¼¼°èÀÇ Àü±â ¹ö½º ½ÃÀå
Electric Buses
»óǰÄÚµå : 1659397
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 93 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,106,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,320,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Àü±â ¹ö½º ½ÃÀå, 2030³â¿¡´Â 35¾ï À¯´Ö¿¡ À̸¦ Àü¸Á

2024³â¿¡ 4¾ï 6,340¸¸ ´ë·Î ÃßÁ¤µÇ´Â Àü±â ¹ö½º ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 40.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 35¾ï´ë¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ BEV ÃßÁø ¹ö½º´Â CAGR 42.8%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 20¾ï´ë¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. PHEV ÃßÁø ¹ö½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 38.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 4,330¸¸ ´ë, Áß±¹Àº CAGR 36.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àü±â ¹ö½º ½ÃÀåÀº 2024³â¿¡´Â 1¾ï 4,330¸¸ ´ë¶ó°í ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³â°£ CAGR 36.8%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿©, 2030³â¿¡´Â 4¾ï 5,820¸¸ ´ë ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 35.9%¿Í 32.7%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 25.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Àü±â ¹ö½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ¼ºÀå ÃËÁø¿äÀÎ Á¤¸®

Àü±â ¹ö½º°¡ ´ëÁß±³ÅëÀÇ Áß¿äÇÑ ºÎºÐÀÌ µÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Àü±â ¹ö½º´Â µðÁ© ¹× °¡¼Ö¸° Â÷·®¿¡ ´ëÇÑ Ä£È¯°æÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÔÀ¸·Î½á ´ëÁß±³Åë¿¡ º¯È­¸¦ °¡Á®¿ÔÀ¸¸ç, µµ½Ã ´ë±â¿À¿°°ú ¿Â½Ç°¡½º ¹èÃâÀ» Å©°Ô ÁÙÀÌ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è Á¤ºÎ¿Í µµ½Ã ÇàÁ¤Àº ±âÈÄ º¯È­ ´ëÀÀ °èȹÀÇ ÀÏȯÀ¸·Î ûÁ¤ ±³Åë ¼ö´ÜÀ» ¿ì¼±½ÃÇϰí ÀÖÀ¸¸ç, Àü±â ¹ö½º´Â ¹è±â°¡½º ¹èÃâÀÌ ÀüÇô ¾ø´Â ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. µµ½Ã°¡ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ´ë±â ÁúÀ» °³¼±Çϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, Àü±â ¹ö½º´Â Á¶¿ëÇÑ ¿îÇà, ¼ÒÀ½ °øÇØ °¨¼Ò, ³ôÀº ¿¡³ÊÁö È¿À²·Î ÀÎÇØ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÃæÀü½Ä ¹èÅ͸®¿Í ¼ö¼Ò ¿¬·áÀüÁö·Î ±¸µ¿µÇ´Â ÀÌ ¹ö½º´Â ¿¬·áºñ¿Í È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÓÀ¸·Î½á Áö¼Ó°¡´ÉÇÑ À̵¿¼ºÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, ¹èÅ͸® ±â¼úÀÇ ¹ßÀüÀ¸·Î ÃֽŠÀü±â ¹ö½º´Â ÁÖÇà°Å¸®°¡ ±æ¾îÁö°í ÃæÀü ½Ã°£ÀÌ ´ÜÃàµÇ¾î µµ½É¿¡¼­ÀÇ »ç¿ëÀÌ ´õ¿í ½Ç¿ëÀûÀÔ´Ï´Ù.

