산림 화재 예측 분야 AI 시장 분석 및 예측(-2034년) : 유형, 제품, 서비스, 기술, 구성 요소, 용도, 배포, 최종 사용자, 기능
AI for Forest Fire Prediction Market Analysis and Forecast to 2034: Type, Product, Services, Technology, Component, Application, Deployment, End User, Functionality
상품코드 : 1762069
리서치사 : Global Insight Services
발행일 : 2025년 07월
페이지 정보 : 영문 342 Pages
 라이선스 & 가격 (부가세 별도)
US $ 4,750 ₩ 7,047,000
PDF & Excel (Single User License) help
PDF, Excel 보고서를 1명만 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF, Excel 이용 범위와 동일합니다.
US $ 5,750 ₩ 8,531,000
PDF & Excel (Site License) help
PDF, Excel 보고서를 동일 사업장의 모든 분이 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다.
US $ 6,750 ₩ 10,014,000
PDF & Excel (Enterprise License) help
PDF, Excel 보고서를 동일 기업의 전 세계 모든 분이 이용할 수 있는 라이선스입니다. 텍스트의 Copy & Paste 가능합니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF, Excel 이용 범위와 동일합니다.


한글목차

산림 화재 예측 분야 AI 시장은 2024년 25억 달러에서 2034년에는 75억 달러로 확대되며 CAGR은 약 10.6%를 나타낼 것으로 예측됩니다. 머신러닝 알고리즘과 위성 이미지를 활용하여 환경 변수를 분석하여 예측 정확도를 향상시킵니다.

산업 개요 :

세계의 관세와 지정학적 역학은 특히 동아시아의 산림 화재 예측 분야 AI 시장에 큰 영향을 미치고 있습니다. 생산 강화를 위한 전략적 축족을 촉구하고 있습니다. 미국과 중국의 긴장 속에서 지정학적 취약성에 직면하고 있습니다. 중동의 분쟁은 에너지 가격을 올릴 가능성에 따라 이러한 상황을 더욱 복잡하게 만들고, 그 결과 세계의 운영 비용과 투자 전략에 영향을 미칩니다.

시장 세분화
유형 예측 분석, 머신러닝, 딥러닝
제품 소프트웨어 솔루션, 하드웨어 장치, 데이터 분석 플랫폼
서비스 컨설팅 서비스, 구현 서비스, 관리 서비스, 지원 및 유지보수
기술 원격 감지, GIS 매핑, 위성 이미지, AI 알고리즘, 클라우드 컴퓨팅, 빅 데이터 분석, IoT 통합
구성 요소 데이터 수집 센서, 처리 장치, 통신 모듈, 사용자 인터페이스
용도 화재 감지, 위험 평가, 자원 할당, 대피 계획
배포 클라우드 기반, 온프레미스, 하이브리드
최종 사용자 정부기관, 환경단체, 산림청, 연구기관
기능 실시간 모니터링, 예측 모델링, 의사 결정 지원, 경보 시스템

시장 개요 :

산림 화재 예측 분야 AI 시장은 주로 효과적인 화재 관리와 환경 보전 요구 증가에 따라 큰 성장을 이루고 있습니다. 소프트웨어 분야는 예측 정밀도와 조기 발견 능력을 향상시키는 고급 알고리즘과 머신러닝 모델을 통해 시장의 주요 부문으로 부상하고 있습니다. 이러한 이점은 데이터 중심의 의사결정과 실시간 위성 이미지 및 날씨 데이터의 통합을 강조하는 업계 동향에 의해 지원됩니다. AI를 탑재한 드론과 IoT 센서 등의 신흥 하위 부문이 기세를 늘리고 있으며, 데이터 수집과 실시간 감시에 혁명을 일으켜 대응 시간과 자원 배분을 개선할 가능성을 제공합니다. 이러한 기술은 기존 소프트웨어 기능을 강화하고 시장 전체의 효율성을 높이는 시너지 효과를 창출하는 태세를 갖추고 있습니다. 기후 변화가 치열해짐에 따라 산림화재 예측의 혁신적인 솔루션에 대한 수요가 높아지고 이러한 신흥 하위부문의 성장을 더욱 촉진할 것으로 예측됩니다.

