¼¼°èÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå
Edge AI Hardware
»óǰÄÚµå : 1579826
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,009,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,027,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿§Áö AI Çϵå¿þ¾î ¼¼°è ½ÃÀåÀº 2030³â 60¾ï ´ë¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 19¾ï °³·Î ÃßÁ¤µÇ´Â ¼¼°è ¿§Áö AI Çϵå¿þ¾î ½ÃÀåÀº 2023-2030³â ¿¬Æò±Õ 17.5%ÀÇ ¼ºÀå·üÀ» ±â·ÏÇϸç 2030³â±îÁö 60¾ï °³¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ CPU ÇÁ·Î¼¼¼­´Â CAGR 15.8%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 21¾ï °³¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, GPU ÇÁ·Î¼¼¼­ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 16.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 5¾ï 3,390¸¸´ë, Áß±¹Àº CAGR 16.7%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå ±Ô¸ð´Â 2023³â 5¾ï 3,390¸¸ ´ë¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023-2030³â ¿¬Æò±Õ 16.7%ÀÇ ¼ºÀå·üÀ» º¸À̸ç 2030³â¿¡´Â 9¾ï 1,280¸¸ ´ë ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 15.2%¿Í 14.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 12.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è ¿§Áö AI Çϵå¿þ¾î ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

¿§Áö AI Çϵå¿þ¾î°¡ ½Ç½Ã°£ ¿ëµµÀÇ µ¥ÀÌÅÍ Ã³¸®¸¦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

¿§Áö AI Çϵå¿þ¾î´Â Áß¾Ó ÁýÁᫎ µ¥ÀÌÅͼ¾Åͳª Ŭ¶ó¿ìµå·Î Á¤º¸¸¦ Àü¼ÛÇÒ ÇÊ¿ä ¾øÀÌ ³×Æ®¿öÅ©ÀÇ '¿§Áö'¿¡ ÀÖ´Â ÀåÄ¡¿¡¼­ Á÷Á¢ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ® ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, »ê¾÷ ÀÚµ¿È­ µî ´ë±â ½Ã°£ÀÌ Å« ¹®Á¦°¡ µÇ´Â ¿ëµµ¿¡ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÀÚÀ²ÁÖÇàÂ÷´Â ¼¾¼­¿Í Ä«¸Þ¶óÀÇ µ¥ÀÌÅ͸¦ ¹Ð¸®ÃÊ ´ÜÀ§·Î ó¸®Çϱâ À§ÇØ ¿§Áö AI Çϵå¿þ¾î¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, ½º¸¶Æ® Á¦Á¶ »ê¾÷¿¡¼­ ¿§Áö AI Çϵå¿þ¾î´Â Àåºñ¿Í »ý»ê ¶óÀÎÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â Áö¿¬ÀÌ ¹ß»ýÇϱâ Àü¿¡ ¹®Á¦¸¦ ¿¹ÃøÇϰí ÇØ°áÇÔÀ¸·Î½á ´Ù¿îŸÀÓÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿§Áö ÇÁ·Î¼¼½ÌÀ¸·ÎÀÇ ÀüȯÀº Áö¿¬ ¹®Á¦¸¦ ÇØ°áÇÏ°í ±â´ÉÀ̳ª ¾ÈÀü¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áö¿¬ ¾øÀÌ Áß¿äÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ¿§Áö AI Çϵå¿þ¾îÀÇ ¹ßÀüÀ¸·Î ó¸® ´É·ÂÀÌ Çâ»óµÇ¾î Ŭ¶ó¿ìµå ±â¹Ý ¸®¼Ò½º¿¡ Å©°Ô ÀÇÁ¸ÇÏÁö ¾Ê°íµµ ±â±â¿¡¼­ ·ÎÄ÷Π°í±Þ AI ¾Ë°í¸®ÁòÀ» ½ÇÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶ÇÇÑ, ¿§Áö AI Çϵå¿þ¾î´Â µ¥ÀÌÅÍ Ã³¸®¸¦ µð¹ÙÀ̽º¿¡ ·ÎÄ÷ΠÀ¯ÁöÇÔÀ¸·Î½á ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ÀÇ·á, ±ÝÀ¶, Á¤ºÎ µî ¹Î°¨ÇÑ Á¤º¸¸¦ ´Ù·ç´Â ºÎ¹®¿¡ ƯÈ÷ À¯¿ëÇϸç, AI °è»êÀ» ÇöÀå¿¡¼­ ½ÇÇàÇÔÀ¸·Î½á ¿§Áö µð¹ÙÀ̽º´Â ¿ÜºÎ ¼­¹ö·Î Àü¼ÛµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀ» Á¦ÇÑÇÏ¿© µ¥ÀÌÅÍ À¯Ãâ À§ÇèÀ» ÁÙÀ̰í GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤) ¹× HIPAA¿Í °°Àº ¾ö°ÝÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦¸¦ ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÁؼöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¿§Áö AI Çϵå¿þ¾îÀÇ ÀÌ·¯ÇÑ Ãø¸éÀº ¿µ»ó Áø´Ü Àåºñ, ȯÀÚ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, ÀÇ·á¿ë ¿þ¾î·¯ºí°ú °°Àº ±â±â°¡ ȯÀÚ µ¥ÀÌÅ͸¦ ÇöÀå¿¡¼­ ºÐ¼®ÇÒ ¼ö ÀÖ´Â ÇコÄɾî ȯ°æ¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ³ôÀ¸¸ç, ½Ç½Ã°£À¸·Î ÅëÂû·ÂÀ» Á¦°øÇϸ鼭 ±â¹Ð Á¤º¸¸¦ º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿§Áö AI Çϵå¿þ¾î´Â Áö¼ÓÀûÀ¸·Î ¹ßÀüÇϰí ÀÖÀ¸¸ç, ÇÁ¶óÀ̹ö½Ã, º¸¾È, ½Ç½Ã°£ ÀÇ»ç°áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡±â ¶§¹®¿¡ ³·Àº ´ë±â½Ã°£°ú µ¥ÀÌÅÍ º¸È£¸¦ ¿ì¼±½ÃÇÏ´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

