¼¼°èÀÇ Â÷¼¼´ë ½ÃÄý¼­ ½ÃÀå
Next Generation Sequencers
»óǰÄÚµå : 1662074
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 299 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,301,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,905,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è Â÷¼¼´ë ½ÃÄý¼­ ½ÃÀåÀº 2030³â±îÁö 433¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 166¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Â÷¼¼´ë ½ÃÄý¼­ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 17.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 433¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Â÷¼¼´ë ½ÃÄý¼­ ¼Ò¸ðǰÀº CAGR 17.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 266¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Â÷¼¼´ë ½ÃÄý¼­ Ç÷§Æû ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 16.2%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 45¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 22.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Â÷¼¼´ë ½ÃÄý¼­ ½ÃÀåÀº 2024³â¿¡ 45¾ï ´Þ·¯¿¡ À̸¥ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 100¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGRÀº 22.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 13.0%¿Í 15.2%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 13.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Â÷¼¼´ë ½ÃÄý¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

2005³â¿¡ ½ÃÀÛµÈ Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS) ±â¼úÀº ¿©·¯ °³ÀÇ DNA ¿°±â¼­¿­À» µ¿½Ã¿¡ ½ÃÄö½ÌÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ±âÁ¸ÀÇ ½Ì°Å ½ÃÄö½ÌÀ» Å©°Ô ¹ßÀü½ÃÄÑ À¯ÀüÇÐ ºÐ¾ß¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Ä×½À´Ï´Ù. Ãʱ⿡ 'Ãʺ´·Ä ½ÃÄö½Ì'À̶ó°í ºÒ·È´ø ÀÌ ±â¼úÀº Àü·Ê ¾ø´Â ¼Óµµ¿Í ºñ¿ë Àý°¨À» ½ÇÇöÇÏ¿© ±¤¹üÀ§ÇÑ À¯Àüü ¿¬±¸¸¦ º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µé¾ú½À´Ï´Ù. Sanger ½ÃÄö½ÌÀº ±× Á¤È®¼º ¶§¹®¿¡ ¿©ÀüÈ÷ ¼Ò±Ô¸ð ÇÁ·ÎÁ§Æ®³ª NGS °á°ú °ËÁõÀ» À§ÇØ »ç¿ëµÇ°í ÀÖÁö¸¸, NGS´Â È¿À²¼º°ú È®À强ÀÌ ¶Ù¾î³ª ÇÑ ¹øÀÇ ½ÇÇàÀ¸·Î ´Ù¾çÇÑ »ùÇÿ¡ °ÉÃÄ ¼ö¹é¿¡¼­ ¼öõ °³ÀÇ À¯ÀüÀÚ¸¦ ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¹¿¬º¯ÀÌ ¹× RNA À¶ÇÕ±îÁö ±¤¹üÀ§ÇÑ À¯Àüü Ư¡À» °ËÃâÇÏ¿© ÀÌÀü¿¡´Â ºÒ°¡´ÉÇß´ø ±¤¹üÀ§ÇÑ À¯ÀüÀÚ ºÐ¼®À» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù.