충돌 개요 :

산림 화재 예측 분야 AI 주도형 솔루션은 확장성과 실시간 데이터 처리 능력을 제공하는 클라우드 기반 플랫폼이 주로 주도하고 있습니다. 적극적인 재해 관리 프로토콜을 통해 시장 도입의 주도적 지위를 유지하고 있습니다. 한편, 아시아태평양은 정부의 대처나 빈발하는 산림 화재에 대처하기 위한 AI 기술에 대한 투자로 현저한 성장을 이루고 있습니다. 특히 북미와 유럽에서의 규제의 영향은 업계 표준을 설정하고 윤리적인 AI의 전개를 보장하는 데 있어서 매우 중요합니다. 기후 변화 완화 전략의 관련성이 높아짐에 따라 강력한 성장이 예측되고 있습니다.

주요 동향 및 촉진요인 :

산림 화재 예측 분야 AI 시장은 기후 변화와 그 치명적인 영향에 대한 의식이 높아지고 역동적인 성장을 이루고 있습니다. 또한 시장은 AI 연구개발에 대한 투자 증가를 목격하고 있으며, 보다 세련되고 적응가능한 모델의 작성에 주력하고 있습니다. 세계의 산림 화재 빈도와 강도 증가는 첨단 예측 기술의 필요성을 강조하고 있습니다.

억제와 도전 :

산림 화재 예측 분야 AI 시장에는 몇 가지 임박한 억제요인과 과제가 있습니다. 고도의 AI 기술의 도입에 수반하는 고비용이, 특히 개발 도상 지역에 있어서, 보급의 큰 장벽이 되고 있습니다. 부족하고 업무 효율성이 제한되어 있습니다. 또한, 기존의 산림 관리 기술과 AI 시스템을 통합하는 것은 복잡하고 시간이 오래 걸립니다. 이해 관계자가 법적·윤리적 배려의 복잡한 상황을 네비게이트해야 하기 때문에 큰 장애물이 됩니다.

목차

제1장 산림 화재 예측 분야 AI 시장 개요

제2장 주요 요약

제3장 시장에 관한 중요 인사이트

제4장 산림 화재 예측 분야 AI 시장 전망

제5장 산림 화재 예측 분야 AI 시장 전략

제6장 산림 화재 예측 분야 AI 시장 규모

제7장 산림 화재 예측 분야 AI 시장 : 유형별

제8장 산림 화재 예측 분야 AI 시장 : 제품별

제9장 산림 화재 예측 분야 AI 시장 : 서비스별

제10장 산림 화재 예측 분야 AI 시장 : 기술별

제11장 산림화재 예측 분야 AI 시장 : 구성 요소별

제12장 산림 화재 예측 분야 AI 시장 : 용도별

제13장 하야시노 화재 예측 분야 AI 시장 : 배포별

제14장 산림 화재 예측 분야 AI 시장 : 최종 사용자별

제15장 산림 화재 예측 분야 AI 시장 : 기능별

제16장 산림 화재 예측 분야 AI 시장 : 지역별

제17장 경쟁 구도

제18장 기업 프로파일

KTH
영문 목차

영문목차

AI for Forest Fire Prediction Market is anticipated to expand from $2.5 billion in 2024 to $7.5 billion by 2034, growing at a CAGR of approximately 10.6%. AI for Forest Fire Prediction Market encompasses solutions leveraging artificial intelligence to forecast forest fires, enhancing early warning systems and response strategies. These technologies utilize machine learning algorithms and satellite imagery to analyze environmental variables, improving prediction accuracy. As climate change intensifies fire risks, demand for AI-driven predictive tools is surging, fostering advancements in data integration, real-time analytics, and cross-agency collaboration to mitigate wildfire impacts.

Industry Overview:

Global tariffs and geopolitical dynamics are significantly influencing the AI for Forest Fire Prediction Market, particularly in East Asia. Japan and South Korea, reliant on US technology, are experiencing increased costs due to tariffs, prompting a strategic pivot towards enhancing domestic AI capabilities and semiconductor production. China's focus on self-reliance intensifies as it navigates export limitations on advanced AI technologies, fostering indigenous innovation. Taiwan, central to global semiconductor supply, faces geopolitical vulnerabilities amidst US-China tensions. The overarching AI market maintains robust growth, driven by heightened environmental concerns and technological advancements. By 2035, the market's trajectory will hinge on resilient supply chains and regional partnerships. Middle East conflicts further complicate this landscape by potentially elevating energy prices, thereby affecting operational costs and investment strategies globally.

