌ¿ëÇÑ ¿¡¾î ÆÛÁö, ȸÀü ºê·¯½Ã, Ä«¸Þ¶ó ·»Áî¿Í LiDAR Ä¿¹ö¿¡¼­ À̹°ÁúÀ» Á¦°ÅÇÏ´Â ¾ÐÀü Áøµ¿ ½Ã½ºÅÛ µîÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °á·Î ¹× ¼­¸® ºÎÂøÀ» ¹æÁöÇϱâ À§ÇØ Á¦ºù ¿ä¼Ò¿Í ±è¼­¸² ¹æÁö ÄÚÆÃÀÌ ³»ÀåµÇ¾î ÀÖÀ¸¸ç, ƯÈ÷ Ãß¿î Áö¿ªÀ̳ª ¾ß°£ ÀÛµ¿À» À§ÇÑ Á¦ºù ¿ä¼Ò¿Í ±è¼­¸² ¹æÁö ÄÚÆÃÀÌ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù.

¼¾¼­ ÇÏ¿ì¡Àº ¿À¿° ¹°ÁúÀ» ¼öµ¿ÀûÀ¸·Î Â÷´ÜÇϰí û¼Ò ºóµµ¸¦ ÁÙÀ̱â À§ÇØ ¼¿ÇÁ Ŭ¸®´× ¼ÒÀç, ¹ßÀ¯ ¹× ¼Ò¼ö¼º ÄÚÆÃ, Á¤Àü±â ¹æÁö Ç¥¸éÀ¸·Î ¼³°èµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ½º¸¶Æ® ¼¾¼­ À¯Áöº¸¼ö ½Ã½ºÅÛÀº ¼¾¼­ÀÇ ¸·ÈûÀ» ½Ç½Ã°£À¸·Î °¨ÁöÇϰí ÀÚÀ²Àû ¶Ç´Â ¿ø°Ý ¸í·É¿¡ ÀÇÇØ û¼Ò Áֱ⸦ Æ®¸®°ÅÇÏ´Â Áø´Ü ¹× Á¦¾î ¾Ë°í¸®ÁòÀ¸·Î ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÇöÀç Â÷·® ¿î¿µ ¼ÒÇÁÆ®¿þ¾î¿¡ ÅëÇÕµÇ¾î ¿¹Áö Á¤ºñ Àü·«°ú Â÷·® Àüü »óÅ ¸ð´ÏÅ͸µ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÅÚ·¹¸Åƽ½º ¹× V2X(Vehicle-to-Everything) Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ Â÷·® ¿î¿µÀÚ´Â ´ë±Ô¸ð ÀÚÀ²ÁÖÇà Â÷·® Àüü¿¡¼­ ¼¾¼­ »óŸ¦ ÃßÀûÇÏ¿© ¾ÈÀü°ú ¿î¿µ È¿À²¼ºÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾î¶² »ê¾÷ ¼ö¿ä, ¿î¿µ»óÀÇ ¹®Á¦, ±ÔÁ¦ µ¿ÇâÀÌ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí Àִ°¡?

