¼¼°èÀÇ ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀå
In-Store Analytics
»óǰÄÚµå : 1579828
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 92 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,056,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,169,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ¼¼°è ½ÃÀå, 2030³â±îÁö 176¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 94¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 9.4% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 176¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ÒÇÁÆ®¿þ¾î CAGR 10.6%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 130¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 26¾ï ´Þ·¯, Áß±¹Àº ¿¬Æò±Õ 8.5% ¼ºÀå Àü¸Á

¹Ì±¹ ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀåÀº 2023³â 26¾ï ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 27¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 8.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 8.0%¿Í 6.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 4.2%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ÀνºÅä¾î ¾Ö³Î¸®Æ½½º°¡ ¼Ò¸Å¾÷ü¿¡°Ô ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

¸ÅÀå ³» ºÐ¼®Àº °í°´ °æÇèÀ» °³¼±ÇÏ°í ¿î¿µ È¿À²¼ºÀ» ÃÖÀûÈ­ÇϰíÀÚ ÇÏ´Â ¼Ò¸Å¾÷üµé¿¡°Ô Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. Ä«¸Þ¶ó, ¼¾¼­, ¿ÍÀÌÆÄÀÌ Æ®·¡Å· µîÀÇ ±â¼úÀ» Ȱ¿ëÇÏ¿© ¼Ò¸Å¾÷ü´Â °í°´ÀÇ Çൿ, º¸ÇàÀÚ ¼ö, ü·ù ½Ã°£, ±¸¸Å ÆÐÅÏ¿¡ ´ëÇÑ ±ÍÁßÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅ͸¦ ÅëÇØ ¼Ò¸Å¾÷ü´Â »óǰ ¹èÄ¡, ¸ÅÀå ·¹À̾ƿô, Àç°í °ü¸®, Àη ¹èÄ¡ µî¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, ÀÌÄ¿¸Ó½º°¡ ºÎ»óÇÏ´Â °æÀïÀûÀÎ ¼Ò¸Å ȯ°æ¿¡¼­ ¿ÀÇÁ¶óÀÎ ¸ÅÀåÀº °³ÀÎÈ­µÈ ¼îÇÎ °æÇèÀ» âÃâÇϰí, ¸¶ÄÉÆÃ Àü·«À» ÃÖÀûÈ­Çϸç, Àüü ¸ÅÀå ¼º°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶ÄÉÆÃ Àü·«À» ÃÖÀûÈ­ÇÏ°í ¸ÅÀå ÀüüÀÇ ¼º°ú¸¦ °³¼±Çϱâ À§ÇØ ÀνºÅä¾î ¾Ö³Î¸®Æ½½º¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. °í°´ÀÇ ¼±È£µµ¸¦ ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖ´Ù´Â °ÍÀº µðÁöÅÐ ¿ì¼±ÀÇ ¼¼»ó¿¡¼­ ¼Ò¸Å¾÷ÀÌ Á¸Àç°¨À» À¯ÁöÇÏ´Â µ¥ ÀÖ¾î Å« °­Á¡ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

ÀΰøÁö´É(AI), ¸Ó½Å·¯´×, »ç¹°ÀÎÅͳÝ(IoT) ±â¼úÀÇ ¹ßÀüÀ¸·Î ¸ÅÀå ³» ºÐ¼® ½ÃÀåÀº ºü¸£°Ô ÁøÈ­Çϰí ÀÖÀ¸¸ç, AI ±â¹Ý ºñµð¿À ºÐ¼® ½Ã½ºÅÛÀº °í°´ÀÇ ¿òÁ÷ÀÓ, »óǰ°úÀÇ »óÈ£ÀÛ¿ë, °¨Á¤¿¡ ´ëÇÑ ±íÀº ÅëÂû·ÂÀ» ¼Ò¸Å¾÷ü¿¡ Á¦°øÇÔÀ¸·Î½á ´õ ³ªÀº °³ÀÎÈ­ Àü·«À» ¼ö¸³ÇÒ ¼ö ÀÖµµ·Ï µ½´Â´Ù, º¸´Ù Á¤È®ÇÑ °³ÀÎÈ­ Àü·«À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ¼±¹Ý°ú ºñÄܰú °°Àº IoT µð¹ÙÀ̽º´Â Àç°í ¼öÁذú °í°´ Âü¿©¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼Ò¸Å¾÷üÀÇ ¾÷¹« È¿À²¼ºÀ» ³ôÀÌ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ð¹ÙÀÏ ¾Ö³Î¸®Æ½½ºÀÇ ¹ßÀüÀ¸·Î ¼Ò¸Å¾÷üµéÀº ¿Â¶óÀο¡¼­ ÀÌ·ç¾îÁö´Â »óÈ£ÀÛ¿ëºÎÅÍ ¸ÅÀå ³»¿¡¼­ÀÇ Çൿ±îÁö °í°´ ¿©Á¤ Àü¹ÝÀ» ÃßÀûÇÒ ¼ö ÀÖ°Ô µÇ¾î ¿øÈ°ÇÑ ¿È´Ïä³Î °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¼Ò¸Å¾÷üµéÀÌ º¸´Ù Á¤È®Çϰí È¿À²ÀûÀÎ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­´Â ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀåÀ» ¾î¶»°Ô Á¤ÀÇÇϴ°¡?