Àü±â ¹ö½º¸¦ ÇâÇÑ ¿òÁ÷ÀÓÀº Àü±âÀÚµ¿Â÷ÀÇ º¸±ÞÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê, º¸Á¶±Ý, À¯¸®ÇÑ Á¤Ã¥¿¡ ÀÇÇØ ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ À¯·´, ºÏ¹Ì, ¾Æ½Ã¾ÆÀÇ ¸¹Àº ±¹°¡¿¡¼­´Â Áö¹æÁ¤ºÎ°¡ µðÁ© Â÷·®À» Àü±âÂ÷·Î ´ëüÇϵµ·Ï Àå·ÁÇÏ´Â ÀÌ´Ï¼ÅÆ¼ºê¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÌ´Ï¼ÅÆ¼ºêÀÇ ÀÏȯÀ¸·Î °¢ µµ½Ã´Â ÃæÀü ¹× À¯Áöº¸¼ö¿¡ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¸¦ °³¹ßÇÏ¿© ´ëÁß±³ÅëÀÇ Àü±âÈ­ ÀüȯÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Àü±â ¹ö½º´Â ÀϹÝÀûÀ¸·Î ±âÁ¸ ¹ö½º¿¡ ºñÇØ ¿î¿µºñ°¡ Àú·ÅÇϰí À¯Áöº¸¼ö ºñ¿ëÀÌ Àû°Ô µé±â ¶§¹®¿¡ ȯ°æÀû Ãø¸é»Ó¸¸ ¾Æ´Ï¶ó ºñ¿ëÀý°¨ Ãø¸é¿¡¼­µµ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεé·Î ÀÎÇØ Àü±â ¹ö½º´Â Áö¼Ó°¡´ÉÇÑ µµ½Ã ±³ÅëÀÇ ¹Ì·¡¿¡¼­ Áß¿äÇÑ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Àü±â ¹ö½º ½ÃÀåÀ» ÁÖµµÇÏ´Â ±â¼ú Çõ½ÅÀ̶õ?

±â¼ú ¹ßÀüÀº Àü±â ¹ö½º ½ÃÀåÀÇ ÇÙ½ÉÀ̸ç, ÀÌ·¯ÇÑ Â÷·®À» ´ëÁß ±³Åë ½Ã½ºÅÛ¿¡¼­ º¸´Ù È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ Â÷·®À¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼úÀº ±â¼ú Çõ½ÅÀÇ ÁÖ¿ä ºÐ¾ßÀ̸ç, ¸®Æ¬ À̿ ¹èÅ͸®´Â ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í È¿À²¼ºÀ¸·Î ÀÎÇØ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù °íü ¹èÅ͸®¿Í ¸®Æ¬ Àλêö(LFP) ¹èÅ͸®ÀÇ ¹ßÀüÀº ¿¡³ÊÁö ÀúÀå °³¼±, ÃæÀü ½Ã°£ ´ÜÃà, ¾ÈÀü ±â´É °­È­¸¦ ½ÇÇöÇÏ¿© µµ½Ã ±³Åë¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ¶ÇÇÑ, Àü±â ¹ö½º°¡ ÇÏ·ç Á¾ÀÏ ¿¬¼Ó ¿îÇàÀ» À¯ÁöÇÒ ¼ö ÀÖµµ·Ï µµ½Ã Àü¿ª¿¡ ÃæÀü¼Ò ¹× ³ë¼± ³» ÃæÀü¼Ò¸¦ Æ÷ÇÔÇÑ ±Þ¼Ó ÃæÀü ÀÎÇÁ¶ó°¡ ¹èÄ¡µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃæÀü ¼Ö·ç¼ÇÀ» ÅëÇØ Àü±â ¹ö½º´Â ¼ö¿ä°¡ ¸¹Àº ³ë¼±¿¡¼­ ´õ ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°í ½Ç¿ëÀûÀ̸ç, Àå½Ã°£ ¿îÇà Áß´ÜÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

