¼¼°èÀÇ ÇÕ¼º Èæ¿¬ ½ÃÀå
Synthetic Graphite
»óǰÄÚµå : 1551819
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 09¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 183 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇÕ¼º Èæ¿¬(Synthetic Graphite) ½ÃÀåÀº 2030³â±îÁö 275¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2023³â¿¡ 215¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÕ¼º Èæ¿¬ ½ÃÀåÀº 2023-2030³â°£ CAGR 3.6%·Î ÃßÀÌÇÏ¸ç ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 275¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Àü±Ø ÇÕ¼º Èæ¿¬Àº CAGR 4.0%·Î ¼ºÀåÀ» Áö¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ºÐ¼® ±â°£ Á¾·á±îÁö 162¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µî¹æÇü ÇÕ¼º Èæ¿¬ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 3.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 59¾ï ´Þ·¯, Áß±¹Àº CAGR 6.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇÕ¼º Èæ¿¬ ½ÃÀåÀº 2023³â 59¾ï ´Þ·¯·Î ÃßÁ¤µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 58¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ 2023-2030³âÀÇ CAGRÀº 6.9%ÀÔ´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 1.2%¿Í 2.7%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÇÕ¼º Èæ¿¬ ½ÃÀå-ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

ÇÕ¼º Èæ¿¬Àº ¼±Áø Á¦Á¶¾÷°ú ¿¡³ÊÁö ÀúÀå¿¡ ¾î¶² Çõ¸íÀ» ÀÏÀ¸Å°°í Àִ°¡?

ÇÕ¼º Èæ¿¬Àº ´Ù¾çÇÑ ÃÖ÷´Ü ¿ëµµ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â °í¼º´É ¼ÒÀ縦 Á¦°øÇÔÀ¸·Î½á ÷´Ü Á¦Á¶ ¹× ¿¡³ÊÁö ÀúÀå¿¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. õ¿¬ Èæ¿¬°ú ´Þ¸® ÇÕ¼º Èæ¿¬Àº ƯÁ¤ Ư¼º¿¡ ¸Â°Ô ¼³°èµÇ¾î ¼øµµ°¡ ³ô°í Àϰü¼ºÀÌ ÀÖÀ¸¸ç »ê¾÷°èÀÇ ¿ä±¸¿¡ ¸Â°Ô »ç¿ëÀÚ Á¤ÀÇ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÕ¼º Èæ¿¬Àº ½º¸¶Æ®Æù¿¡¼­ Àü±âÀÚµ¿Â÷¿¡ À̸£±â±îÁö ¸ðµç °Í¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ Á¦Á¶¿¡ ÇʼöÀûÀÎ ¼ººÐÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹èÅ͸®¿¡¼­´Â ÇÕ¼º Èæ¿¬ÀÌ À½±ØÀç·Î »ç¿ëµÇ¾î ¶Ù¾î³­ Àüµµ¼º°ú ¾ÈÁ¤¼ºÀ¸·Î ¹èÅ͸® È¿À², ¼ö¸í ¹× ÃæÀü ¿ë·®ÀÌ Çâ»óµË´Ï´Ù. ÇÕ¼º Èæ¿¬Àº ¿¡³ÊÁö ÀúÀå ¿Ü¿¡µµ Á¦Ã¶À̳ª ¹ÝµµÃ¼ Á¦Á¶ µî °í¿Â °ø¾÷ °øÁ¤¿¡¼­ ¿ì¼öÇÑ ¿­Àüµµ¼º°ú Àü±â Àüµµ¼º¿¡¼­ ÇʼöÀûÀÎ Àç·á°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀçÀÇ ´Ù¿ëµµ¼º°ú °í¼º´ÉÀº ´Ù¾çÇÑ Ã·´Ü ±â¼ú¿¡ ÇʼöÀûÀ̸ç, ´Ù¾÷Á¾¿¡ °ÉÄ£ Çõ½Å°ú È¿À²È­¸¦ ÃßÁøÇÕ´Ï´Ù.