Market Segmentation
TypePredictive Analytics, Machine Learning, Deep Learning
ProductSoftware Solutions, Hardware Devices, Data Analytics Platforms
ServicesConsulting Services, Implementation Services, Managed Services, Support and Maintenance
TechnologyRemote Sensing, GIS Mapping, Satellite Imagery, AI Algorithms, Cloud Computing, Big Data Analytics, IoT Integration
ComponentData Collection Sensors, Processing Units, Communication Modules, User Interfaces
ApplicationFire Detection, Risk Assessment, Resource Allocation, Evacuation Planning
DeploymentCloud-Based, On-Premise, Hybrid
End UserGovernment Agencies, Environmental Organizations, Forestry Departments, Research Institutions
FunctionalityReal-Time Monitoring, Predictive Modelling, Decision Support, Alert Systems

Market Overview:

The AI for Forest Fire Prediction Market is experiencing significant growth, primarily driven by the increasing need for effective fire management and environmental conservation. The software segment emerges as the leading market segment, owing to its advanced algorithms and machine learning models that enhance predictive accuracy and early detection capabilities. This dominance is underpinned by industry trends emphasizing data-driven decision-making and the integration of real-time satellite imagery and meteorological data. Emerging sub-segments such as AI-powered drones and IoT sensors are gaining momentum, offering potential to revolutionize data collection and real-time monitoring, thereby improving response times and resource allocation. These technologies are poised to augment the existing software capabilities, creating a synergistic effect that enhances overall market efficacy. As climate change intensifies, the demand for innovative solutions in forest fire prediction is expected to rise, further propelling the growth of these emerging sub-segments.

Geographical Overview:

The AI for forest fire prediction market is witnessing varied growth dynamics across different regions. North America is at the forefront, driven by advanced AI research and substantial government funding for forest management. The presence of leading tech firms further accelerates AI adoption in this region. Europe is not far behind, with significant investments in AI research enhancing predictive capabilities for forest fires. The region's stringent environmental regulations also encourage the use of AI for sustainable forest management. In Asia Pacific, the market is expanding rapidly. This growth is fueled by technological advancements and increasing awareness of environmental protection. Governments in this region are investing heavily in AI to mitigate the adverse effects of forest fires. Latin America is emerging as a promising market, with a growing focus on AI-driven solutions to address frequent forest fire incidents. The region's rich biodiversity necessitates innovative approaches for fire prediction and management. The Middle East & Africa are gradually recognizing the potential of AI in forest fire prediction. Investment in AI technologies is on the rise, driven by the need to protect valuable forest resources. As these regions continue to develop their technological infrastructure, the market for AI in forest fire prediction is expected to gain momentum, offering lucrative opportunities for stakeholders.

Competition Overview:

AI-driven solutions for forest fire prediction are predominantly led by cloud-based platforms, which offer scalability and real-time data processing capabilities. These solutions are increasingly favored due to their ability to integrate vast datasets from satellite imagery and IoT devices. North America maintains a leadership position in market adoption, attributed to its advanced technological infrastructure and proactive disaster management protocols. Meanwhile, the Asia-Pacific region is witnessing significant growth, spurred by government initiatives and investments in AI technologies to combat frequent forest fire incidents. Key industry players, including Microsoft, Google, and IBM, are actively enhancing their AI capabilities to capture a larger share of this burgeoning market. Competitive dynamics are shaped by technological innovations and strategic partnerships among tech giants and environmental agencies. Regulatory influences, particularly in North America and Europe, are pivotal in setting industry standards and ensuring ethical AI deployment. The market outlook is optimistic, with projections indicating robust growth driven by advancements in AI algorithms and the increasing relevance of climate change mitigation strategies. However, challenges such as data privacy concerns and the need for substantial infrastructure investments remain. Nonetheless, the ongoing evolution of AI and machine learning technologies presents a fertile ground for future market expansion.

Recent Developments:

The AI for Forest Fire Prediction Market has witnessed notable developments over the past three months. IBM has announced a strategic partnership with the National Forest Service, leveraging its AI technology to enhance predictive models for forest fire management, aiming to reduce response times and improve firefighting efforts. Google has launched a new AI-driven platform, FireGuard, designed to predict forest fires with increased accuracy, using satellite imagery and machine learning algorithms. In a significant regulatory update, the European Union has introduced new guidelines to incorporate AI technologies in forest management, emphasizing the importance of predictive analytics in mitigating fire risks. Meanwhile, a joint venture between Amazon Web Services and a leading environmental research institute has been formed to develop cloud-based AI solutions for real-time forest fire monitoring. Lastly, a startup named FireWatch has secured $25 million in Series B funding to expand its AI capabilities, focusing on early detection and prevention of forest fires globally. These advancements underscore the crucial role of AI in enhancing forest fire prediction and management.