Àü±â ¹ö½º ½ÃÀåÀÇ ¶Ç ´Ù¸¥ ÁÖ¿ä Çõ½ÅÀº ¼ö¼Ò¿¬·áÀüÁö ±â¼úÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ ±â¼úÀº ¹èÅ͸® Àü±â ¸ðµ¨¿¡ ºñÇØ ´õ ±ä ÁÖÇà°Å¸®¿Í ªÀº ¿¬·á º¸±Þ ½Ã°£À¸·Î Àü±â ¹ö½º¸¦ ¿îÇàÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¿¬·áÀüÁö Àü±â ¹ö½º´Â ÃæÀü ÀÎÇÁ¶ó°¡ Á¦ÇÑµÈ Àå°Å¸® ³ë¼±À̳ª ±³¿Ü ³ë¼±¿¡¼­ ƯÈ÷ À¯¸ÁÇÕ´Ï´Ù. ÀÚµ¿ ¿îÀü ±â¼úµµ ³ë¼± È¿À²¼ºÀ» °³¼±ÇÏ°í ½Â°´ÀÇ ¾ÈÀüÀ» °­È­Çϱâ À§ÇØ Àü±â ¹ö½º¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚÀ²ÁÖÇà ±â´ÉÀº ÅÚ·¹¸Åƽ½º ¹× ¿îÇà °ü¸® ½Ã½ºÅÛ°ú °áÇÕÇÏ¿© ¹ö½º ¿îÇàÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí ÃÖÀûÈ­ÇÏ¿© ¿îÇà È¿À²À» ±Ø´ëÈ­ÇÏ°í ¿¡³ÊÁö »ç¿ë·®À» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó Ç׼ӰŸ®, ºñ¿ë, ¿îÇà ÆíÀǼº Ãø¸é¿¡¼­ ±âÁ¸ ¹ö½º¿ÍÀÇ °æÀï·ÂÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

Àü±â ¹ö½ºÀÇ ÁÖ¿ä ¿ëµµ¿Í ÀåÁ¡Àº?

Àü±â ¹ö½º´Â ÁÖ·Î µµ½Ã Áö¿ªÀÇ ´ëÁß±³Åë ³×Æ®¿öÅ©¿¡¼­ »ç¿ëµÇ¸ç, ±âÁ¸ µðÁ© ¿£Áø ¹ö½º¸¦ ´ëüÇÒ ¼ö ÀÖ´Â È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ƯÈ÷ Àα¸ ¹ÐÁý Áö¿ª¿¡¼­ÀÇ ´ë±â ¿À¿° ¹× ¿Â½Ç°¡½º ¹èÃâ °¨¼Ò¿¡ ±â¿©Çϱ⠶§¹®¿¡ µµ½Ã ±³Åë ½Ã½ºÅÛ¿¡ Àû¿ëÇÏ´Â °ÍÀº Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¶ÇÇÑ Àü±â ¹ö½º´Â µðÁ© ¹ö½ºº¸´Ù Á¶¿ëÇÏ¿© µµ½Ã ¼ÒÀ½ °øÇØ °¨¼Ò¿¡ ±â¿©ÇÏ°í µµ½Ã¹ÎÀÇ »îÀÇ ÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ´ëÁß±³Åë»Ó¸¸ ¾Æ´Ï¶ó Àü±â ¹ö½º´Â ¾ÆÀ̵鿡°Ô ±ú²ýÇÏ°í ¾ÈÀüÇÑ À̵¿¼ö´ÜÀ» Á¦°øÇϱâ À§ÇØ Çб³ÀÇ ±³Åë¼ö´ÜÀ¸·Î äÅõǴ °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ±³À°±â°üÀÌ È¯°æÀÇ Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ƯÈ÷ ȯ°æÁ¤Ã¥ÀÌ °­ÇÑ Áö¿ª¿¡¼­´Â Àü±â ½ºÄð¹ö½º ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Àü±â ¹ö½º´Â °øÇ× ¼ÅƲ ¹× ±â¾÷ ±³ÅëÆí°ú °°Àº »ó¾÷Àû ¿ëµµ·Îµµ »ç¿ëµÇ¾î °íÁ¤µÈ ³ë¼± ½Ã½ºÅÛ ³»¿¡¼­ »ç¶÷µéÀ» À̵¿½Ã۱â À§ÇÑ È¯°æ ģȭÀûÀÌ°í °æÁ¦ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. Àü±â ¹ö½º´Â ¿î¿µ ºñ¿ëÀÌ ³·°í, À¯Áöº¸¼ö°¡ ÇÊ¿ä ¾øÀ¸¸ç, ¹è±â°¡½º ¹èÃâÀÌ ¾ø±â ¶§¹®¿¡ ÀÌ·¯ÇÑ ¿ëµµ¿¡ ÀûÇÕÇϸç, ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù. ģȯ°æÀ» Áß½ÃÇÏ´Â ±â¾÷°ú ±â°üÀÌ ´Ã¾î³²¿¡ µû¶ó Àü±â ¹ö½º´Â ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃµÉ °ÍÀÔ´Ï´Ù. °ø°ø, ±³À° ¹× »ó¾÷ ºÐ¾ß¿¡¼­ Àü±â ¹ö½ºÀÇ ±¤¹üÀ§ÇÑ Àû¿ë °¡´É¼ºÀº Àü±â ¹ö½ºÀÇ ´ÙÀç´Ù´ÉÇÔÀ» °­Á¶Çϸç, µµ½Ã ¿À¿°À» ÁÙÀ̰í Áö¼Ó °¡´ÉÇÑ À̵¿¼ºÀ» °­È­ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î¼­ÀÇ ¿ªÇÒÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