ÇÕ¼º Èæ¿¬ÀÇ ±â´É¼ºÀ» ³ôÀÌ´Â Çõ½ÅÀ̶õ?

ÇÕ¼º Èæ¿¬ Á¦Á¶¿¡ À־ÀÇ Çõ½ÅÀº ±× ±¸Á¶ Ư¼º, Á¦Á¶ ¹æ¹ý, ȯ°æ Dz ÇÁ¸°Æ®¸¦ °³¼±ÇÏ´Â °ÍÀ¸·Î, ±× ±â´É¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶ ¹× Ç×°ø¿ìÁÖ °øÇаú °°Àº °í¼º´É ¿ëµµ¿¡ ÇʼöÀûÀÎ ÃÊ°í¼øµµ Èæ¿¬À» Á¦Á¶Çϱâ À§ÇØ °í±Þ Á¤Á¦ ±â¼úÀÌ °³¹ßµÇ¾ú½À´Ï´Ù. °Ô´Ù°¡ ¿¬±¸ÀÚ´Â ±×·¡ÇÉ µî ÷´Ü ź¼Ò Àç·á¸¦ ÇÕ¼º Èæ¿¬°ú Á¶ÇÕÇÏ¿© »ç¿ëÇÔÀ¸·Î½á Àü±â Àüµµ¼º°ú ¿­Àüµµ¼ºÀÌ Çâ»óµÈ ÇÏÀ̺긮µå Àç·á¸¦ âÃâÇØ, ÀÏ·ºÆ®·Î´Ð½º³ª ¿¡³ÊÁö ÀúÀå¿¡ »õ·Î¿î °¡´É¼ºÀ» ¹ß°ßÇÏ·Á°í Çϰí ÀÖ´Ù ÇÕ´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ¿ø·áÀÇ »ç¿ë°ú ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Á¦Á¶ °øÁ¤ µî Á¦Á¶¹æ¹ýÀÇ Çõ½ÅÀ¸·Î ÇÕ¼º Èæ¿¬ÀÇ Á¦Á¶°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Àú°¨ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Áøº¸´Â ÇÕ¼º Èæ¿¬ÀÇ ¼º´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÇÕ¼º Èæ¿¬ÀÇ »ý»êÀ» º¸´Ù Áö¼Ó°¡´ÉÇÏ°Ô Çϰí ÀÌ»êȭź¼Ò ¹èÃâ·®°ú ȯ°æ ¾ÇÈ­¸¦ ÁÙÀÌ´Â ¼¼°èÀÇ ³ë·Â°ú ÀÏÄ¡ÇÕ´Ï´Ù.

ÇÕ¼º Èæ¿¬Àº ¿¡³ÊÁö ÀúÀå ¹× »ê¾÷ ÀÀ¿ëÀÇ È¿À²¼º¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´Â°¡?

ÇÕ¼º Èæ¿¬Àº ¿ì¼öÇÑ Àüµµ¼ºÀ» À¯ÁöÇϸ鼭 °¡È¤ÇÑ Á¶°Ç¿¡µµ °ßµô ¼ö ÀÖ´Â Àç·á¸¦ Á¦°øÇÔÀ¸·Î½á ¿¡³ÊÁö ÀúÀå ¹× »ê¾÷ ÀÀ¿ëÀÇ È¿À²¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®¿¡¼­ ÇÕ¼º Èæ¿¬ À½±ØÀº Àü±âÀÚµ¿Â÷ ¹× ÈÞ´ë¿ë ÀüÀÚ ÀåÄ¡ÀÇ ¼º´É¿¡ ÇʼöÀûÀÎ º¸´Ù ºü¸¥ Ãæ¹æÀü, ´õ ±ä ¹èÅ͸® ¼ö¸í ¹× ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ¿­ ¾ÈÁ¤¼º°ú Àüµµ¼ºÀÌ ³ô±â ¶§¹®¿¡ ¹ÝµµÃ¼¿ë ½Ç¸®ÄÜ ¿þÀÌÆÛÀÇ Á¦Á¶ µî °í¿ÂÀÇ »ê¾÷ °øÁ¤¿¡¼­ »ç¿ë¿¡µµ ÀûÇÕÇϸç Áß¿äÇÑ ¿­ °ü¸® ºÎǰÀ¸·Î¼­ ±â´ÉÇÕ´Ï´Ù. ö°­ »ê¾÷¿¡¼­ ÇÕ¼º Èæ¿¬Àº Àü±â ¾ÆÅ©·ÎÀÇ Àü±Ø¿¡ »ç¿ëµÇ¸ç, ³»±¸¼º°ú ³ôÀº Àüµµ¼ºÀ» ÅëÇØ º¸´Ù È¿À²ÀûÀΠö°­ »ý»êÀÌ °¡´ÉÇÕ´Ï´Ù. ÇÕ¼º Èæ¿¬Àº ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» Çâ»ó½ÃÄÑ »ê¾÷ Àü¹ÝÀÇ È¿À²À» ³ôÀÌ°í º¸´Ù °íµµ·Î ¿¡³ÊÁö È¿À²ÀûÀÎ ±â¼ú °³¹ßÀ» Áö¿øÇÕ´Ï´Ù.