°¡Àü ¹× IoT ±â±â¿¡¼­ ¿§Áö AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

½º¸¶Æ® ±â±â¿Í IoTÀÇ È®»êÀ¸·Î ¼ÒºñÀÚµéÀº ÀüÀÚÁ¦Ç°¿¡ ½Ç½Ã°£ »óȲ ÀÎ½Ä ±â´ÉÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ¿§Áö AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿§Áö AI Çϵå¿þ¾î´Â ½º¸¶Æ® °¡Àü, °³Àκñ¼­, ¿þ¾î·¯ºí ±â¼ú µî IoT ±â±â°¡ º¹ÀâÇÑ µ¥ÀÌÅÍ ºÐ¼®À» ¼öÇàÇÏ°í ·ÎÄÿ¡¼­ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ½º¸¶Æ®È¨ »ýŰ迡¼­ ¿§Áö AI Çϵå¿þ¾î´Â ¿Âµµ ¼³Á¤ Á¶Á¤, Á¶¸í °ü¸®, º¸¾È ¾Ë¸² Á¦°ø µî »ç¿ëÀÚÀÇ ¸í·É°ú »óÈ£ÀÛ¿ë¿¡ Áï°¢ÀûÀ¸·Î ¹ÝÀÀÇÏ´Â µð¹ÙÀ̽º¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ÇÇÆ®´Ï½º Æ®·¡Ä¿³ª ½º¸¶Æ®¿öÄ¡¿Í °°Àº ¿þ¾î·¯ºí ±â±â´Â Ŭ¶ó¿ìµå¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ·ÎÄÿ¡¼­ AI ¾Ë°í¸®ÁòÀ» ½ÇÇàÇÏ¿© °Ç°­ ÁöÇ¥¸¦ ¸ð´ÏÅ͸µÇϰí ÅëÂû·ÂÀ» Á¦°øÇÔÀ¸·Î½á ¿¡Áö AIÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖ½À´Ï´Ù.¿¡ ´ëÇÑ ¼ö¿ä´Â ºü¸£°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ±â¹Ý °æÇè¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼±È£¿Í ¸Â¹°·Á ¼ÒÇü, È¿À²ÀûÀÌ°í ¹ÝÀÀ¼ºÀÌ ¶Ù¾î³­ ¿§Áö AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼ÒºñÀÚ¿ë ÀüÀÚÁ¦Ç°»Ó¸¸ ¾Æ´Ï¶ó ¿§Áö AI Çϵå¿þ¾î´Â IoT ½Ã½ºÅÛÀÇ ¿¡³ÊÁö È¿À²À» ³ôÀÌ´Â µ¥¿¡µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿§Áö µð¹ÙÀ̽º´Â ·ÎÄÿ¡¼­ µ¥ÀÌÅ͸¦ ó¸®Çϱ⠶§¹®¿¡ »ó½Ã Ŭ¶ó¿ìµå¿¡ ¿¬°áÇØ¾ß ÇÒ Çʿ伺À» Å©°Ô ÁÙ¿© ´ë¿ªÆø ¿ä±¸ »çÇ×À» ³·Ãß°í ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö È¿À²ÀûÀÎ Á¢±Ù ¹æ½ÄÀº Áö¼ÓÀûÀÎ Àü·Â °ø±ÞÀÌ Á¦ÇÑµÉ ¼ö ÀÖ´Â ³ó¾÷¿ë ¼¾¼­³ª ȯ°æ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ°ú °°Àº ¿ø°ÝÁö ¹× ¿ÀÇÁ ±×¸®µå IoT ¿ëµµ¿¡ ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ®½ÃƼ°¡ ±³Åë ¸ð´ÏÅ͸µ, Æó±â¹° °ü¸®, À¯Æ¿¸®Æ¼ ¼­ºñ½º¸¦ À§ÇØ IoT ±â±â »ç¿ëÀ» È®´ëÇÔ¿¡ µû¶ó ¿§Áö AI Çϵå¿þ¾î´Â ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ÀÚÀ²Àû ¿î¿µÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Áß¾Ó ÁýÁᫎ µ¥ÀÌÅͼ¾ÅÍÀÇ ºÎ´ãÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.ÀÇ Á߿伺ÀÌ Ä¿Áü¿¡ µû¶ó, ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈ­Çϵµ·Ï ¼³°èµÈ ¿§Áö AI Çϵå¿þ¾î ¼Ö·ç¼ÇÀº ¼ÒºñÀÚ¿Í È¯°æÀÇ ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â µ¥ ´õ¿í Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù.

