¼¼°èÀÇ ¹°·ù¿ë »ý¼ºÇü ÀΰøÁö´É ½ÃÀå
Generative Artificial Intelligence in Logistics
»óǰÄÚµå : 1644197
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 130 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,198,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,594,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹°·ù¿ë »ý¼ºÇü ÀΰøÁö´É ½ÃÀåÀº 2030³â±îÁö 70¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 13¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ¹°·ù¿ë »ý¼ºÇü ÀΰøÁö´É ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 32.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 70¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¹°·ù »ý¼ºÇü AI ¼Ö·ç¼ÇÀº CAGR 34.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 42¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹°·ù »ý¼ºÇü AI ¼ÒÇÁÆ®¿þ¾î ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 29.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 4,130¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 30.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ¹°·ù¿ë »ý¼ºÇü ÀΰøÁö´É ½ÃÀåÀº 2024³â¿¡ 3¾ï 4,130¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 11¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 30.7%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 30.0%¿Í 28.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 22.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹°·ù¿ë »ý¼ºÇü ÀΰøÁö´É ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

»ý¼ºÇü AI´Â ¹°·ù ¾÷¹«¸¦ ¾î¶»°Ô ÀçÁ¤ÀÇÇϰí Àִ°¡?

»ý¼ºÇü ÀΰøÁö´ÉÀº °ø±Þ¸Á Àü¹ÝÀÇ È¿À²¼º, Á¤È®¼º, ÀÇ»ç°áÁ¤À» °­È­ÇÏ´Â Çõ½ÅÀûÀÎ ¹æ¹ýÀ» µµÀÔÇÏ¿© ¹°·ù¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¹°·ù ½Ã½ºÅÛÀº ¼öÀÛ¾÷ ¸ð´ÏÅ͸µ°ú ´ÜÆíÀûÀÎ ÇÁ·Î¼¼½º¿¡ ÀÇÁ¸ÇϹǷΠºñÈ¿À², Áö¿¬, ³ôÀº ºñ¿ëÀ¸·Î ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. »ý¼ºÇü AI´Â ¿¹Ãø ºÐ¼®, °í±Þ ¸ðµ¨¸µ, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ ÅëÇØ ¹°·ù ¿î¿µÀÇ °¢ ´Ü°è¸¦ ÃÖÀûÈ­ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ±â¾÷Àº ¼ö¿ä¸¦ ¿¹ÃøÇϰí, Àç°í °ü¸®¸¦ °£¼ÒÈ­Çϸç, ¿ªµ¿ÀûÀÎ ½ÃÀå ¼ö¿ä¿¡ ¸ÂÃß¾î ÀÚ¿øÀ» Á¶Á¤ÇÏ¿© ¿î¿µ ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹Ì·¡ ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇÏ°í ¿¹ÃøÇÏ´Â AIÀÇ ´É·ÂÀ» ÅëÇØ ¹°·ù ÇÁ·Î¹ÙÀÌ´õ´Â ³¯¾¾ º¯È­, °ø±Þ ºÎÁ·, ÁöÁ¤ÇÐÀû ±äÀå°ú °°Àº ÀáÀçÀû È¥¶õ¿¡ ´Éµ¿ÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ ¹ßÀü°ú ´õºÒ¾î, »ý¼ºÇü ÀΰøÁö´É(AI)´Â ½Ç½Ã°£ ±³Åë µ¥ÀÌÅÍ, Àϱ⠿¹º¸, ¿¬·á ¼Òºñ ÆÐÅÏÀ» ºÐ¼®ÇÏ¿© °æ·Î ÃÖÀûÈ­ ¹× Â÷·® °ü¸®¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ´õ ºü¸¥ ¹è¼ÛÀ» ½ÇÇöÇÏ´Â µ¿½Ã¿¡ ¹èÃâ·®°ú ÀÚ¿ø »ç¿ë·®À» ÁÙ¿© ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. â°í ÀÚµ¿È­ ¿ª½Ã AI°¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÇÑ ºÐ¾ß·Î, º¸´Ù ºü¸¥ ºÐ·ù, Æ÷Àå ¹× ¹è¼Û ÇÁ·Î¼¼½º¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» ÅëÇØ »ý¼ºÇü AI´Â ¹°·ùÀÇ È¿À²¼º°ú ½Å·Ú¼º¿¡ ´ëÇÑ »õ·Î¿î º¥Ä¡¸¶Å©¸¦ ¼³Á¤Çϰí ÀÖ½À´Ï´Ù.

