¼¼°èÀÇ À½¼º ºÐ¼® ½ÃÀå
Voice Analytics
»óǰÄÚµå : 1594945
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 78 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,056,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,169,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

À½¼º ºÐ¼® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 33¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 11¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°è À½¼º ºÐ¼® ½ÃÀåÀº 2023-2030³â°£ ¿¬Æò±Õ 17.6%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇϸç 2030³â¿¡´Â 33¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼Ö·ç¼Ç ±¸¼º ¿ä¼Ò´Â CAGR 16.9%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 21¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼­ºñ½º ±¸¼º ¿ä¼Ò ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 18.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ¾à 2¾ï 9,040¸¸ ´Þ·¯, Áß±¹Àº CAGR 23.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸Á

¹Ì±¹ÀÇ À½¼º ºÐ¼® ½ÃÀå ±Ô¸ð´Â 2023³â 2¾ï 9,040¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 23.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³»°í, 2030³â±îÁö 8¾ï 1,930¸¸ ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 13.0%¿Í 14.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 13.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è À½¼º ºÐ¼® ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

À½¼º ºÐ¼®À̶õ ¹«¾ùÀ̸ç, ¿Ö Çö´ë ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¿¡ ÇʼöÀûÀΰ¡?

À½¼º ºÐ¼®Àº °í°´ ¼­ºñ½º ÀüÈ­, ÀÎÅͺä, ȸÀÇ µîÀÇ À½¼º ¼Ò½º¿¡¼­ À½¼º ¾ð¾î¸¦ ĸó, ó¸®, ºÐ¼®ÇÏ¿© ÀÇ¹Ì ÀÖ´Â ÅëÂû·ÂÀ» ÃßÃâÇÏ´Â ±â¼úÀ» ¸»ÇÕ´Ï´Ù. À½¼º ºÐ¼® ½Ã½ºÅÛÀº ÀÚ¿¬¾î ó¸®(NLP), ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML)À» »ç¿ëÇÏ¿© °¨Á¤ ½Äº°, Ű¿öµå °¨Áö, À½¼º ÇÊ»ç, °¨Á¤ ºÐ¼®À» ÅëÇØ ´ëÈ­¿¡¼­ ±ÍÁßÇÑ Á¤º¸¸¦ ¹ß°ßÇÕ´Ï´Ù. À½¼º ºÐ¼®Àº °í°´ ¼­ºñ½º, ±ÝÀ¶ ¼­ºñ½º, ÀÇ·á, Åë½Å, ¼Ò¸Å µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ °í°´ °æÇè Çâ»ó, ¾÷¹« È¿À²¼º °³¼±, ÄÄÇöóÀ̾𽺠¹× ¸®½ºÅ© °ü¸® Áö¿ø µî¿¡ ±¤¹üÀ§ÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