¿§Áö AI Çϵå¿þ¾î¸¦ Ȱ¿ëÇØ ¾÷¹« È¿À²À» ³ôÀÌ´Â ÁÖ¿ä »ê¾÷Àº?

Á¦Á¶¾÷, ÀÚµ¿Â÷, ÇコÄɾî, Åë½Å µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¿§Áö AI Çϵå¿þ¾î¸¦ Ȱ¿ëÇØ ¾÷¹« È¿À²¼ºÀ» ³ôÀÌ°í °æÀï ¿ìÀ§¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶¾÷¿¡¼­ ¿§Áö AI Çϵå¿þ¾î´Â ½Ç½Ã°£ ǰÁú °ü¸®, ¿¹Áöº¸Àü, °øÁ¤ ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±â°è¿Í »ý»ê ¶óÀο¡ Á÷Á¢ AI ±â´ÉÀ» ÅëÇÕÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí, Àåºñ °íÀåÀ» ¿¹ÃøÇϰí, Áß´Ü ¾øÀÌ »ý»ê ¼Óµµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéµµ ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿Í ÀÚÀ²ÁÖÇàÂ÷ÀÇ ±â´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¿§Áö AI Çϵå¿þ¾î¸¦ Àû±Ø Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. °­·ÂÇÑ AI ÇÁ·Î¼¼¼­°¡ žÀçµÈ ÀÚµ¿Â÷ ¿§Áö µð¹ÙÀ̽º´Â ¼¾¼­¿Í Ä«¸Þ¶óÀÇ µ¥ÀÌÅ͸¦ Áï°¢ÀûÀ¸·Î ó¸®ÇÏ¿© Â÷¼± Ž»ö, Àå¾Ö¹° °¨Áö, ¼Óµµ Á¶Àý°ú °ü·ÃµÈ Áß¿äÇÑ ÆÇ´ÜÀ» ³»¸³´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷°¡ ÁøÈ­ÇÔ¿¡ µû¶ó ¿§Áö AI Çϵå¿þ¾î´Â ¹æ´ëÇÑ ¾çÀÇ ¼¾¼­ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÏ¿© Â÷·®ÀÇ ¾ÈÀü°ú È¿À²¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ¿§Áö AI Çϵå¿þ¾î´Â ÈÞ´ë¿ë ÃÊÀ½ÆÄ, ½º¸¶Æ® ÀÇ·á¿ë ¿þ¾î·¯ºí, ¿µ»ó Áø´Ü ½Ã½ºÅÛ µî Áø´Ü ¹× ¸ð´ÏÅ͸µ ÀåºñÀÇ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â±âµéÀº ¿§Áö ÇÁ·Î¼¼½ÌÀ» Ȱ¿ëÇÏ¿© µ¥ÀÌÅ͸¦ ¿ÜºÎ ¼­¹ö·Î Àü¼ÛÇÏÁö ¾Ê°íµµ ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü¿¡°Ô Áï°¢ÀûÀÌ°í ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇϰí ȯÀÚÀÇ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£ÇÒ ¼ö ÀÖ½À´Ï´Ù. Åë½Å ºÐ¾ß¿¡¼­µµ ¿§Áö AI Çϵå¿þ¾î´Â °¡»óÇö½Ç(VR), Áõ°­Çö½Ç(AR), ¿ø°Ý ·Îº¿°ú °°Àº ÀúÁö¿¬ ¿ëµµ¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á 5G ³×Æ®¿öÅ© ±¸ÃàÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© Á¦°ø¾÷üµéÀº ´Ù¾çÇÑ ³×Æ®¿öÅ© ³ëµå¿¡ ¿§Áö AI Çϵå¿þ¾î¸¦ ÅëÇÕÇÏ¿© µ¥ÀÌÅÍ ¼Ò½º¿¡ °¡±î¿î °÷¿¡¼­ µ¥ÀÌÅÍ Ã³¸®¸¦ ¼öÇàÇÔÀ¸·Î½á Áö¿¬À» ÁÙÀÌ°í »ç¿ëÀÚ °æÇèÀ» °³¼±Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷¿¡¼­ ½Ç½Ã°£ ºÐ¼® ¹× ¿Âµð¹ÙÀ̽º AI ±â´É¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó, ¿§Áö AI Çϵå¿þ¾î´Â È¿À²¼ºÀ» ³ôÀÌ°í ³ôÀº ¼öÁØÀÇ ¼­ºñ½º Á¦°øÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