±â¾÷ÀÌ ¹°·ù¿¡ Á¦³Ê·² AI¸¦ ºü¸£°Ô µµÀÔÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¹°·ù ºÐ¾ß¿¡¼­ »ý¼ºÇü AI°¡ ºü¸£°Ô µµÀԵǰí ÀÖ´Â ÀÌÀ¯´Â ºñ¿ë Àý°¨, ¿î¿µ È¿À²¼º ¹× °í°´ ¸¸Á·µµ Çâ»óÀ» ÅëÇØ ÃøÁ¤ °¡´ÉÇÑ °¡Ä¡¸¦ Á¦°øÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ±â¾÷Àº Â÷·®, ±â°è µî ÀÚ»êÀÇ ¿¹Áöº¸ÀüÀ» °³¼±Çϱâ À§ÇØ »ý¼ºÇü AI¸¦ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, IoT ¼¾¼­¿Í °ú°Å À¯Áöº¸¼ö ±â·ÏÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀáÀçÀûÀÎ Àåºñ °íÀåÀ» »çÀü¿¡ ÆÄ¾ÇÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ´Ù¿îŸÀÓ°ú È¥¶õÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀº Áß¿äÇÑ ÀÎÇÁ¶óÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ°í ¿î¿µ À§ÇèÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.

´ÙÀ̳ª¹Í ÇÁ¶óÀ̽Ì(Dynamic Pricing) ¿ª½Ã »ý¼ºÇü AI°¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â ºÐ¾ß Áß ÇϳªÀÔ´Ï´Ù. ¹°·ù ÇÁ·Î¹ÙÀÌ´õ´Â ¼ö¿ä ¹× °ø±Þ µ¿Çâ, °æÀï Àü·«, ½ÃÀå »óȲÀ» ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© ¸ÅÃâ°ú °æÀï·ÂÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖµµ·Ï °¡°Ý ¸ðµ¨À» Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ý¼ºÇü AI´Â ¸ÂÃãÇü ¹è¼Û ¿É¼Ç, ½Ç½Ã°£ ¹è¼Û »óÅ ¾÷µ¥ÀÌÆ® µî Ãʰ³ÀÎÈ­ ¼­ºñ½º¸¦ ÅëÇØ °í°´ Âü¿©¸¦ °­È­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº °í°´ Ãæ¼ºµµ¸¦ ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó °æÀïÀÌ Ä¡¿­ÇÑ ½ÃÀå¿¡¼­ ºñÁî´Ï½º¸¦ Â÷º°È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº »ý¼ºÇü AI¸¦ Á÷Á¢ÀûÀÎ ¾÷¹« °³¼±°ú Àå±âÀûÀÎ Çõ½ÅÀ» À§ÇÑ Àü·«Àû ÅõÀÚ·Î ÀνÄÇϰí ÀÖ½À´Ï´Ù.

¼¼´ëÇü AI°¡ ¼¼°è °ø±Þ¸Á ¹®Á¦¸¦ ±Øº¹ÇÏ´Â µ¥ ¾î¶»°Ô µµ¿òÀÌ µÇ´Â°¡?

¼¼°è ¹°·ù ºÎ¹®Àº ÆÒµ¥¹Í, ÁöÁ¤ÇÐÀû ºÐÀï, ±âÈÄ º¯È­·Î ÀÎÇÑ °ø±Þ¸Á È¥¶õ µî Àü·Ê ¾ø´Â ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. AI ±â¹Ý ½Ã½ºÅÛÀº ÀáÀçÀûÀΠȥ¶õÀ» ±¤¹üÀ§ÇÏ°Ô ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖÀ¸¹Ç·Î ±â¾÷ÀÌ ¿¹»óÄ¡ ¸øÇÑ »óȲ¿¡ ´ëºñÇϰí ÀÌ¿¡ µû¶ó °ø±Þ¸Á ³×Æ®¿öÅ©¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´Â °èȹÀ» ¼¼¿ï ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. °ø±Þ¸Á ³×Æ®¿öÅ©¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¹°·ù ÇÁ·Î¹ÙÀÌ´õ´Â ¾ÇÁ¶°Ç¿¡¼­µµ ¿î¿µÀ» À¯ÁöÇϰí, Áö¿¬À» ÁÙÀ̸ç, °í°´ÀÇ ½Å·Ú¸¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ Áö¼Ó°¡´É¼ºÀº ¹°·ù ºÐ¾ß¿¡¼­ Áß¿äÇÑ ÃÊÁ¡ÀÌ µÇ°í ÀÖÀ¸¸ç, »ý¼ºÇü AI´Â ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. AI ±â¹Ý ¹°·ù ¼Ö·ç¼ÇÀº °æ·Î¸¦ ÃÖÀûÈ­Çϰí, ¿¬·á ¼Òºñ¸¦ ÁÙÀ̰í, ÀûÀç °èȹÀ» °³¼±ÇÔÀ¸·Î½á ź¼Ò¹ßÀÚ±¹À» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ºí·ÏüÀΰú AIÀÇ ÅëÇÕÀº °ø±Þ¸Á Àü¹ÝÀÇ Åõ¸í¼º°ú Ã¥ÀÓ¼ºÀ» °­È­ÇÏ´Â Áß¿äÇÑ µ¿ÇâÀ̱⵵ ÇÕ´Ï´Ù. ÀÌ´Â Á¦Ç°ÀÌ À±¸®ÀûÀ¸·Î Á¶´ÞµÇ°í Ãë±ÞµÇ´Â °ÍÀ» º¸ÀåÇϰí, ȯ°æÀû, »çȸÀûÀ¸·Î Ã¥ÀÓ°¨ ÀÖ´Â ¹°·ù °üÇà¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ºÎÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº »ý¼ºÇü AI°¡ ´ç¸éÇÑ ºñÁî´Ï½º °úÁ¦¸¦ ÇØ°áÇÏ´Â °Í»Ó¸¸ ¾Æ´Ï¶ó ¹°·ù »ê¾÷ÀÇ Àå±âÀûÀÎ º¯È­¸¦ ÁÖµµÇϰí ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.