Àü±â ¹ö½º ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎÀº?

Àü±â ¹ö½º ½ÃÀåÀÇ ¼ºÀåÀº ȯ°æ ±ÔÁ¦, Á¤ºÎ Àμ¾Æ¼ºê, Àü±âÀÚµ¿Â÷ ±â¼ú ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ¿Â½Ç°¡½º ¹èÃâ·® °¨Ãà¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¸¹Àº Á¤ºÎ°¡ ¹èÃâ·® °¨Ãà ¸ñÇ¥¸¦ ¼³Á¤ÇÏ°í ´ëÁß±³Åë¿¡¼­ Àü±âÀÚµ¿Â÷ »ç¿ëÀ» Àå·ÁÇÏ´Â Á¤Ã¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ°¡ Àü±â ¹ö½º Á¶´ÞÀ» À§ÇØ Á¦°øÇÏ´Â º¸Á¶±Ý, º¸Á¶±Ý ¹× Àμ¾Æ¼ºê´Â Ãʱ⠺ñ¿ëÀ» Å©°Ô ³·Ãß¾î ±³Åë ´ç±¹ÀÌ Àü±â ¹ö½º¸¦ ´õ ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¼°è ÁÖ¿ä µµ½ÃÀÇ Àú°øÇØ ±¸¿ª°ú °øÇØ ±ÔÁ¦´Â Áö¹æ ÀÚÄ¡ ´Üü°¡ ´õ ¾ö°ÝÇÑ È¯°æ ±âÁØÀ» ÁؼöÇϱâ À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó Àü±â ¹ö½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í °í¼Ó ÃæÀü ±â´É µî ¹èÅ͸® ±â¼úÀÇ Çâ»óµµ Àü±â ¹ö½º ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î Àü±â ¹ö½º´Â ´ëÁß±³Åë¿¡¼­ ÇÏ·ç Á¾ÀÏ »ç¿ëÇÏ´Â °ÍÀÌ ´õ Çö½ÇÀûÀ¸·Î °¡´ÉÇØÁ³±â ¶§¹®ÀÔ´Ï´Ù. È­¼®¿¬·áÀÇ °í°øÇàÁøÀº Àü±â ¹ö½ºÀÇ ³·Àº ¿î¿µºñ¿ë°ú ÇÔ²² Àå±âÀûÀ¸·Î µðÁ© ¹ö½º¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀÎ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÃæÀü¼Ò ¼³Ä¡ ¹× ¹èÅ͸® ÀçȰ¿ë ÇÁ·Î±×·¥ ±¸Ãà°ú °°Àº ÀÎÇÁ¶ó °³¹ßÀº Àü±â ¹ö½ºÀÇ »ç¿ëÀ» º¸´Ù Æí¸®Çϰí Áö¼Ó °¡´ÉÇÏ°Ô ¸¸µé¾î Àü±â ¹ö½ºÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº Áö¼Ó °¡´ÉÇÑ µµ½Ã À̵¿¼º¿¡¼­ Àü±â ¹ö½ºÀÇ ¿ªÇÒÀÌ ±â¼ú Çõ½Å°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ© ¸ðµÎ¿¡¼­ °­·ÂÇÏ°Ô Áö¿øµÇ¸ç È®´ëµÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.