À½¼º ºÐ¼®ÀÇ Á߿伺Àº ±â¾÷ÀÌ °í°´ÀÇ ¿ä±¸¸¦ ´õ Àß ÀÌÇØÇϰí, ¼­ºñ½º Á¦°øÀ» °³¼±Çϰí, ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖµµ·Ï À½¼º ´ëÈ­¸¦ ½Ç¿ëÀûÀÎ µ¥ÀÌÅÍ·Î º¯È¯ÇÒ ¼ö ÀÖ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. À½¼º ºÐ¼®Àº ¾îÁ¶, À½¼º ÆÐÅÏ ¹× °¨Á¤À» ºÐ¼®ÇÏ¿© °í°´ÀÇ ºÒ¸¸, ¸¸Á·µµ ¹× Àǵµ¸¦ ÆÄ¾ÇÇÏ°í °í°´ÀÇ Çൿ°ú ¼±È£µµ¸¦ ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ±â¾÷Àº °³¼± ±âȸ¸¦ ÆÄ¾ÇÇϰí, ¸¶ÄÉÆÃ Àü·«À» Á¶Á¤Çϰí, ÄÄÇöóÀ̾𽺸¦ ¸ð´ÏÅ͸µÇϰí, ÆÇ¸Å ÀüȯÀ²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. °í°´ °æÇèÀÌ °æÀï ½ÃÀå¿¡¼­ Áß¿äÇÑ Â÷º°È­ ¿ä¼Ò·Î ¶°¿À¸£¸é¼­ À½¼º ºÐ¼®Àº °í°´ Áß½ÉÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí, Ä¿¹Â´ÏÄÉÀ̼ÇÀ» °³¼±Çϸç, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» Áö¿øÇÏ´Â ÇʼöÀûÀÎ µµ±¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº À½¼º ºÐ¼® ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº À½¼º ºÐ¼® ¼Ö·ç¼ÇÀÇ Á¤È®¼º, ¼Óµµ, ´Ù¾ç¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ ´Ù¾çÇÑ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹ßÀü Áß Çϳª´Â °í±Þ ÀÚ¿¬¾î ó¸®(NLP)¿Í µö·¯´× ¾Ë°í¸®ÁòÀÇ ÅëÇÕÀ¸·Î À½¼º ºÐ¼® ½Ã½ºÅÛÀÌ ¹®¸ÆÀ» ÀÌÇØÇϰí, Àǵµ¸¦ °¨ÁöÇϰí, ¾ð¾îÀÇ ¹Ì¹¦ÇÑ º¯È­¸¦ ÀνÄÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù´Â Á¡ÀÔ´Ï´Ù. À̸¦ ÅëÇØ À½¼º ºÐ¼®Àº ¿©·¯ È­ÀÚ, ¹è°æ ¼ÒÀ½, ´Ù¾çÇÑ ¾ï¾ç µîÀÇ ¹®Á¦¿¡¼­µµ º¹ÀâÇÑ °¨Á¤À» ½Äº°Çϰí Àǵµ¸¦ ºÐ¼®ÇÏ¿© º¸´Ù Á¤È®ÇÑ ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Çâ»ó½ÃÄ×½À´Ï´Ù.

½Ç½Ã°£ À½¼º ºÐ¼®ÀÌ µµÀԵǸ鼭 ÀÌ ±â¼úÀÇ ±â´Éµµ È®À嵯½À´Ï´Ù. ÅëÈ­°¡ ³¡³­ ÈÄ ºÐ¼®ÇÏ´Â ±âÁ¸ÀÇ ÅëÈ­ ºÐ¼®°ú ´Þ¸®, ½Ç½Ã°£ À½¼º ºÐ¼®Àº ½Ç½Ã°£ ´ëÈ­ Áß¿¡µµ Áï°¢ÀûÀÎ Çǵå¹éÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ °í°´ ¼­ºñ½º ´ã´çÀÚ´Â °í°´ÀÇ °¨Á¤, ¾îÁ¶, ±ä±Þµµ¿¡ µû¶ó ´ëÀÀÀ» Á¶Á¤ÇÏ¿© ±àÁ¤ÀûÀÎ °á°ú¸¦ ¾òÀ» °¡´É¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ºÐ¼®Àº ÄÁÅü¾ÅÍ, ¿µ¾÷, À§±â °ü¸®¿Í °°ÀÌ Àû½Ã¿¡ ÅëÂû·ÂÀÌ °í°´ ¸¸Á·µµ¿Í ºñÁî´Ï½º ¼º°ú¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â ºÐ¾ß¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