¿§Áö AI Çϵå¿þ¾î ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁø´Ù

¿§Áö AI Çϵå¿þ¾î ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ´Ù¾çÇÑ ºÐ¾ßÀÇ ÀÌ¿ë »ç·Ê È®´ë, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¼úÀÇ Áö¼ÓÀûÀÎ °³¼±À¸·Î ´õ¿í °­·ÂÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ ÇÁ·Î¼¼¼­°¡ µîÀåÇÏ¿© ¼ÒÇü, ÀúÀü·Â ¿§Áö µð¹ÙÀ̽º¿¡¼­ °í±Þ AI ±â´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, IoT ¹× ½º¸¶Æ® µð¹ÙÀ̽ºÀÇ ºÎ»óÀ¸·Î Áö¿¬ ½Ã°£, ´ë¿ªÆø »ç¿ë·®, ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̱â À§ÇÑ Áö¿¬ ½Ã°£, ´ë¿ªÆø »ç¿ë·®, ¿¡³ÊÁö »ç¿ë·®À» ÁÙÀ̱â À§ÇÑ ·ÎÄà µ¥ÀÌÅÍ Ã³¸® ±â´É¿¡ ´ëÇÑ »ê¾÷°èÀÇ ¿ä±¸´Â ¿§Áö AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °³ÀÎ ±â±â¿¡¼­ ºü¸£°í ½Å·ÚÇÒ ¼ö ÀÖ´Â °³ÀÎ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë´Â ½º¸¶Æ® Ȩ ½Ã½ºÅÛ¿¡¼­ ¿þ¾î·¯ºí ±â±â¿¡ À̸£±â±îÁö °¡ÀüÁ¦Ç°¿¡ ¿§Áö AI Çϵå¿þ¾îÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ê¾÷ ºÐ¾ß¿¡¼­´Â ¿¹Áöº¸Àü, ǰÁú°ü¸®, ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» À§ÇØ ¿§Áö AI Çϵå¿þ¾î¸¦ äÅÃÇϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â ÀÚÀ²ÁÖÇàÂ÷ ¹× ¹ÝÀÚÀ²ÁÖÇàÂ÷ÀÇ ¾ÈÀü°ú ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¿§Áö AI Çϵå¿þ¾î¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ¿§Áö AI Çϵå¿þ¾î´Â ÀÇ·á±â±â¿¡¼­ ȯÀÚ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ¾ÈÀüÇÏ°Ô ºÐ¼®ÇÏ¿© ±ÔÁ¦ Áؼö ¹× °³ÀÎ Á¤º¸ º¸È£ ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 5G ³×Æ®¿öÅ©ÀÇ µîÀåÀº Åë½Å ºÐ¾ß¿¡¼­ ¿§Áö AI Çϵå¿þ¾îÀÇ »õ·Î¿î °¡´É¼ºÀ» ¿­¾î VR, AR, ¸ð¹ÙÀÏ °ÔÀÓÀÇ ÀúÁö¿¬ ¿ëµµ¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ®½ÃƼ ÀÌ´Ï¼ÅÆ¼ºê´Â ±³Åë °ü¸®, °¨½Ã, ȯ°æ ¸ð´ÏÅ͸µ µî µµ½Ã ÀÎÇÁ¶óÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡ ¿§Áö AIÀÇ È°¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº ºÐ¾ß¿¡¼­ º¸´Ù ºü¸£°í È¿À²ÀûÀÎ ¿î¿µÀ» À§ÇØ ¿§Áö¿¡¼­ÀÇ µ¥ÀÌÅÍ Ã³¸®ÀÇ °¡Ä¡¸¦ ÀÎÁ¤¹Þ°í ÀÖ´Â °¡¿îµ¥, AI ó¸® ±â¼úÀÇ Çõ½Å°ú ¾÷°è Àü¹ÝÀÇ ½Ç½Ã°£ ¿ëµµ ¹üÀ§°¡ È®´ëµÊ¿¡ µû¶ó ¿§Áö AI Çϵå¿þ¾î ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀåÀ» ÀÌ·ê ¼ö ÀÖ´Â ¿©°ÇÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 34°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Edge AI Hardware Market to Reach 6.0 Billion Units by 2030