ADAS ±â´ÉÀÌ Áß±Þ Â÷·®¿¡ Ç¥ÁØÀ¸·Î ÀåÂøµÇ°í ÀÚÀ²ÁÖÇà Å×½ºÆ®°¡ Àü ¼¼°èÀûÀ¸·Î È®´ëµÊ¿¡ µû¶ó, ¼¾¼­°¡ ¼º´ÉÀ» ¹ßÈÖÇØ¾ß ÇÏ´Â ¿î¿µ ȯ°æÀº ´õ¿í º¹ÀâÇØÁö°í ¿¹ÃøÇϱ⠾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ¹è¼Û Â÷·®, ·Îº¸ÅýÃ, »ê¾÷¿ë AV´Â Á¾Á¾ µµ½Ã ȯ°æ, °Ç¼³ Áö¿ª, ¿ÀÇÁ·Îµå¿¡¼­ ¿î¿µµÇ´Â °æ¿ì°¡ ¸¹À¸¸ç, ¼¾¼­°¡ ¸ÕÁö, ¹°º¸¶ó, ³¯¾¾¿¡ ³ëÃâµÇ´Â °ÍÀº ÇÇÇÒ ¼ö ¾ø½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷·®ÀÌ »ç¶÷ÀÇ °³ÀÔ ¾øÀÌ ¾ÈÀüÇÏ°Ô ÀÛµ¿Çϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ ¼¾¼­ÀÇ ¼±¸íµµ´Â ¼±ÅûçÇ×ÀÌ ¾Æ´Ï¶ó ±âº»ÀÔ´Ï´Ù. µû¶ó¼­ °¡µ¿ ½Ã°£ º¸Àå ¹× ¼­ºñ½º ¼öÁØ °è¾àÀ» Æ÷ÇÔÇÑ AV ¼­ºñ½ºÀÇ »ó¾÷Àû ½ÇÇà °¡´É¼ºÀº Â÷·® ³» ¼¾¼­ À¯Áöº¸¼ö ½Ã½ºÅÛÀÇ È¿À²¼º°ú ¹ÐÁ¢ÇÏ°Ô ¿¬°üµÇ¾î ÀÖ½À´Ï´Ù.

±ÔÁ¦±â°ü°ú ¾ÈÀü ÀÎÁõ±â°üÀº ÇöÀç AV ½ÂÀÎ ÇÁ·Î¼¼½º¿¡ ¼¾¼­ÀÇ ½Å·Ú¼º°ú ½Ã½ºÅÛ ÀÌÁßÈ­¸¦ ÅëÇÕÇϰí ÀÖÀ¸¸ç, ISO 21448(Safety of the Intended Functionality-SOTIF) ¹× ADAS ±â´ÉÀ» °ü¸®ÇÏ´Â UNECE ±ÔÁ¤Àº ¼¾¼­ÀÇ °íÀå °¨Áö ¹× ÆäÀÏ ¼¼ÀÌÇÁ ¼º´ÉÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ ¼¾¼­ À¯Áöº¸¼ö Àåºñ´Â ÄÄÇöóÀ̾𽺠Å×½ºÆ®, ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨, ±â´É ¾ÈÀü Æò°¡¿¡ ÅëÇյǾî ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ OEM ¹× Tier 1 °ø±Þ¾÷üµéÀº ¼¾¼­ Ŭ¸®´× ±â¼ú °ø±Þ¾÷ü¿Í Çù·ÂÇϰųª ¸ðµâ½Ä Â÷·® Ç÷§Æû¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ÀÚü ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© ´ëÀÀÇϰí ÀÖ½À´Ï´Ù.

ADAS ¹× ÀÚÀ² ¼¾¼­ À¯Áöº¸¼ö Àåºñ Àåºñ ½ÃÀåÀÇ ¼¼°è ¼ºÀå ¿øµ¿·ÂÀº?