À½¼º ºÐ¼®°ú ÀΰøÁö´É(AI)ÀÇ ÅëÇÕÀº º¸´Ù °³ÀÎÈ­µÈ °í°´ ÀÀ´ë·Î À̾îÁö°í ÀÖÀ¸¸ç, AI ±â¹Ý ºÐ¼®Àº °¨Á¤Àû ½ÅÈ£¿Í ¸»ÅõÀÇ º¯È­¸¦ °¨ÁöÇÏ¿© ½Ã½ºÅÛÀÌ º¸´Ù °ø°¨ÀûÀÌ°í ¸ÂÃãÈ­µÈ ÀÀ´äÀ» Á¦°øÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, À½¼º ºÐ¼®ÀÇ ÇÏÀ§ ÁýÇÕÀÎ À½¼º »ýü ÀνÄÀº È­ÀÚ ÀÎÁõ¿¡ »ç¿ëµÇ¾î ±ÝÀ¶ °Å·¡, °í°´ Áö¿ø ¹× ¾×¼¼½º Á¦¾î¿¡¼­ ¾ÈÀüÇÏ°í ¸¶Âû ¾ø´Â ÀÎÁõÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý À½¼º ºÐ¼® ¼Ö·ç¼ÇÀÇ µîÀåÀ¸·Î ÀÌ ±â¼úÀÇ µµ´Þ ¹üÀ§¿Í È®À强ÀÌ ´õ¿í È®´ëµÇ¾ú½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀº ºü¸¥ µµÀÔ, Àú·ÅÇÑ ºñ¿ë, ±âÁ¸ °í°´°ü°è°ü¸®(CRM) ½Ã½ºÅÛ°úÀÇ ¼Õ½¬¿î ÅëÇÕÀ» ÅëÇØ ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ À½¼º ºÐ¼®À» Ȱ¿ëÇÏ¿© ´õ ±íÀº ÅëÂû·Â°ú °í°´ Âü¿©¸¦ °­È­ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº À½¼º ºÐ¼®ÀÇ ±â´ÉÀ» È®ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó AI ÀÚµ¿È­, ½Ç½Ã°£ Ä¿¹Â´ÏÄÉÀ̼Ç, °³ÀÎÈ­µÈ °í°´ °æÇè µî ´Ù¾çÇÑ Æ®·»µå¿Íµµ ºÎÇÕÇÕ´Ï´Ù.

´Ù¾çÇÑ ºÐ¾ß¿¡¼­ À½¼º ºÐ¼®ÀÇ »õ·Î¿î ¿ëµµ´Â ¹«¾ùÀΰ¡?

À½¼º ºÐ¼®Àº °í°´ ÀλçÀÌÆ® °­È­, ¼­ºñ½º ǰÁú Çâ»ó, ¾÷¹« È¿À²È­ µîÀÇ ¿ä±¸¿¡ ÈûÀÔ¾î ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Ȱ¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÄÁÅü¾ÅÍ ºÐ¾ß¿¡¼­´Â °í°´°úÀÇ ´ëÈ­ ¸ð´ÏÅ͸µ, ÅëÈ­ ǰÁú ºÐ¼®, »ó´ã¿ø ¼º°ú Æò°¡¿¡ À½¼º ºÐ¼®ÀÌ ³Î¸® Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ±ä ´ë±â ½Ã°£, ÀæÀº ÅëÈ­ ¿¬°á, ¹ÌÇØ°á ¹®ÀÇ µî Áß¿äÇÑ ¹®Á¦¸¦ ÆÄ¾ÇÇÏ¿© Äݼ¾ÅͰ¡ ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­ÇÏ°í »ó´ã¿ø ±³À°À» °­È­ÇÏ¸ç °í°´ ¸¸Á·µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. À½¼º ºÐ¼®Àº °¨Á¤°ú ¾îÁ¶¸¦ ºÐ¼®ÇÏ¿© ¿¡½ºÄ÷¹ÀÌ¼Ç À§ÇèÀÌ ÀÖ´Â ÄÝÀ» ½Äº°ÇÏ¿© Àû½Ã¿¡ °³ÀÔÇϰí ù ¹øÂ° ÇØ°á·üÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