ÄÄÆ÷³ÍÆ®¿¡´Â ¼ÒÇÁÆ®¿þ¾î¿Í Çϵå¿þ¾î°¡ ÀÖÀ¸¸ç, °í°´ Çൿ ºÐ¼®, Àç°í ÃÖÀûÈ­ µµ±¸, ¹ßÀÚ±¹ ºÐ¼®°ú °°Àº ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÑ´Ù´Â Á¡¿¡¼­ ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ÀνºÅä¾î ¾Ö³Î¸®Æ½½ºÀÇ ¿ëµµ¿¡´Â ¸Óõ´ÙÀÌ¡, ¸¶ÄÉÆÃ, ¿î¿µ, °í°´ °æÇè °ü¸® µîÀÌ Æ÷ÇԵǸç, ±× Áß¿¡¼­µµ °í°´ °æÇè °ü¸®´Â ¼Ò¸Å¾÷üµéÀÌ ¸ÅÀå ³» °í°´ Âü¿©¸¦ °­È­ÇÏ´Â µ¥ ÁÖ·ÂÇϰí Àֱ⠶§¹®¿¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¾÷Á¾º°·Î´Â ÆÐ¼Ç-ÀÇ·ù, °¡Àü, ½Ä·áǰ, Àü¹®Á¡ µîÀ» µé ¼ö Àִµ¥, ÆÐ¼Ç-ÀÇ·ù ¾÷°è´Â ¸ÅÃâ Áõ´ë¸¦ À§ÇÑ ¼îÇΰ´ Çൿ ÆÄ¾ÇÀÌ Áß¿äÇϱ⠶§¹®¿¡ ÁÖ¿ä µµÀÔ ±â¾÷À¸·Î ²ÅÈü´Ï´Ù. ½ÃÀåÀº ¼Ò¸Å °æÀïÀÌ Ä¡¿­ÇÏ°í µðÁöÅÐ Çõ½ÅÀÌ ¿ì¼±½ÃµÇ´Â ºÏ¹Ì, À¯·´ µîÀÇ Áö¿ª¿¡¼­ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀåÀ» À̲ô´Â ¿äÀÎÀ¸·Î´Â ¼Ò¸Å¾÷üµéÀÌ ¿î¿µÀ» ÃÖÀûÈ­Çϰí, °í°´ °æÇèÀ» °³¼±Çϸç, ÀÌÄ¿¸Ó½º ¾÷üµé°úÀÇ °æÀï¿¡¼­ »ì¾Æ³²±â À§ÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡À» ²ÅÀ» ¼ö ÀÖ½À´Ï´Ù. °³ÀÎÈ­µÈ °æÇè¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë°¡ ³ô¾ÆÁö¸é¼­ ¼Ò¸Å¾÷üµéÀº °í°´ Çൿ¿¡ ´ëÇÑ ÅëÂû·ÂÀ» ¾ò°í ÀÇ»ç°áÁ¤À» °³¼±Çϱâ À§ÇØ ¸ÅÀå ³» ºÐ¼®¿¡ ÁÖ¸ñÇϰí ÀÖÀ¸¸ç, AI, ¸Ó½Å·¯´×, IoT¿Í °°Àº ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ¼Ò¸Å¾÷üµéÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®ÀÌ ¿ëÀÌÇØÁö°í ÀÖ½À´Ï´Ù. ºÐ¼® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿È´Ïä³Î ¼Ò¸Å Àü·«À¸·ÎÀÇ ÀüȯÀº ¿ÀÇÁ¶óÀÎ ¸ÅÀå¿¡ µðÁöÅÐ ÅøÀ» ÅëÇÕÇÏ¿© º¸´Ù ÀϰüµÇ°í ¿øÈ°ÇÑ °í°´ °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖµµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(36°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In-Store Analytics Market to Reach US$17.6 Billion by 2030