The global market for Edge AI Hardware estimated at 1.9 Billion Units in the year 2023, is expected to reach 6.0 Billion Units by 2030, growing at a CAGR of 17.5% over the analysis period 2023-2030. CPU Processor, one of the segments analyzed in the report, is expected to record a 15.8% CAGR and reach 2.1 Billion Units by the end of the analysis period. Growth in the GPU Processor segment is estimated at 16.9% CAGR over the analysis period.

The U.S. Market is Estimated at 533.9 Million Units While China is Forecast to Grow at 16.7% CAGR

The Edge AI Hardware market in the U.S. is estimated at 533.9 Million Units in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of 912.8 Million Units by the year 2030 trailing a CAGR of 16.7% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.2% and 14.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.9% CAGR.

Global Edge AI Hardware Market – Key Trends & Drivers Summarized

How Is Edge AI Hardware Transforming Data Processing in Real-Time Applications?

Edge AI hardware has revolutionized real-time data processing by enabling data to be analyzed directly on devices at the "edge" of networks, bypassing the need to send information to centralized data centers or the cloud. This transformation is especially critical for applications where latency is a major concern, such as in autonomous vehicles, smart surveillance systems, and industrial automation. Autonomous vehicles, for instance, rely on edge AI hardware to process data from sensors and cameras in milliseconds, allowing the vehicle to make split-second decisions crucial for safety. Similarly, in smart manufacturing, edge AI hardware enables real-time monitoring of equipment and production lines, reducing downtime by predicting and addressing issues before they lead to costly delays. This shift towards edge processing addresses latency challenges, ensuring that critical operations are carried out without delays that could compromise functionality or safety. Furthermore, advancements in edge AI hardware have increased processing power, allowing more sophisticated AI algorithms to run locally on devices without relying heavily on cloud-based resources.

Edge AI hardware also enhances privacy and security by keeping data processing local to the device, which is especially beneficial for sectors handling sensitive information, such as healthcare, finance, and government. By performing AI computations on-site, edge devices limit the amount of data sent to external servers, reducing the risk of data breaches and ensuring compliance with stringent data privacy regulations like GDPR and HIPAA. This aspect of edge AI hardware is particularly valuable in healthcare settings where devices such as diagnostic imaging equipment, patient monitoring systems, and medical wearables can analyze patient data on-site, thus protecting sensitive information while delivering real-time insights. As edge AI hardware continues to evolve, its impact on privacy, security, and real-time decision-making is positioning it as a key enabler across a wide range of industries that prioritize low latency and data protection.

Why Is There Growing Demand for Edge AI Hardware in Consumer Electronics and IoT Devices?