ºÎ¹®

ÃßÁø·Â À¯Çü(BEV, PHEV, FCEV), ¼ÒºñÀÚ ºÎ¹®(Á¤ºÎ, fleet operator), ºÎǰ(¹èÅ͸®, ¸ðÅÍ, ¿¬·áÀüÁö ½ºÅÃ, ¿ïÆ®¶ó Ä¿ÆÐ½ÃÅÍ), ¿ëµµ(µµ½Ã ³», µµ½Ã °£)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 42°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electric Buses Market to Reach 3.5 Billion Units by 2030

The global market for Electric Buses estimated at 463.4 Million Units in the year 2024, is expected to reach 3.5 Billion Units by 2030, growing at a CAGR of 40.1% over the analysis period 2024-2030. BEV Propulsion Buses, one of the segments analyzed in the report, is expected to record a 42.8% CAGR and reach 2.0 Billion Units by the end of the analysis period. Growth in the PHEV Propulsion Buses segment is estimated at 38.8% CAGR over the analysis period.

The U.S. Market is Estimated at 143.3 Million Units While China is Forecast to Grow at 36.8% CAGR

The Electric Buses market in the U.S. is estimated at 143.3 Million Units in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of 458.2 Million Units by the year 2030 trailing a CAGR of 36.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 35.9% and 32.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 25.9% CAGR.

Global Electric Buses Market - Key Trends & Drivers Summarized

Why Are Electric Buses Becoming a Vital Part of Public Transportation?

Electric buses are transforming public transportation by offering an environmentally friendly alternative to diesel and gasoline-powered vehicles, contributing to significant reductions in urban air pollution and greenhouse gas emissions. Governments and city administrations worldwide are prioritizing clean transportation options as part of their climate action plans, and electric buses offer a viable solution with zero tailpipe emissions. As cities seek to reduce their carbon footprint and improve air quality, electric buses provide an attractive option due to their quiet operation, reduced noise pollution, and high energy efficiency. These buses, powered by rechargeable batteries or hydrogen fuel cells, support sustainable mobility by cutting down on fuel costs and reliance on fossil fuels. Additionally, with advancements in battery technology, modern electric buses now offer longer ranges and faster charging times, making them more practical for widespread urban use.

The push toward electric buses is further reinforced by government incentives, subsidies, and favorable policies designed to promote electric vehicle adoption. Many countries, especially in Europe, North America, and Asia, have introduced initiatives to encourage municipalities to replace diesel fleets with electric ones. As part of these initiatives, cities are also developing the infrastructure necessary for charging and maintenance, which further accelerates the shift toward electrified public transit. The demand for electric buses is thus rising not only for environmental reasons but also as a cost-saving measure, as electric buses generally have lower operating costs and require less maintenance than traditional buses. Together, these factors are establishing electric buses as a key component in the future of sustainable urban transportation.

What Technological Innovations Are Driving the Electric Buses Market?