±ÝÀ¶ ¼­ºñ½º ºÐ¾ß¿¡¼­ À½¼º ºÐ¼®Àº »ç±â °¨Áö, ÄÄÇöóÀ̾𽺠¸ð´ÏÅ͸µ, °í°´ Áö¿ø¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀºÇà°ú ±ÝÀ¶±â°üÀº À½¼º ºÐ¼®À» ÅëÇØ »ç±â ¡Èİ¡ ÀÖ´ÂÁö ÅëÈ­¸¦ ¸ð´ÏÅ͸µÇϰí, À½¼º »ýü ÀνÄÀ» ÅëÇØ °í°´ÀÇ ½Å¿øÀ» È®ÀÎÇϸç, MiFID II, Dodd-Frank, GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤) µîÀÇ ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇϱâ À§ÇØ À½¼º ºÐ¼®À» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶È¸»ç´Â Ű¿öµå, °¨Á¤, ¹ßÈ­ ÆÐÅÏÀÇ ÀÌ»ó ¡Èĸ¦ ºÐ¼®ÇÏ¿© Àǽɽº·¯¿î ÇൿÀ» °¨ÁöÇÏ°í º¸¾ÈÀ» °­È­ÇÏ´Â µ¿½Ã¿¡ °í°´ °ü°è¿Í ¼­ºñ½º Á¦°øÀ» °­È­ÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ß¿¡¼­ À½¼º ºÐ¼®Àº ȯÀÚ Âü¿©µµ¸¦ ³ôÀ̰í, Á¤½Å°Ç°­À» ¸ð´ÏÅ͸µÇϸç, ¿ø°Ý ÀÇ·á »óÈ£ÀÛ¿ëÀ» Áö¿øÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÇ·áÁø°ú ȯÀÚÀÇ ´ëÈ­¸¦ ºÐ¼®Çϸé ȯÀÚÀÇ ¿ì·Á »çÇ×, Ä¡·á °èȹ Áؼö ¹× Àü¹ÝÀûÀÎ ¸¸Á·µµ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À½¼º ºÐ¼®Àº ȯÀÚÀÇ ½ºÆ®·¹½º¿Í ºÒ¾ÈÀ» ÆÄ¾ÇÇÏ¿© Á¤½Å °Ç°­ Æò°¡ ¹× °³ÀÔÀ» Áö¿øÇÏ´Â ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¼Ò¸Å ¾÷°è¿¡¼­´Â À½¼º ºÐ¼®À» ÅëÇØ °í°´ÀÇ ¼±È£µµ¸¦ ÀÌÇØÇϰí, ÆÇ¸Å ½Ã ±¸¸Å ½ÅÈ£¸¦ ÆÄ¾ÇÇϸç, À½¼º ´ëÈ­¿¡¼­ ¾òÀº °í°´ Çǵå¹éÀ» ºÐ¼®ÇÏ¿© ¸¶ÄÉÆÃ Ä·ÆäÀÎÀ» °­È­ÇÏ´Â µ¥ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

Àλç(HR)¿¡¼­ À½¼º ºÐ¼®Àº ¸éÁ¢ Æò°¡, Á÷¿ø Çǵå¹é ºÐ¼®, ÆÀ Ä¿¹Â´ÏÄÉÀÌ¼Ç ¸ð´ÏÅ͸µ¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. HR ÆÀÀº ¸éÁ¢¿¡¼­ Èĺ¸ÀÚÀÇ Æ¯¼º°ú ¿ª·®À» ÆÄ¾ÇÇϰí, Çǵå¹é ¼¼¼Ç¿¡¼­ Á÷¿øÀÇ °¨Á¤À» °¨ÁöÇϰí, ȸÀÇ Áß ÆÀ ¿ªÇÐÀ» ¸ð´ÏÅ͸µÇÏ¿© ÀÎÀç °ü¸® ¹× Á¶Á÷ ¹®È­ °³¹ß¿¡ ÀÖ¾î ´õ ³ªÀº ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­ À½¼º ºÐ¼®ÀÇ È°¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀº À½¼º ºÐ¼®ÀÌ °í°´°úÀÇ »óÈ£ ÀÛ¿ëÀ» º¯È­½Ã۰í, ÄÄÇöóÀ̾𽺸¦ °­È­Çϸç, °³ÀÎÈ­µÈ °æÇèÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.