The proliferation of smart devices and IoT has fueled demand for edge AI hardware, as consumers increasingly expect real-time, context-aware functionality from their electronics. Edge AI hardware allows IoT devices, including smart home appliances, personal assistants, and wearable technology, to perform complex data analysis and make decisions locally. For instance, in a smart home ecosystem, edge AI hardware enables devices to respond instantly to user commands and interactions, such as adjusting temperature settings, managing lighting, and providing security alerts. Similarly, wearable devices like fitness trackers and smartwatches benefit from edge AI by running AI algorithms locally to monitor health metrics and deliver insights without depending on the cloud. As the IoT market grows, the demand for compact, efficient, and responsive edge AI hardware in consumer electronics is expected to increase, aligning with consumer preferences for fast, reliable, and data-driven experiences.

Beyond consumer electronics, edge AI hardware also plays a crucial role in enhancing energy efficiency in IoT systems. Since edge devices handle data processing locally, they significantly reduce the need for constant cloud connectivity, which lowers bandwidth requirements and reduces energy consumption. This energy-efficient approach is particularly appealing in remote or off-grid IoT applications, such as agricultural sensors or environmental monitoring systems, where continuous power may be limited. Additionally, as smart cities expand their use of IoT devices for traffic monitoring, waste management, and utility services, edge AI hardware enables these systems to operate autonomously, reducing strain on centralized data centers. As the IoT ecosystem grows and the importance of sustainability increases, edge AI hardware solutions designed to optimize energy usage will play an even more significant role in meeting consumer and environmental demands.

What Are the Major Industries Leveraging Edge AI Hardware for Enhanced Operational Efficiency?

Industries such as manufacturing, automotive, healthcare, and telecommunications are leveraging edge AI hardware to enhance operational efficiency and gain a competitive advantage. In manufacturing, edge AI hardware enables real-time quality control, predictive maintenance, and process optimization. By embedding AI capabilities directly within machinery or production lines, manufacturers can detect anomalies, predict equipment failures, and improve production speed without interruptions. Automotive manufacturers are also relying heavily on edge AI hardware to advance driver-assistance systems and autonomous vehicle capabilities. Equipped with powerful AI processors, edge devices in vehicles process data from sensors and cameras instantaneously, making critical decisions related to lane navigation, obstacle detection, and speed adjustments. As autonomous vehicles evolve, edge AI hardware will be essential for processing vast amounts of sensor data in real time to ensure vehicle safety and efficiency.

In healthcare, edge AI hardware is driving innovations in diagnostic and monitoring devices, including portable ultrasound machines, smart medical wearables, and diagnostic imaging systems. These devices leverage edge processing to provide immediate, actionable insights to healthcare providers without sending data to external servers, thus safeguarding patient data privacy. Additionally, in telecommunications, edge AI hardware is supporting 5G network deployments by enabling low-latency applications like virtual reality (VR), augmented reality (AR), and remote robotics. Network providers are incorporating edge AI hardware at various network nodes to handle data processing close to the source, reducing lag and enhancing the user experience. As these industries increasingly rely on real-time analytics and on-device AI capabilities, edge AI hardware is becoming indispensable for improving efficiency and maintaining high standards of service delivery.

Growth in the Edge AI Hardware Market Is Driven by Several Factors

Growth in the edge AI hardware market is driven by several factors, including technological advancements, expanding use cases across diverse sectors, and the increasing demand for real-time data processing. Continuous improvements in semiconductor technology have led to more powerful and energy-efficient processors, enabling advanced AI functionalities on compact, low-power edge devices. The rise of IoT and smart devices has fueled demand for edge AI hardware, as industries seek local data processing capabilities to reduce latency, bandwidth usage, and energy consumption. Consumer expectations for fast, reliable, and private data processing on personal devices are also driving the adoption of edge AI hardware in consumer electronics, from smart home systems to wearable devices. Furthermore, the industrial sector is embracing edge AI hardware for predictive maintenance, quality control, and real-time monitoring, while the automotive sector relies on it to enhance safety and performance in autonomous and semi-autonomous vehicles.

In healthcare, edge AI hardware enables the secure, real-time analysis of patient data on medical devices, which aligns with regulatory compliance and privacy concerns. Additionally, the advent of 5G networks has opened new opportunities for edge AI hardware in telecommunications, supporting low-latency applications in VR, AR, and mobile gaming. Smart city initiatives are also promoting the use of edge AI for real-time data processing in urban infrastructure, such as traffic management, surveillance, and environmental monitoring. As more sectors recognize the value of processing data at the edge for faster, more efficient operations, the edge AI hardware market is poised for sustained growth, driven by a combination of innovation in AI processing technology and the expanding scope of real-time applications across industries.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â