Key Companies:

Wildfire AI, Fire Cast Technologies, Pyro Predict, Flame Guard AI, Inferno Analytics, Blaze Insight, Forest Guard AI, Fire Watch Systems, Ember Predict, Ignis AI Solutions, Wildfire Vision, Burn Aware AI, Fire Alert Innovations, Pyro Sense, Flare Predict, Forest Fire Intelligence, Blaze Detect AI, Fire Forecast Systems, Inferno Guard, Wildfire Pro

Key Trends and Drivers:

The AI for Forest Fire Prediction Market is experiencing dynamic growth, driven by heightened awareness of climate change and its catastrophic impacts. Key trends include the integration of machine learning algorithms with satellite imagery to enhance prediction accuracy. This technological convergence allows for real-time monitoring and early warning systems, significantly reducing response times and potential damage. Another trend is the collaboration between government agencies and tech companies to develop robust predictive models. These partnerships are essential in pooling resources and expertise to address the complex nature of forest fires. Additionally, the market is witnessing increased investment in AI research and development, focusing on creating more sophisticated and adaptable models. Drivers of this market include the urgent need to protect biodiversity and human life from devastating fires. Governments are prioritizing funding for AI-driven solutions as part of broader disaster management strategies. Furthermore, the increasing frequency and intensity of forest fires globally underscore the necessity for advanced predictive technologies. Opportunities abound in emerging markets where forest fire incidents are on the rise, offering fertile ground for the expansion of AI solutions.

Restraints and Challenges:

The AI for Forest Fire Prediction Market encounters several pressing restraints and challenges. Firstly, the scarcity of high-quality, real-time data hampers the accuracy and reliability of AI models. This data scarcity is exacerbated by the vast and remote nature of forested areas. Secondly, the high costs associated with deploying advanced AI technologies present a significant barrier to widespread adoption, particularly in developing regions. Thirdly, there is a notable lack of skilled personnel capable of developing and maintaining sophisticated AI systems, which limits operational efficiency. Additionally, the integration of AI systems with existing forest management practices can be complex and time-consuming. Finally, regulatory and privacy concerns surrounding data collection and usage pose significant hurdles, as stakeholders must navigate a complex landscape of legal and ethical considerations. These challenges collectively hinder the full potential of AI in forest fire prediction.

Research Scope:

Our research scope provides comprehensive market data, insights, and analysis across a variety of critical areas. We cover Local Market Analysis, assessing consumer demographics, purchasing behaviors, and market size within specific regions to identify growth opportunities. Our Local Competition Review offers a detailed evaluation of competitors, including their strengths, weaknesses, and market positioning. We also conduct Local Regulatory Reviews to ensure businesses comply with relevant laws and regulations. Industry Analysis provides an in-depth look at market dynamics, key players, and trends. Additionally, we offer Cross-Segmental Analysis to identify synergies between different market segments, as well as Production-Consumption and Demand-Supply Analysis to optimize supply chain efficiency. Our Import-Export Analysis helps businesses navigate global trade environments by evaluating trade flows and policies. These insights empower clients to make informed strategic decisions, mitigate risks, and capitalize on market opportunities.

TABLE OF CONTENTS

1: AI for Forest Fire Prediction Market Overview

2: Executive Summary

3: Premium Insights on the Market

4: AI for Forest Fire Prediction Market Outlook

5: AI for Forest Fire Prediction Market Strategy

6: AI for Forest Fire Prediction Market Size

7: AI for Forest Fire Prediction Market, by Type

8: AI for Forest Fire Prediction Market, by Product

9: AI for Forest Fire Prediction Market, by Services

10: AI for Forest Fire Prediction Market, by Technology

11: AI for Forest Fire Prediction Market, by Component

12: AI for Forest Fire Prediction Market, by Application

13: AI for Forest Fire Prediction Market, by Deployment

14: AI for Forest Fire Prediction Market, by End User

15: AI for Forest Fire Prediction Market, by Functionality

16: AI for Forest Fire Prediction Market, by Region

17: Competitive Landscape

18: Company Profiles

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기