ÇÕ¼º Èæ¿¬ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â µ¿ÇâÀ̶õ?

Àü±âÀÚµ¿Â÷(EV) ¼ö¿ä Áõ°¡, ½ÅÀç»ý¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ È®´ë, ÇÏÀÌÅ×Å© Á¦Á¶ Áøº¸ µî ¿©·¯ µ¿ÇâÀÌ ÇÕ¼º Èæ¿¬ ½ÃÀå ¼ºÀåÀ» À̲ø°í ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ ¼¼°èÀÇ ³ë·ÂÀÌ °¡¼ÓÈ­µÇ°í ÀÖ´Â °¡¿îµ¥, EV ¼ö¿ä´Â Áõ°¡ÀÇ Àϵµ¸¦ µû¶ó°¡°í ÀÖÀ¸¸ç, ÇÕ¼º Èæ¿¬ ºÎ±Ø¿¡ ÀÇÁ¸ÇÏ´Â °í¼º´É ¸®Æ¬ À̿ ÀüÁö¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ž籤¹ßÀü¼Ò, dz·Â¹ßÀü¼Ò µî ½ÅÀç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ® Áõ°¡°¡ Àü·ÂÀ» È¿À²ÀûÀ¸·Î ÀúÀ塤¹èÀüÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁöÀúÀå ¼Ö·ç¼Ç ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, ÇÕ¼º Èæ¿¬ ½ÃÀåÀ» ´õ¿í ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ƯÈ÷ ¹ÝµµÃ¼ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ Á¦Á¶ ±â¼ú Áøº¸´Â ÀÌ·¯ÇÑ °øÁ¤ÀÇ °¡È¤ÇÑ Á¶°ÇÀ» °ßµð´Â °í¼øµµ Èæ¿¬ Àç·áÀÇ ¿ä±¸¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇÏ°í »ê¾÷»ý»êÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ´Â °ÍÀÌ º¸´Ù ȯ°æÄ£È­ÀûÀ̰í È¿À²ÀûÀÎ ÇÕ¼º Èæ¿¬ Á¦Á¶¹æ¹ýÀÇ °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀº ¿¡³ÊÁö ÀúÀå, ÷´Ü Á¦Á¶¾÷, Áö¼Ó °¡´ÉÇÑ »ê¾÷ °üÇàÀÇ Àå·¡¿¡ ÇÕ¼º Èæ¿¬ÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù´Â °ÍÀ» °­Á¶ÇÕ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 36°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LYJ
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Synthetic Graphite Market to Reach US$27.5 Billion by 2030

The global market for Synthetic Graphite estimated at US$21.5 Billion in the year 2023, is expected to reach US$27.5 Billion by 2030, growing at a CAGR of 3.6% over the analysis period 2023-2030. Electrode Synthetic Graphite, one of the segments analyzed in the report, is expected to record a 4.0% CAGR and reach US$16.2 Billion by the end of the analysis period. Growth in the Isostatic Synthetic Graphite segment is estimated at 3.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$5.9 Billion While China is Forecast to Grow at 6.9% CAGR

The Synthetic Graphite market in the U.S. is estimated at US$5.9 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$5.8 Billion by the year 2030 trailing a CAGR of 6.9% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.2% and 2.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.9% CAGR.