ADAS ¹× ÀÚÀ² ¼¾¼­ À¯Áöº¸¼ö Àåºñ Àåºñ ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â ¿äÀÎÀº ·¹º§ 2+ ¹× ·¹º§ 3 ÀÚÀ²ÁÖÇàÀÇ È®´ë, ±Þ¼ÓÇÑ µµ½ÃÈ­, ³»Èļº¿¡ ´ëÇÑ ±â´ë°¨ Áõ°¡, »ó¾÷¿ë AVÀÇ µîÀåÀÔ´Ï´Ù. ºÏ¹Ì¿Í À¯·´Àº Ãʱâ ÀÚÀ²ÁÖÇàÂ÷ Å×½ºÆ®, °­·ÂÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ¹°·ù, ¿©°´ ¿î¼Û, »ê¾÷ ÀÚµ¿È­ µî °íºÎ°¡°¡Ä¡ »ç¿ë »ç·Ê·Î ÀÎÇØ ÀÚÀ²ÁÖÇàÂ÷ µµÀÔÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ¹Ì±¹, µ¶ÀÏ, ½º¿þµ§ÀÇ ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í AV ½ºÅ¸Æ®¾÷µéÀº ¿£µåÅõ¿£µå ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ ÆÐŰÁöÀÇ ÀϺηΠ¼¾¼­ Ŭ¸®´× ¸ðµâÀ» Àû±ØÀûÀ¸·Î ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ ÀϺ», Çѱ¹, Áß±¹¿¡¼­´Â ADAS ¹× ½º¸¶Æ® ¸ðºô¸®Æ¼ Ç÷§Æû¿¡ ´ëÇÑ ÅõÀÚ·Î ÀÎÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼¾¼­ º¸È£ ¹× Ŭ¸®´× ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À̵é Áö¿ª¿¡´Â °­·ÂÇÑ ÀÚµ¿Â÷ Á¦Á¶ »ýŰè¿Í »õ·Î¿î Â÷·® Ç÷§Æû¿¡ ¼¾¼­ ¹× À¯Áöº¸¼ö ±â´ÉÀ» ´ë±Ô¸ð·Î ÅëÇÕÇÒ ¼ö Àִ ÷´Ü ±â¼ú °ø±Þ¾÷üµéÀÌ ÀÖ½À´Ï´Ù. Áß±¹¿¡¼­´Â »ó¾÷¿ë Â÷·®°ú ´ëÁß±³Åë¿¡ ·¹º§ 3+ AV¸¦ ¹èÄ¡ÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ³»±¸¼ºÀÌ ³ô°í ±âÈÄ¿¡ ÀûÀÀÇÏ´Â ¼¾¼­ Ŭ¸®´× ½Ã½ºÅÛ¿¡ ´ëÇÑ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ÇÑÆí, Áßµ¿°ú ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿¡¼­´Â ¸ÕÁö°¡ ¸¹°í ½ÀÇÑ È¯°æ¿¡¼­ ÀÚÀ²ÁÖÇàÇÏ´Â ´ëÁß±³Åë ¹× »ê¾÷¿ë AV¸¦ À§ÇÑ ¼¾¼­ À¯Áöº¸¼ö ±â¼úÀ» Æò°¡Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®º°·Î´Â ·¹º§ 2/2+ÀÇ ADAS ±â´ÉÀ» žÀçÇÑ ÇÁ¸®¹Ì¾ö ½Â¿ëÂ÷°¡ ¿£Æ®¸® ·¹º§ ¼¾¼­ Ŭ¸®´× ¼Ö·ç¼ÇÀÇ ±Þ¼ºÀå ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Àå±âÀûÀ¸·Î °¡Àå Å« ¼ö¿ä°¡ ¿¹»óµÇ´Â °ÍÀº L4/L5 ÀÚÀ²ÁÖÇà Â÷·®(·Îº¸ÅýÃ, ¶ó½ºÆ® ¸¶ÀÏ ¹è¼Û ·Îº¿, ÀÚÀ²ÁÖÇà Æ®·°, ½º¸¶Æ® ¼ÅƲ)À¸·Î, ¿ÏÀüÇÑ ½Ã½ºÅÛ ÀÚÀ²¼ºÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿ÏÀü ÀÚµ¿È­µÈ ÆäÀÏ ¼¼ÀÌÇÁ(fail-safe) ¼¾¼­ ¹× À¯Áöº¸¼ö ¸ÞÄ¿´ÏÁòÀÌ ÇÊ¿äÇÕ´Ï´Ù. AVÀÇ ½Å·Ú¼ºÀÌ °áÁ¤ÀûÀÎ °æÀï¿ä¼Ò°¡ µÇ´Â °¡¿îµ¥, ¼¾¼­ ¹× À¯Áöº¸¼ö Àåºñ ½ÃÀåÀº ÀÚÀ² ¸ðºô¸®Æ¼ ½Ã´ëÀÇ ¾ÈÀü º¸Àå, ¿î¿µ ¿¬¼Ó¼º, ±ÔÁ¦ ¼ö¿ë¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ ºñ¾àÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