Technological advancements are at the core of the electric bus market, making these vehicles more efficient, reliable, and economically viable for public transit systems. Battery technology is a primary area of innovation, with lithium-ion batteries being widely used due to their high energy density and efficiency. Recent advancements in solid-state batteries and lithium iron phosphate (LFP) batteries offer improved energy storage, faster charging times, and enhanced safety features, all of which are critical for urban transit. Additionally, fast-charging infrastructure, including depot and on-route charging stations, is being deployed across cities to ensure that electric buses can maintain continuous service throughout the day. These charging solutions make electric buses more accessible and practical for high-demand routes, reducing the need for prolonged downtime.

Another key innovation in the electric bus market is the development of hydrogen fuel cell technology, which enables longer-range electric buses with shorter refueling times compared to battery electric models. Fuel cell electric buses are especially promising for long-distance or suburban routes, where charging infrastructure may be limited. Autonomous driving technology is also being integrated into electric buses to improve route efficiency and enhance passenger safety. These self-driving capabilities, combined with telematics and fleet management systems, allow for real-time monitoring and optimization of bus operations, maximizing fleet efficiency and minimizing energy use. As these technologies advance, they are making electric buses more competitive with traditional buses in terms of range, cost, and operational convenience.

What Are the Primary Applications and Benefits of Electric Buses?

Electric buses are predominantly used in urban public transportation networks, where they provide an efficient and sustainable alternative to traditional diesel-powered buses. Their application in city transit systems is especially impactful, as they help reduce air pollution and greenhouse gas emissions in densely populated areas. Electric buses are also quieter than their diesel counterparts, contributing to lower noise pollution in cities, which improves the quality of life for urban residents. Beyond public transit, electric buses are increasingly being adopted for school transportation, providing children with a cleaner and safer mode of travel. As educational institutions prioritize environmental sustainability, the demand for electric school buses is growing, particularly in regions with strong environmental policies.

Additionally, electric buses are being used in commercial applications, such as airport shuttles and corporate transportation services, where they offer a green and economical option for moving people within a fixed route system. Electric buses are well-suited to these applications because they have lower operating costs, reduced maintenance needs, and no tailpipe emissions, which align with corporate sustainability goals. As more businesses and institutions emphasize green initiatives, the adoption of electric buses is likely to increase in these sectors. The broad applicability of electric buses across public, educational, and commercial domains highlights their versatility and underscores their role as an essential element in reducing urban pollution and enhancing sustainable mobility.

What Is Driving Growth in the Electric Buses Market?

The growth in the electric buses market is driven by several factors, including environmental regulations, government incentives, and advances in electric vehicle technology. The global shift toward reducing greenhouse gas emissions has led many governments to establish emissions reduction targets and policies that encourage the use of electric vehicles in public transportation. Subsidies, grants, and incentives offered by governments for electric bus procurement have significantly lowered the initial costs, making them more accessible for transit authorities. Additionally, low-emission zones and pollution control regulations in major cities worldwide are further propelling the demand for electric buses, as municipalities seek to comply with stricter environmental standards.

Improvements in battery technology, such as higher energy density and faster charging capabilities, are also contributing to the growth of the electric bus market, as these advancements make electric buses more feasible for all-day use in public transit. The rising cost of fossil fuels, coupled with the low operational costs of electric buses, makes them a cost-effective alternative to diesel buses in the long term. Infrastructure development, including the installation of charging stations and the establishment of battery recycling programs, is further supporting the adoption of electric buses by making their use more convenient and sustainable. Together, these drivers highlight the expanding role of electric buses in sustainable urban mobility, with strong support from both technological innovations and regulatory frameworks.

SCOPE OF STUDY:

The report analyzes the Electric Buses market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Propulsion Type (BEV, PHEV, FCEV); Consumer Segment (Government, Fleet Operator); Component (Battery, Motor, Fuel Cell Stack, Ultra-capacitor); Application (Intracity, Intercity)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â