The global market for In-Store Analytics estimated at US$9.4 Billion in the year 2023, is expected to reach US$17.6 Billion by 2030, growing at a CAGR of 9.4% over the analysis period 2023-2030. Software Component, one of the segments analyzed in the report, is expected to record a 10.6% CAGR and reach US$13.0 Billion by the end of the analysis period. Growth in the Services Component segment is estimated at 6.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.6 Billion While China is Forecast to Grow at 8.5% CAGR

The In-Store Analytics market in the U.S. is estimated at US$2.6 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$2.7 Billion by the year 2030 trailing a CAGR of 8.5% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.0% and 6.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.2% CAGR.

Global In-Store Analytics Market - Key Trends and Drivers Summarized

Why Is In-Store Analytics Becoming Essential for Retailers?

In-store analytics is increasingly crucial for retailers looking to enhance customer experience and optimize operational efficiency. By leveraging technologies such as cameras, sensors, and Wi-Fi tracking, retailers can gather valuable data on customer behavior, foot traffic, dwell time, and purchasing patterns. This data enables retailers to make informed decisions about product placement, store layout, inventory management, and staffing. In a competitive retail environment, where e-commerce is gaining ground, brick-and-mortar stores are adopting in-store analytics to create personalized shopping experiences, optimize marketing strategies, and improve overall store performance. The ability to understand customer preferences in real-time provides a significant edge, helping retailers stay relevant in a digital-first world.

How Are Technological Advancements Shaping the In-Store Analytics Market?

The in-store analytics market is evolving rapidly, driven by advancements in artificial intelligence (AI), machine learning, and Internet of Things (IoT) technologies. AI-powered video analytics systems can now provide retailers with deeper insights into customer movements, product interactions, and even emotions, allowing for more precise personalization strategies. IoT devices, such as smart shelves and beacons, are also playing a key role in capturing real-time data on inventory levels and customer engagement, helping retailers streamline operations. Additionally, advancements in mobile analytics are enabling retailers to track the entire customer journey, from online interactions to in-store behavior, creating a seamless omnichannel experience. These technological innovations are empowering retailers to make data-driven decisions with greater accuracy and efficiency.

How Do Market Segments Define the Growth of the In-Store Analytics Market?

Components include software and hardware, with software solutions such as customer behavior analytics, inventory optimization tools, and footfall analytics leading the market due to their ability to offer actionable insights. Applications of in-store analytics include merchandising, marketing, operations, and customer experience management, with customer experience management holding the largest market share as retailers focus on enhancing in-store engagement. Industry verticals include fashion & apparel, electronics, grocery, and specialty stores, with the fashion & apparel sector being a major adopter due to the importance of understanding shopper behavior to drive sales. The market is expanding rapidly in regions like North America and Europe, where retail competition is high, and digital transformation is a priority.

What Factors Are Driving the Growth in the In-Store Analytics Market?

The growth in the in-store analytics market is driven by several factors, including the increasing need for retailers to optimize operations, enhance customer experience, and stay competitive against e-commerce giants. As consumer expectations for personalized experiences rise, retailers are turning to in-store analytics to gain insights into customer behavior and improve decision-making. Technological advancements, such as AI, machine learning, and IoT, are making it easier for retailers to collect and analyze data in real time, driving the adoption of analytics solutions. Furthermore, the shift toward omnichannel retail strategies is prompting brick-and-mortar stores to integrate digital tools that provide a more cohesive and seamless customer experience.

Select Competitors (Total 36 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â