ºÎ¹®

ÀÚÀ²ÁÖÇà ·¹º§(·¹º§ 3, ·¹º§ 4, ·¹º§ 5), Á¦Ç° À¯Çü(À¯Ã¼, °ø±â, ¿ÍÀÌÆÛ), ÃÖÁ¾ ¿ëµµ(½Â¿ëÂ÷, »ó¿ëÂ÷)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 41°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¸ÅÃâ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù : Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù : ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м®:

¹Ì±¹ <> Áß±¹ <> ¸ß½ÃÄÚ <> ij³ª´Ù <> EU <> ÀϺ» <> Àεµ <> ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ® : Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ® ±×·ìÀ» Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global ADAS and Autonomous Sensor Maintenance Equipment Market to Reach US$49.0 Million by 2030

The global market for ADAS and Autonomous Sensor Maintenance Equipment estimated at US$4.3 Million in the year 2024, is expected to reach US$49.0 Million by 2030, growing at a CAGR of 49.8% over the analysis period 2024-2030. Level 3 Autonomy, one of the segments analyzed in the report, is expected to record a 54.3% CAGR and reach US$35.5 Million by the end of the analysis period. Growth in the Level 4 Autonomy segment is estimated at 40.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.1 Million While China is Forecast to Grow at 46.8% CAGR

The ADAS and Autonomous Sensor Maintenance Equipment market in the U.S. is estimated at US$1.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$7.1 Million by the year 2030 trailing a CAGR of 46.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 45.8% and 42.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 33.5% CAGR.

Global ADAS and Autonomous Sensor Maintenance Equipment Market - Key Trends & Drivers Summarized

Why Is Sensor Maintenance Emerging as a Critical Need in ADAS and Autonomous Vehicle Ecosystems?

Advanced Driver Assistance Systems (ADAS) and autonomous vehicles (AVs) rely heavily on a network of high-precision sensors-including LiDAR, radar, ultrasonic sensors, and cameras-to perceive and respond to dynamic driving environments. These sensors enable vital functions such as adaptive cruise control, lane-keeping assistance, pedestrian detection, and full self-driving navigation. However, their performance can be significantly impaired by environmental contaminants such as dust, mud, snow, rain, and insects, which obstruct or distort sensor input. As vehicles move toward higher levels of automation (L3-L5), even brief sensor obstruction can compromise safety, accuracy, and regulatory compliance, creating a strong imperative for real-time sensor maintenance.

Sensor cleaning and protection systems-ranging from mechanical wipers and air jets to hydrophobic coatings and self-cleaning surfaces-are becoming essential for maintaining sensor functionality across all operating conditions. In highly automated vehicles, this translates into continuous uptime and uninterrupted sensor fidelity, especially in applications involving urban mobility, robotaxis, long-haul autonomous trucking, and harsh weather geographies. As both regulatory bodies and OEMs intensify their safety validation criteria for autonomous technologies, effective sensor maintenance solutions are gaining recognition as mission-critical components within the ADAS/AV architecture.

How Are Technology Solutions Evolving to Support Continuous Sensor Visibility and System Integrity?

The ADAS and autonomous sensor maintenance equipment market is seeing rapid innovation in sensor-cleaning mechanisms and protective technologies. Active cleaning solutions now include high-pressure washer nozzles, micro-blower air purging, rotating brushes, and piezoelectric vibratory systems that can dislodge debris from camera lenses and LiDAR covers. Thermal de-icing elements and anti-fog coatings are also being integrated to prevent condensation and frost build-up, especially in colder climates or during overnight operations.

