¼¼°èÀÇ ÀÚµ¿ ¸Ó½Å·¯´×(AutoML) ½ÃÀå
Automated Machine Learning (AutoML)
»óǰÄÚµå : 1656235
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 210 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,372,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,117,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÚµ¿ ¸Ó½Å·¯´×(AutoML) ¼¼°è ½ÃÀåÀº 2030³â±îÁö 109¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚµ¿ ¸Ó½Å·¯´×(AutoML) ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 38.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 109¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ AutoML ¼Ö·ç¼ÇÀº CAGR 34.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼®±â°£ Á¾·á½Ã¿¡´Â 56¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AutoML ¼­ºñ½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼®±â°£ µ¿¾È CAGR 44.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 2,860¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 36.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚµ¿ ¸Ó½Å·¯´×(AutoML) ½ÃÀåÀº 2024³â¿¡ 4¾ï 2,860¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 15¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼®±â°£ÀÎ 2024-2030³â CAGRÀº 36.2%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼®±â°£ µ¿¾È CAGRÀº °¢°¢ 34.0%¿Í 33.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 25.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿ ¸Ó½Å·¯´×(AutoML) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÀÚµ¿ ¸Ó½Å·¯´×(AutoML)Àº º¹ÀâÇÏ°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ¸Ó½Å·¯´× ¸ðµ¨ °³¹ß ÀÛ¾÷À» ÀÚµ¿È­Çϰí È¿À²È­Çϱâ À§ÇØ °í¾ÈµÈ ÀΰøÁö´É ºÐ¾ßÀÇ Çõ½ÅÀ¸·Î ¶°¿À¸£°í ÀÖÀ¸¸ç, AutoMLÀÇ °¡Àå Å« ¸Å·ÂÀº ºñÀü¹®°¡µµ ¸Ó½Å·¯´×À» »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ°í ¸ðµ¨ °³¹ßÀÇ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¸ðµ¨ °³¹ßÀÇ È¿À²¼ºÀ» ³ôÀÌ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. AutoMLÀº µ¥ÀÌÅÍ Àüó¸®, ¸ðµ¨ ¼±ÅÃ, ¸Å°³º¯¼ö Æ©´×°ú °°Àº ¹ø°Å·Î¿î ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­ÇÔÀ¸·Î½á ¸Ó½Å·¯´× ¸ðµ¨À» º¸´Ù ºü¸£°Ô ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ´Â Àü¹® Áö½ÄÀÇ Çʿ伺À» ÁÙ¿© AI¸¦ ¹ÎÁÖÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó AI °³¹ß Áֱ⸦ Å©°Ô ´ÜÃà½ÃÄÑ ±â¾÷ÀÌ ½ÃÀå º¯È­¿Í »õ·Î¿î µ¥ÀÌÅÍ¿¡ ºü¸£°Ô ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

AutoMLÀÇ ±Þ¼ÓÇÑ È®»êÀº ¸Ó½Å·¯´× ¸ðµ¨ÀÇ º¹À⼺°ú ¼÷·ÃµÈ µ¥ÀÌÅÍ °úÇÐÀÚ ºÎÁ·À» ºñ·ÔÇÑ ¸î °¡Áö °­·ÂÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾ÖÇø®ÄÉÀ̼ÇÀÌ °íµµÈ­µÊ¿¡ µû¶ó ÀÌ·¯ÇÑ ¸ðµ¨À» È¿°úÀûÀ¸·Î °³¹ß ¹× Á¶Á¤ÇÏ´Â µ¥ ÇÊ¿äÇÑ Àü¹® Áö½Äµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, AutoMLÀº Ư¡ ¹× ¾Ë°í¸®Áò ¼±ÅÃ, ÇÏÀÌÆÛÆÄ¶ó¹ÌÅÍ Æ©´×°ú °°Àº Áß¿äÇÑ ÀÛ¾÷À» °£¼ÒÈ­ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ°í ±â¼ú ¸®¼Ò½º°¡ ºÎÁ·ÇÑ Á¶Á÷ÀÌ °í±Þ ¸Ó½Å·¯´×À» ¼öÇàÇÏ´Â µ¥ ÀÖ¾î À庮À» Å©°Ô ³·Ãä´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ °úÇÐÀÚ ºÎÁ·À¸·Î ÀÎÇØ ±â¼ú ¹è°æÀ» ÃÖ¼ÒÈ­ÇÑ »ç¿ëÀÚµéÀÌ Àü¹®°¡¸¸ÀÌ ¼öÇàÇÏ´ø ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ´Â µµ±¸ÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ÎÁÖÈ­´Â °æÀï ȯ°æ¿¡¼­ AI Àü·«À» ½ÃÀÛÇϰųª °¡¼ÓÈ­ÇϰíÀÚ ÇÏ´Â Á¶Á÷¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¶ÇÇÑ, AutoML°ú AI ¹× ÄÄÇ»ÆÃ ÆÄ¿öÀÇ ¹ßÀüÀº Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ Ç÷§Æû°úÀÇ ½Ã³ÊÁö È¿°ú¿Í ÇÔ²² ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß·Î Àû¿ë ¹üÀ§¸¦ ³ÐÇô°¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº º¹ÀâÇÑ ¸ðµ¨ ½ÇÇà¿¡ ÇʼöÀûÀÎ È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º¸¦ Á¦°øÇÏ¿© ÇコÄɾî, ±ÝÀ¶, ¼Ò¸Å µîÀÇ ºÐ¾ß¿¡¼­ ±ÞÁõÇÏ´Â ¿¹Ãø ºÐ¼® ¼ö¿ä¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡¿¡µµ ºÒ±¸Çϰí, AutoMLÀÇ µµÀÔ¿¡´Â ¸ðµ¨ÀÌ Á¤È®Çϰí À±¸®ÀûÀ¸·Î Àû¿ëµÇ°í ÀÖ´ÂÁö È®ÀÎÇϱâ À§ÇØ ¼÷·ÃµÈ ½Ç¹«ÀÚ°¡ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇØ¾ß ÇÏ´Â µîÀÇ °úÁ¦°¡ ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ÀÇ»ç°áÁ¤ÀÇ ÀáÀçÀû ÆíÇ⼺, AI ½Ã½ºÅÛÀÇ Àü¹ÝÀûÀÎ Åõ¸í¼º¿¡ ´ëÇÑ ¿ì·Áµµ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, AutoMLÀÌ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥ ÀÌ·¯ÇÑ À±¸®Àû, ½Ç¿ëÀû ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÌ AutoMLÀÇ ÀáÀç·ÂÀ» ÃæºÐÈ÷ ½ÇÇöÇÏ°í ¾÷°è Àü¹Ý¿¡¼­ Ã¥ÀÓ°¨ ÀÖ´Â »ç¿ëÀ» º¸ÀåÇÏ´Â µ¥ ÀÖ¾î °¡Àå Áß¿äÇÕ´Ï´Ù. Ã¥ÀÓ°¨ ÀÖ´Â »ç¿ëÀ» º¸ÀåÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù.