À½¼º ºÐ¼® ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

À½¼º ºÐ¼® ½ÃÀåÀÇ ¼ºÀåÀº °í°´ °æÇè Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, AI ±â¹Ý ±â¼ú äÅà Áõ°¡, ¾÷°è Àü¹ÝÀÇ ÄÄÇöóÀ̾𽺠¿ä±¸ »çÇ× Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â °í°´ Áß½ÉÀÇ ºñÁî´Ï½º Àü·«¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±â¾÷ÀÌ °í°´ ¸¸Á·µµ¿Í Ãæ¼ºµµ¸¦ ³ôÀ̱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, À½¼º ºÐ¼®Àº °í°´ÀÇ °íÅë, ¼±È£µµ, ÇൿÀ» ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÏ´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ´ëÈ­ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ¼­ºñ½º °³¼± ¿µ¿ªÀ» ÆÄ¾ÇÇϰí, º¸´Ù È¿°úÀûÀÎ ¸¶ÄÉÆÃ Ä·ÆäÀÎÀ» ¼³°èÇϰí, °í°´ÀÇ ¿ä±¸¿¡ ¸Â°Ô Á¦Ç° ¹× ¼­ºñ½º¸¦ Á¶Á¤ÇÏ¿© °í°´ À¯Áö ¹× ¸ÅÃâ Áõ´ë¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI ±â¹Ý ±â¼úÀÇ µµÀÔÀº À½¼º ºÐ¼®ÀÇ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÚ¿¬¾î ó¸®(NLP), µö·¯´×, °¨Á¤ °¨ÁöÀÇ ¹ßÀüÀ¸·Î À½¼º ºÐ¼®Àº °í°´°úÀÇ ´ëÈ­¿¡¼­ ¹ß»ýÇÏ´Â ´µ¾Ó½º¸¦ º¸´Ù Á¤È®Çϰí È¿°úÀûÀ¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. AIÀÇ ÅëÇÕÀº ÀÚµ¿È­¸¦ Áö¿øÇÏ¿© ±â¾÷ÀÌ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ º¸´Ù È¿À²ÀûÀ¸·Î ºÐ¼®Çϰí, ¼öÀÛ¾÷À» ÁÙÀ̰í, ´ëÈ­ Áß ½Ç½Ã°£ Çǵå¹éÀ» Á¦°øÇÒ ¼ö ÀÖµµ·Ï µ½°í, °í°´ °¨Á¤°ú ÇൿÀ» ÀÌÇØÇÏ´Â °ÍÀÌ °æÀï ¿ìÀ§ÀÇ ÇÙ½ÉÀÎ ÄÁÅü¾ÅÍ, ±ÝÀ¶ ¼­ºñ½º, ÇコÄɾî, ¼Ò¸Å¾÷¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ Çǵå¹éÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤), PCI-DSS, MiFID II, HIPAA¿Í °°Àº ±ÔÁ¦ Áؼö ¿ä°Çµµ À½¼º ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤), PCI-DSS, MiFID II, HIPAA¿Í °°Àº ±ÔÁ¦·Î ÀÎÇØ ±â¾÷Àº ÄÄÇöóÀ̾ð½º, µ¥ÀÌÅÍ º¸¾È ¹× À§Çè °ü¸®¸¦ À§ÇØ °í°´°úÀÇ »óÈ£ ÀÛ¿ëÀ» ¸ð´ÏÅ͸µÇÏ°í ±â·ÏÇØ¾ß ÇÕ´Ï´Ù. ¸ð´ÏÅ͸µÇÏ°í ±â·ÏÇØ¾ß ÇÕ´Ï´Ù. À½¼º ºÐ¼® ¼Ö·ç¼ÇÀº ÀÚµ¿ ³ìÃë, Ű¿öµå °Ë»ö, ÄÄÇöóÀ̾𽺠°¨»ç µîÀÇ ±â´ÉÀ» Á¦°øÇÏ¿© ±â¾÷ÀÌ ³ôÀº ¼öÁØÀÇ °í°´ ¼­ºñ½º¸¦ À¯ÁöÇϸ鼭 ±ÔÁ¦ ±âÁØÀ» ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú SaaS(Software as a Service) ¸ðµ¨ÀÇ ¼ºÀåÀ¸·Î ÀÎÇØ À½¼º ºÐ¼®Àº ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡¼­ º¸´Ù ½±°Ô Á¢±Ù °¡´ÉÇϰí È®Àå °¡´ÉÇÏ¸ç ºñ¿ë È¿À²ÀûÀ̾ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

AI, ½Ç½Ã°£ ºÐ¼®, Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀÇ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ¸·Î À½¼º ºÐ¼® ½ÃÀåÀº °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿Í ´õºÒ¾î °í°´ °æÇè, ±ÔÁ¦ ´ëÀÀ, AI ±â¹Ý ÀλçÀÌÆ®¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ À½¼º ºÐ¼®Àº ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» ÃÖÀûÈ­Çϰí, °í°´ ´ëÀÀÀ» °­È­Çϸç, ¾÷¹« È¿À²¼ºÀ» °³¼±ÇϰíÀÚ ÇÏ´Â Çö´ë ±â¾÷¿¡°Ô ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼Ö·ç¼Ç, ¼­ºñ½º), ¹èÆ÷(¿ÂÇÁ·¹¹Ì½º, Ŭ¶ó¿ìµå), »ê¾÷º°(ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI), ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡, ÇコÄɾî, Åë½Å, Á¤ºÎ ¹× ±¹¹æ, ±âŸ »ê¾÷)·Î ±¸ºÐµË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 12°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Voice Analytics Market to Reach US$3.3 Billion by 2030