¹°·ù ½ÃÀå¿¡¼­ »ý¼ºÇü AIÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

¹°·ù ºÐ¾ßÀÇ »ý¼ºÇü ÀΰøÁö´É ½ÃÀåÀÇ ¼ºÀåÀº ÀÚµ¿È­ ¼ö¿ä Áõ°¡, E-Commerce Ȱµ¿ Áõ°¡, ºñ¿ë È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¹°·ù ¼Ö·ç¼ÇÀÇ Çʿ伺, IoT ±â±â º¸±Þ ¹× AI ½Ã½ºÅÛ°úÀÇ ÅëÇÕ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, ½Ç½Ã°£ ÃßÀû, ¸ð´ÏÅ͸µ ¹× ¿¹Ãø ºÐ¼®ÀÌ °¡´ÉÇØÁ® °ø±Þ¸Á °¡½Ã¼º°ú ÀÇ»ç°áÁ¤À» Å©°Ô °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿Â¶óÀÎ ¼Ò¸Å¾÷ÀÇ È®´ë¿Í ½Å¼ÓÇÏ°í ¾ÈÁ¤ÀûÀÎ ¹è¼Û¿¡ ´ëÇÑ ±â´ë´Â ¶ó½ºÆ®¸¶ÀÏ ¹°·ù¸¦ °­È­Çϱâ À§ÇÑ »ý¼ºÇü AIÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¼ÒºñÀÚ ÇൿÀ» ºÐ¼®ÇÏ°í ¹è¼Û ¼Ö·ç¼ÇÀ» ¸ÂÃãÈ­ÇÒ ¼ö ÀÖ´Â »ý¼ºÇü AIÀÇ ´É·Âµµ ±× È®»ê¿¡ Å« ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¹°·ù ÇÁ·Î¹ÙÀÌ´õµéÀº AI¸¦ Ȱ¿ëÇØ ¼­ºñ½º¸¦ °³ÀÎÈ­ÇÏ°í °í°´ À¯ÁöÀ²À» ³ôÀÌ¸ç ºü¸£°Ô º¯È­ÇÏ´Â ½ÃÀå ¼ö¿ä¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎ ±¸»ó°ú AI ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ´Â ¹°·ùÀÇ µðÁöÅÐ Çõ½Å¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ÇÔ²² ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ Á¾ÇÕÀûÀ¸·Î ¹°·ùÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, »ý¼ºÇü AIÀÇ ÇʼöÀûÀÎ ¿ªÇÒÀ» °­Á¶Çϰí ÀÖÀ¸¸ç, Á¡Á¡ ´õ º¹ÀâÇØÁö´Â °æÀï ȯ°æ ¼Ó¿¡¼­ ±â¾÷ÀÌ ¼º°øÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¹°·ù ¼Ö·ç¼Ç, ¹°·ù ¼ÒÇÁÆ®¿þ¾î), ¹èÆ÷(Ŭ¶ó¿ìµå ±â¹Ý ¹èÆ÷, ¿ÂÇÁ·¹¹Ì½º ¹èÆ÷)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 34°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Generative Artificial Intelligence in Logistics Market to Reach US$7.0 Billion by 2030

The global market for Generative Artificial Intelligence in Logistics estimated at US$1.3 Billion in the year 2024, is expected to reach US$7.0 Billion by 2030, growing at a CAGR of 32.5% over the analysis period 2024-2030. Logistics Generative AI Solutions, one of the segments analyzed in the report, is expected to record a 34.5% CAGR and reach US$4.2 Billion by the end of the analysis period. Growth in the Logistics Generative AI Software segment is estimated at 29.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$341.3 Million While China is Forecast to Grow at 30.7% CAGR

The Generative Artificial Intelligence in Logistics market in the U.S. is estimated at US$341.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.1 Billion by the year 2030 trailing a CAGR of 30.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 30.0% and 28.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 22.4% CAGR.