Global Synthetic Graphite Market - Key Trends and Drivers Summarized

How Is Synthetic Graphite Revolutionizing Advanced Manufacturing and Energy Storage?

Synthetic graphite is revolutionizing advanced manufacturing and energy storage by offering a high-performance material that plays a crucial role in various cutting-edge applications. Unlike natural graphite, synthetic graphite is engineered for specific properties, providing greater purity, consistency, and customization for industrial needs. It is a critical component in the production of lithium-ion batteries, which power everything from smartphones to electric vehicles. In these batteries, synthetic graphite serves as the anode material, where its superior conductivity and stability improve battery efficiency, lifespan, and charge capacity. Beyond energy storage, synthetic graphite is essential in high-temperature industrial processes, such as steelmaking and the production of semiconductors, where it is used for its excellent thermal and electrical conductivity. The material's versatility and high performance make it indispensable in a variety of advanced technologies, driving innovation and efficiency across multiple industries.

What Innovations Are Enhancing the Functionality of Synthetic Graphite?

Innovations in synthetic graphite production are enhancing its functionality by improving its structural properties, production methods, and environmental footprint. Advanced purification techniques are being developed to produce ultra-high purity graphite, which is essential for high-performance applications like semiconductor manufacturing and aerospace engineering. Additionally, researchers are exploring the use of advanced carbon materials, such as graphene, in combination with synthetic graphite to create hybrid materials with enhanced electrical and thermal conductivity, opening new possibilities in electronics and energy storage. Innovations in production methods, such as the use of sustainable feedstocks and energy-efficient manufacturing processes, are reducing the environmental impact of synthetic graphite production. These advancements not only improve the performance of synthetic graphite but also make its production more sustainable, aligning with global efforts to reduce carbon emissions and environmental degradation.

How Does Synthetic Graphite Impact the Efficiency of Energy Storage and Industrial Applications?

Synthetic graphite significantly impacts the efficiency of energy storage and industrial applications by providing a material that can withstand extreme conditions while maintaining excellent conductivity. In lithium-ion batteries, synthetic graphite anodes enable faster charging and discharging, longer battery life, and greater energy density, which are critical for the performance of electric vehicles and portable electronics. The material’s high thermal stability and conductivity also make it ideal for use in high-temperature industrial processes, such as the production of silicon wafers for semiconductors, where it acts as a critical heat management component. In the steel industry, synthetic graphite is used in electrodes for electric arc furnaces, where its durability and high electrical conductivity allow for more efficient steel production. By improving the performance and reliability of these systems, synthetic graphite enhances overall industrial efficiency and supports the development of more advanced, energy-efficient technologies.

What Trends Are Driving Growth in the Synthetic Graphite Market?

Several trends are driving growth in the synthetic graphite market, including the increasing demand for electric vehicles (EVs), the expansion of renewable energy storage systems, and advancements in high-tech manufacturing. As the global push towards reducing carbon emissions accelerates, the demand for EVs continues to rise, driving the need for high-performance lithium-ion batteries that rely on synthetic graphite anodes. Similarly, the growth of renewable energy projects, such as solar and wind farms, is fueling demand for energy storage solutions that can efficiently store and distribute electricity, further boosting the market for synthetic graphite. Additionally, advancements in manufacturing technologies, particularly in the semiconductor and aerospace industries, are increasing the need for high-purity graphite materials that can withstand the extreme conditions of these processes. The focus on sustainability and reducing the environmental impact of industrial production is also encouraging the development of greener, more efficient synthetic graphite manufacturing methods. These trends underscore the critical role of synthetic graphite in the future of energy storage, advanced manufacturing, and sustainable industrial practices.

Select Competitors (Total 36 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â