The global market for Voice Analytics estimated at US$1.1 Billion in the year 2023, is expected to reach US$3.3 Billion by 2030, growing at a CAGR of 17.6% over the analysis period 2023-2030. Solutions Component, one of the segments analyzed in the report, is expected to record a 16.9% CAGR and reach US$2.1 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 18.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$290.4 Million While China is Forecast to Grow at 23.2% CAGR

The Voice Analytics market in the U.S. is estimated at US$290.4 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$819.3 Million by the year 2030 trailing a CAGR of 23.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.0% and 14.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 13.8% CAGR.

Global Voice Analytics Market - Key Trends & Drivers Summarized

What Is Voice Analytics, and Why Is It So Crucial in Modern Business Intelligence?

Voice Analytics refers to the technology that captures, processes, and analyzes spoken words from audio sources like customer service calls, interviews, and meetings to extract meaningful insights. Using natural language processing (NLP), artificial intelligence (AI), and machine learning (ML), voice analytics systems can identify emotions, detect keywords, transcribe speech, and provide sentiment analysis, uncovering valuable information from conversations. Voice analytics is widely used in industries such as customer service, financial services, healthcare, telecommunications, and retail to improve customer experience, enhance operational efficiency, and support compliance and risk management.

The importance of voice analytics lies in its ability to transform spoken interactions into actionable data, enabling businesses to better understand customer needs, improve service delivery, and optimize processes. By analyzing tone, speech patterns, and sentiment, voice analytics can reveal customer frustrations, satisfaction, and intent, providing a deeper understanding of customer behavior and preferences. This allows businesses to identify opportunities for improvement, tailor marketing strategies, monitor compliance, and boost sales conversion rates. As customer experience becomes a key differentiator in competitive markets, voice analytics has emerged as an essential tool for driving customer-centric growth, improving communication, and supporting data-driven decision-making.

How Are Technological Advancements Shaping the Voice Analytics Market?

Technological advancements have significantly enhanced the accuracy, speed, and versatility of Voice Analytics solutions, driving innovation across various sectors. One of the major developments is the integration of advanced natural language processing (NLP) and deep learning algorithms, which allow voice analytics systems to understand context, detect intent, and recognize subtle variations in language. This has improved the ability of voice analytics to identify complex sentiments, analyze intent, and provide more accurate insights, even in challenging scenarios with multiple speakers, background noise, or varied accents.

The adoption of real-time voice analytics has also expanded the capabilities of the technology. Unlike traditional call analysis, which often occurs after the call has ended, real-time voice analytics can provide instant feedback during live interactions. This enables customer service agents to adjust their responses based on customer sentiment, tone, or urgency, improving the chances of positive outcomes. Real-time analytics is particularly beneficial for sectors like contact centers, sales, and crisis management, where timely insights can make a significant difference in customer satisfaction and business outcomes.

The integration of voice analytics with artificial intelligence (AI) has also led to more personalized customer interactions. AI-driven analytics can detect emotional cues and variations in speech, enabling systems to deliver more empathetic and tailored responses. Additionally, voice biometrics, a subset of voice analytics, is being used for speaker verification, enabling secure, frictionless authentication for financial transactions, customer support, and access control. The rise of cloud-based voice analytics solutions has further expanded the reach and scalability of the technology. Cloud-based platforms offer faster deployment, lower costs, and easy integration with existing customer relationship management (CRM) systems, enabling businesses of all sizes to leverage voice analytics for deeper insights and enhanced customer engagement. These technological innovations not only expand the capabilities of voice analytics but also align with broader trends toward AI-driven automation, real-time communication, and personalized customer experiences.

What Are the Emerging Applications of Voice Analytics Across Different Sectors?