NGS°¡ µ¸º¸ÀÌ´Â °ÍÀº 󸮷®ÀÌ ¸¹À» »Ó¸¸ ¾Æ´Ï¶ó ÇÊ¿äÇÑ »ùÇ÷®ÀÌ Àû°í, Á¤È®µµ°¡ ³ôÀ¸¸ç, Èñ±ÍÇÑ À¯ÀüÀÚ º¯À̸¦ °ËÃâÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ÀÇ·á, ³ó¾÷, ȯ°æ °úÇÐ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ µµ±¸°¡ µÇ¾î À¯Àüü ¿¬±¸, ÀÓ»ó Áø´Ü, ¹ýÀÇÇÐ ¼ö»ç°¡ ¹ßÀüÇϰí ÀÖÀ¸¸ç, NGSÀÇ °úÁ¤Àº º¹ÀâÇϸç, DNA ¶Ç´Â cDNA »ùÇÃÀ» Á¶°¢È­ÇÏ¿© ½±°Ô ½Äº°ÇÒ ¼ö ÀÖµµ·Ï °íÀ¯ÇÑ ºÐÀÚ ¾î´ðÅÍ¿¡ ¿¬°áÇÏ´Â ½ÃÄö½Ì ¶óÀ̺귯¸®¸¦ ±¸ÃàÇÏ´Â °ÍÀ¸·Î ½ÃÀ۵˴ϴÙ. ¶óÀ̺귯¸® ±¸ÃàÀ¸·Î ½ÃÀ۵˴ϴÙ. ±× ÈÄ, "ÇÕ¼º ½ÃÄö½Ì" Á¢±Ù¹ýÀ» äÅÃÇÏ´Â ±â¼úÀ» »ç¿ëÇÏ¿© ½ÃÄö½Ì Áß ½ÅÈ£ °ËÃâÀ» °­È­Çϱâ À§ÇØ °íü Ç¥¸é¿¡¼­ DNA Á¶°¢À» º¹Á¦ ÁõÆøÇÕ´Ï´Ù. ÀÌ °úÁ¤¿¡ °ü¿©ÇÏ´Â ÀåÄ¡´Â ±¤ÇÐ ½ÅÈ£ ¶Ç´Â Ion Torrent ±â¼ú°ú °°ÀÌ DNA ÇÕ¼º Áß¿¡ ¹æÃâµÇ´Â ¼ö¼Ò À̿¿¡ ÀÇÇØ »ý¼ºµÇ´Â Àü±âÀû ½ÅÈ£¿¡ ÀÇÇØ °¢ ´ºÅ¬·¹¿ÀƼµåÀÇ Ãß°¡¸¦ °¨ÁöÇÕ´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼® ´Ü°è´Â º¹ÀâÇϸç, ¿ø½Ã ¿°±â¼­¿­ µ¥ÀÌÅ͸¦ °¡Ä¡ ÀÖ´Â À¯ÀüÇÐÀû ÅëÂû·ÂÀ¸·Î º¯È¯Çϱâ À§ÇÑ ¿©·¯ ´Ü°èÀÇ ÇØ¼®À» Æ÷ÇÔÇÕ´Ï´Ù.

´Ù¾çÇÑ ºÐ¾ß¿¡¼­ NGS°¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ°í ÀÖ´Â °ÍÀº ³ôÀº 󸮷®, ¼Óµµ, ºñ¿ë È¿À²¼ºÀ̶ó´Â NGSÀÇ ÀåÁ¡À» µÞ¹ÞħÇÕ´Ï´Ù. ÀÓ»ó ¿¬±¸¿¡¼­ NGS´Â Áúº´°ú °ü·ÃµÈ À¯ÀüÀû µ¹¿¬º¯À̸¦ ã¾Æ³»¾î Ç¥Àû Ä¡·áÀÇ ±æÀ» ¿­¾îÁÖ¸ç, À¯ÀüÀÚ ÀÌ»ó ¼±º°À» ÅëÇØ »ý½Ä ÀÇÇп¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ³ó¾÷ ºÐ¾ß¿¡¼­´Â ½Ä¹° À¯ÀüÇÐ ¿¬±¸¸¦ ÃËÁøÇÏ¿© ÀÛ¹° °³·®À» °¡¼ÓÈ­ÇÏ°í ´õ °Ç°­ÇÑ ÀÛ¹° ǰÁ¾À» Àç¹èÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖÀ¸¸ç, NGS´Â Äڷγª19 ÆÒµ¥¹Í°ú °°Àº ¼¼°è º¸°Ç ºñ»ó»çÅ¿¡¼­ ½Å¼ÓÇÑ ¹ÙÀÌ·¯½º À¯Àüü ½ÃÄö½ÌÀ» ÅëÇØ µ¹¿¬º¯ÀÌ ÃßÀû°ú ¹é½Å °³¹ßÀ» Áö¿øÇÔÀ¸·Î½á ƯÈ÷ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. NGSÀÇ ¹Ì·¡´Â Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°úÀÇ ÅëÇÕ, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ¹ßÀü, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½É Áõ°¡, Çмú ¹× ÀÓ»ó ¿¬±¸ È®´ë, ±ÔÁ¦ ¹× À±¸®Àû ÇÁ·¹ÀÓ¿öÅ©ÀÇ ÁøÈ­, Àü·«Àû Á¦ÈÞ, ½ÅÈï ½ÃÀå¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µîÀÇ ¼ºÀå ÃËÁø¿äÀο¡ ÈûÀÔ¾î ¼ºÀåÇÒ °ÍÀÔ´Ï´Ù. ¿äÀο¡ ÈûÀÔ¾î °³ÀθÂÃãÇü ÀÇ·á ¹× ¿¬±¸°³¹ß µîÀ» °­È­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