Global Generative Artificial Intelligence in Logistics Market – Key Trends & Drivers Summarized

How Is Generative AI Redefining Logistics Operations?

Generative Artificial Intelligence is transforming logistics by introducing innovative methods to enhance efficiency, accuracy, and decision-making across the supply chain. Traditional logistics systems often suffer from inefficiencies, delays, and high costs due to their dependence on manual oversight and fragmented processes. Generative AI addresses these challenges by utilizing predictive analytics, advanced modeling, and real-time data processing to optimize every stage of logistics operations. This technology enables companies to forecast demand, streamline inventory management, and minimize operational costs by aligning resources with dynamic market needs. AI’s ability to simulate and predict future scenarios allows logistics providers to respond proactively to potential disruptions, such as weather changes, supply shortages, or geopolitical tensions.

In addition to these advancements, generative AI is improving route optimization and fleet management by analyzing real-time traffic data, weather forecasts, and fuel consumption patterns. This ensures faster deliveries while reducing environmental impact through lower emissions and resource use. Warehouse automation is another critical area where AI is making a significant impact, enabling faster sorting, packing, and delivery processes. With these capabilities, generative AI is setting a new benchmark for efficiency and reliability in logistics.

Why Are Businesses Rapidly Adopting Generative AI in Logistics?

The rapid adoption of generative AI in logistics can be attributed to its ability to deliver measurable value through cost savings, operational efficiency, and enhanced customer satisfaction. Businesses are leveraging generative AI to improve predictive maintenance of their assets, such as vehicles and machinery. By analyzing data from IoT sensors and historical maintenance records, AI can identify potential equipment failures before they occur, preventing costly downtimes and disruptions. This proactive approach extends the lifespan of critical infrastructure and minimizes operational risks.

Dynamic pricing is another area where generative AI is making a significant impact. By analyzing supply-demand trends, competitor strategies, and market conditions in real time, logistics providers can adjust their pricing models to maximize revenue and competitiveness. Additionally, generative AI enhances customer engagement through hyper-personalized services, such as tailored delivery options and real-time shipment updates. These capabilities not only boost customer loyalty but also differentiate businesses in a highly competitive market. Companies are increasingly viewing generative AI as a strategic investment that drives both immediate operational improvements and long-term innovation.

How Does Generative AI Help Overcome Global Supply Chain Challenges?

The global logistics sector has faced unprecedented challenges, including supply chain disruptions caused by pandemics, geopolitical conflicts, and climate change. Generative AI is emerging as a critical solution to these challenges, offering resilience and adaptability in uncertain times. AI-driven systems can simulate a wide range of potential disruptions, allowing companies to prepare contingency plans and optimize supply chain networks accordingly. This ensures that logistics providers can maintain operations even under adverse conditions, reducing delays and maintaining customer trust.

Moreover, sustainability is becoming a key focus in logistics, and generative AI plays a vital role in achieving these goals. By optimizing routes, reducing fuel consumption, and improving load planning, AI-driven logistics solutions significantly lower carbon footprints. Blockchain integration with AI is another important trend, enhancing transparency and accountability across the supply chain. This ensures that products are sourced and handled ethically, meeting the growing demand for environmentally and socially responsible logistics practices. Together, these advancements demonstrate how generative AI is not only addressing immediate operational challenges but also driving the long-term transformation of the logistics industry.

What Is Driving the Growth of Generative AI in the Logistics Market?

The growth in the Generative Artificial Intelligence in Logistics market is driven by several factors, including the increasing demand for automation, rising e-commerce activity, and the need for cost-efficient and sustainable logistics solutions. The proliferation of IoT devices and their integration with AI systems enable real-time tracking, monitoring, and predictive analytics, significantly improving supply chain visibility and decision-making. The expansion of online retail and the expectation of fast, reliable deliveries have further fueled the adoption of generative AI to enhance last-mile logistics.

Generative AI’s ability to analyze consumer behavior and tailor delivery solutions has also played a significant role in its widespread adoption. Logistics providers are leveraging AI to personalize services, improve customer retention, and meet the demands of a rapidly evolving market. Additionally, government initiatives and investments in AI infrastructure, along with the growing focus on digital transformation in logistics, are accelerating market growth. These factors collectively highlight the indispensable role of generative AI in shaping the future of logistics, enabling businesses to thrive in an increasingly complex and competitive landscape.

SCOPE OF STUDY:

The report analyzes the Generative Artificial Intelligence in Logistics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Logistics Solutions, Logistics Software); Deployment (Cloud-based Deployment, On-Premise Deployment)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â