Sensor housings are increasingly engineered with self-cleaning materials, oleophobic and hydrophobic coatings, and anti-static surfaces to passively repel contaminants and reduce cleaning frequency. Smart sensor maintenance systems are further enhanced with diagnostics and control algorithms that detect sensor occlusion in real-time and trigger cleaning cycles autonomously or via remote command. These systems are now being embedded into vehicle operating software, contributing to predictive maintenance strategies and overall vehicle health monitoring. Integration with telematics and V2X (vehicle-to-everything) platforms allows fleet operators to track sensor condition across large autonomous fleets, optimizing safety and operational efficiency.

What Industry Demands, Operational Challenges, and Regulatory Trends Are Accelerating Adoption?

As ADAS features become standard even in mid-range vehicles and autonomous testing expands globally, the operational environments in which sensors must perform are becoming more complex and less predictable. Autonomous delivery vehicles, robotaxis, and industrial AVs often operate in urban settings, construction zones, and off-road locations-where sensor exposure to dirt, spray, and weather is unavoidable. For these vehicles to function safely without human intervention, continuous sensor clarity is not optional but foundational. The commercial viability of AV services, including uptime guarantees and service level agreements, is therefore tightly linked to the effectiveness of onboard sensor maintenance systems.

Regulatory agencies and safety certification bodies are now incorporating sensor reliability and system redundancy into AV approval processes. ISO 21448 (Safety of the Intended Functionality - SOTIF) and UNECE regulations governing ADAS functions highlight the need for sensor fault detection and fail-safe performance. As such, sensor maintenance equipment is being factored into compliance testing, simulation models, and functional safety assessments. Automotive OEMs and Tier 1 suppliers are responding by partnering with sensor-cleaning technology vendors or developing proprietary solutions to integrate into modular vehicle platforms-particularly for electric and autonomous fleets targeting shared mobility markets.

What Is Driving the Growth of the ADAS and Autonomous Sensor Maintenance Equipment Market Globally?

The growth in the ADAS and autonomous sensor maintenance equipment market is driven by the expansion of Level 2+ and Level 3 driving automation, rapid urbanization, increasing weather-resilience expectations, and the emergence of commercial AV deployments. North America and Europe are at the forefront of adoption, driven by early autonomous vehicle trials, strong regulatory frameworks, and high-value use cases in logistics, passenger transport, and industrial automation. Leading automakers and AV startups in the U.S., Germany, and Sweden are actively integrating sensor cleaning modules as part of end-to-end autonomous system packages.

In Asia-Pacific, particularly in Japan, South Korea, and China, investments in ADAS and smart mobility platforms are fueling demand for reliable sensor protection and cleaning technologies. These regions are also home to robust automotive manufacturing ecosystems and high-technology suppliers capable of integrating sensor maintenance features into new vehicle platforms at scale. China’s emphasis on Level 3+ AV deployment in commercial fleets and public transportation is further reinforcing the need for high-durability, climate-adaptive sensor cleaning systems. Meanwhile, pilot projects in the Middle East and Latin America are evaluating sensor maintenance technologies for autonomous public transit and industrial AVs in dusty or humid environments.

Segment-wise, premium passenger vehicles equipped with Level 2/2+ ADAS capabilities represent a fast-growing market for entry-level sensor cleaning solutions. However, the largest long-term demand is expected from L4/L5 autonomous fleets-robotaxis, last-mile delivery bots, autonomous trucks, and smart shuttles-where full system autonomy necessitates fully automated, fail-safe sensor maintenance mechanisms. As AV reliability becomes a defining competitive factor, the sensor maintenance equipment market is positioned for exponential growth-driven by its direct impact on safety assurance, operational continuity, and regulatory acceptance in the autonomous mobility era.

SCOPE OF STUDY:

The report analyzes the ADAS and Autonomous Sensor Maintenance Equipment market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Autonomy Level (Level 3, Level 4, Level 5); Product Type (Fluid, Air, Wipers); End-Use (Passenger Cars, Commercial Vehicles)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â