Voice Analytics is finding expanding applications across a wide range of industries, driven by the need for deeper customer insights, improved service quality, and operational efficiency. In the contact center sector, voice analytics is widely used to monitor customer interactions, analyze call quality, and assess agent performance. It helps identify key issues, such as long wait times, frequent call transfers, and unresolved queries, enabling call centers to optimize workflows, enhance agent training, and improve customer satisfaction. By analyzing sentiment and tone, voice analytics can also help managers identify calls at risk of escalation, allowing for timely intervention and increased first-call resolution rates.

In the financial services sector, voice analytics plays a crucial role in fraud detection, compliance monitoring, and customer support. Banks and financial institutions use voice analytics to monitor calls for signs of fraud, verify customer identity through voice biometrics, and ensure compliance with regulatory requirements like MiFID II, Dodd-Frank, and GDPR. By analyzing keywords, sentiment, and anomalies in speech patterns, financial firms can detect suspicious activity and improve security while also identifying opportunities to enhance customer relationships and service delivery.

In healthcare, voice analytics is used to improve patient engagement, monitor mental health, and support telemedicine interactions. Analyzing conversations between healthcare providers and patients allows for better understanding of patient concerns, adherence to treatment plans, and overall satisfaction. Additionally, voice analytics can identify stress or anxiety in patients, providing insights that support mental health assessments and interventions. In retail, voice analytics is used to understand customer preferences, identify buying signals during sales calls, and enhance marketing campaigns by analyzing customer feedback from voice interactions.

In human resources (HR), voice analytics is applied to interview assessments, employee feedback analysis, and team communication monitoring. It helps HR teams identify candidates’ traits and competencies during interviews, detect employee sentiment in feedback sessions, and monitor team dynamics during meetings, supporting better decision-making in talent management and organizational culture development. The expanding applications of voice analytics across these sectors highlight its critical role in transforming customer interactions, enhancing compliance, and driving personalized experiences.

What Drives Growth in the Voice Analytics Market?

The growth in the Voice Analytics market is driven by several factors, including increasing demand for improved customer experience, rising adoption of AI-driven technologies, and growing compliance requirements across industries. One of the primary growth drivers is the rising need for customer-centric business strategies. As companies aim to enhance customer satisfaction and loyalty, voice analytics provides the insights needed to understand customer pain points, preferences, and behaviors in real-time. By analyzing conversations, businesses can identify areas for service improvement, design more effective marketing campaigns, and tailor products or services to meet customer demands, driving customer retention and sales growth.

The adoption of AI-driven technologies has significantly contributed to the growth of voice analytics. Advancements in natural language processing (NLP), deep learning, and emotion detection have made voice analytics more accurate and effective in identifying nuances in customer conversations. This has led to broader adoption in contact centers, financial services, healthcare, and retail, where understanding customer sentiment and behavior is key to competitive advantage. AI integration also supports automation, enabling businesses to analyze large volumes of data more efficiently, reduce manual effort, and provide real-time feedback during interactions.

Regulatory compliance requirements across industries have also fueled demand for voice analytics. Regulations like GDPR, PCI-DSS, MiFID II, and HIPAA require businesses to monitor and record customer interactions to ensure compliance, data security, and risk management. Voice analytics solutions offer features like automatic transcription, keyword spotting, and compliance auditing, helping organizations meet regulatory standards while maintaining high levels of customer service. Additionally, the growth of cloud computing and SaaS (Software as a Service) models has made voice analytics more accessible, scalable, and cost-effective for businesses of all sizes, further driving market growth.

With ongoing innovations in AI, real-time analytics, and cloud-based platforms, the voice analytics market is poised for robust growth. These trends, combined with increasing focus on customer experience, regulatory compliance, and AI-driven insights, make voice analytics a vital tool for modern businesses seeking to optimize communication, enhance customer interactions, and drive operational efficiency across various sectors.

SCOPE OF STUDY:

The report analyzes the Voice Analytics market in terms of US$ Thousand by the following Component; Deployment; Vertical, and Geographic Regions/Countries:

Segments:

Component (Solutions, Services); Deployment (On-Premise, Cloud); Vertical (BFSI, Retail & eCommerce, Healthcare, Telecommunications, Government & Defense, Other Verticals)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 12 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â