Á¦Ç°(¼Ò¸ðǰ, Ç÷§Æû, ¼­ºñ½º) ;& ÃÖÁ¾»ç¿ëÀÚ(Çмú±â°ü ¹× ¿¬±¸¼¾ÅÍ, º´¿ø ¹× Ŭ¸®´Ð, Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÁÖ¿ä 93°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Next Generation Sequencers Market to Reach US$43.3 Billion by 2030

The global market for Next Generation Sequencers estimated at US$16.6 Billion in the year 2024, is expected to reach US$43.3 Billion by 2030, growing at a CAGR of 17.3% over the analysis period 2024-2030. Next Generation Sequencer Consumables, one of the segments analyzed in the report, is expected to record a 17.1% CAGR and reach US$26.6 Billion by the end of the analysis period. Growth in the Next Generation Sequencer Platforms segment is estimated at 16.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.5 Billion While China is Forecast to Grow at 22.8% CAGR

The Next Generation Sequencers market in the U.S. is estimated at US$4.5 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$10.0 Billion by the year 2030 trailing a CAGR of 22.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.0% and 15.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.7% CAGR.

Global Next Generation Sequencers Market - Key Trends and Drivers Summarized

Next-Generation Sequencing (NGS) technologies, initiated in 2005, have revolutionized the field of genetics by allowing for the simultaneous sequencing of multiple DNA strands, a significant advancement over the traditional Sanger sequencing. This technology, originally dubbed "massively-parallel sequencing," offers unprecedented speed and reduced costs, making extensive genomic studies more accessible. While Sanger sequencing is still utilized for smaller projects or to validate NGS results due to its high accuracy, NGS excels in efficiency and scalability, analyzing hundreds to thousands of genes across various samples in a single run. NGS detects a wide range of genomic features from single nucleotide variants to complex structural variations and RNA fusions, facilitating extensive genetic analyses that were previously unfeasible.

NGS stands out not just for its volume handling but also for its lower sample requirements, higher accuracy, and the ability to detect rare genetic variants. These attributes make it an essential tool in diverse fields such as medicine, agriculture, and environmental science, advancing genomic research, clinical diagnostics, and forensic investigations. The NGS process is intricate, beginning with the construction of a sequencing library where DNA or cDNA samples are fragmented and linked to unique molecular adaptors for easy identification. This is followed by clonal amplification of the DNA fragments on a solid surface to enhance signal detection during sequencing, using technologies that employ a 'sequencing by synthesis' approach. Instruments involved in this process detect each nucleotide addition either through optical signals or, as in Ion Torrent technology, electrical signals produced by hydrogen ions released during DNA synthesis. The data analysis phase is complex, involving multiple stages of interpretation to transform raw sequencing data into valuable genetic insights.

The broad application of NGS across various sectors underscores its advantages of high throughput, speed, and cost-efficiency. In clinical research, NGS aids in identifying genetic variations associated with diseases, paving the way for targeted therapies and playing a vital role in reproductive health through genetic anomaly screenings. In agriculture, it accelerates crop improvement by facilitating plant genetic studies, leading to the cultivation of more robust crop varieties. NGS has been particularly crucial during global health emergencies, such as the COVID-19 pandemic, by enabling rapid viral genomic sequencing, which assists in tracking mutations and vaccine development. The future of NGS looks promising with ongoing advancements expected to enhance personalized medicine, agricultural development, and more, fueled by growth drivers such as integration with cloud computing, advancements in bioinformatics, rising consumer interest in personalized medicine, expanding academic and clinical research, evolving regulatory and ethical frameworks, strategic collaborations, and increased investments in emerging markets.

SCOPE OF STUDY:

The report analyzes the Next Generation Sequencers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Consumables, Platforms, Services); End-Use (Academic Institutes & Research Centers, Hospitals & Clinics, Pharmaceutical & Biotechnology Companies, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 93 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â