ºÎ¹®

±¸¼º¿ä¼Ò(¼Ö·ç¼Ç, ¼­ºñ½º), ¾ÖÇø®ÄÉÀ̼Ç(µ¥ÀÌÅÍ Ã³¸®, ÇÇó ¿£Áö´Ï¾î¸µ, ¸ðµ¨ ¼±ÅÃ, ¸ðµ¨ ¾Ó»óºí, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç), »ê¾÷º°(BFSI, ¼Ò¸Å/E-Commerce, ÇコÄɾî/»ý¸í°úÇÐ, IT/ITeS, Åë½Å, Á¦Á¶, ÀÚµ¿Â÷ ¹× ¿î¼Û, ±âŸ »ê¾÷)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 23°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Automated Machine Learning (AutoML) Market to Reach US$10.9 Billion by 2030

The global market for Automated Machine Learning (AutoML) estimated at US$1.5 Billion in the year 2024, is expected to reach US$10.9 Billion by 2030, growing at a CAGR of 38.8% over the analysis period 2024-2030. AutoML Solutions, one of the segments analyzed in the report, is expected to record a 34.7% CAGR and reach US$5.6 Billion by the end of the analysis period. Growth in the AutoML Services segment is estimated at 44.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$428.6 Million While China is Forecast to Grow at 36.2% CAGR

The Automated Machine Learning (AutoML) market in the U.S. is estimated at US$428.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.5 Billion by the year 2030 trailing a CAGR of 36.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 34.0% and 33.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 25.3% CAGR.

Global Automated Machine Learning (AutoML) Market - Key Trends and Drivers Summarized

Automated Machine Learning (AutoML) is emerging as a transformative force in the field of artificial intelligence, designed to automate and streamline the often complex and time-consuming tasks of developing machine learning models. The key appeal of AutoML lies in its ability to make machine learning more accessible to non-experts and to enhance the efficiency of model development, making it a critical tool as industries increasingly seek to leverage AI capabilities. By automating the labor-intensive processes of data preprocessing, model selection, and parameter tuning, AutoML enables a more rapid deployment of machine learning models. This not only democratizes AI by reducing the need for specialized knowledge but also significantly expedites the AI development cycle, allowing businesses to quickly adapt to market changes and new data.

The rapid adoption of AutoML is driven by several compelling factors, chief among them the growing complexity of machine learning models and the pressing shortage of skilled data scientists. As machine learning applications become more sophisticated, the expertise required to effectively develop and tune these models escalates. AutoML addresses this challenge by simplifying critical tasks such as feature and algorithm selection and hyperparameter tuning, substantially lowering the barrier to advanced machine learning for organizations without deep technical resources. Additionally, the shortage of data scientists has catalyzed the need for tools that empower users with minimal technical background to undertake tasks traditionally reserved for experts. This democratization is crucial for organizations striving to initiate or accelerate their AI strategies in a competitive business environment.

Moreover, the integration of AutoML with advancements in AI and computing power, along with its synergy with cloud computing platforms, is expanding its application across various industries. This integration provides scalable computing resources essential for running complex models and supports the burgeoning demand for predictive analytics in sectors like healthcare, finance, and retail. Despite these advantages, the deployment of AutoML brings challenges, including the need for ongoing oversight by experienced practitioners to ensure that models are applied correctly and ethically. Concerns around data privacy, potential biases in decision-making, and the overall transparency of AI systems also pose significant hurdles. As AutoML continues to evolve, addressing these ethical and practical challenges will be paramount to fully realizing its potential and ensuring its responsible use across industries.

SCOPE OF STUDY:

The report analyzes the Automated Machine Learning (AutoML) market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Application (Data Processing, Feature Engineering, Model Selection, Model Ensembling, Other Applications); Vertical (BFSI, Retail & eCommerce, Healthcare & Life Sciences, IT & ITeS, Telecommunications, Manufacturing, Automotive & Transportation, Other Verticals)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 23 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â