¼¼°èÀÇ µ¿¹° À¯ÀüÇÐ ½ÃÀå
Animal Genetics
»óǰÄÚµå : 1544040
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 194 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ µ¿¹° À¯ÀüÇÐ ½ÃÀåÀº 2030³â±îÁö 114¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 77¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ µ¿¹° À¯ÀüÇÐ ½ÃÀåÀº 2023-2030³â CAGR 5.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 114¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ '»ì¾ÆÀÖ´Â µ¿¹°'Àº CAGR 6.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 73¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯ÀüÀÚ Àç·á ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 5.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 21¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ µ¿¹° À¯ÀüÇÐ ½ÃÀåÀº 2023³â¿¡ 21¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 18¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³â CAGRÀº 5.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 5.8%¿Í 4.5%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ µ¿¹° À¯ÀüÇÐ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

µ¿¹° À¯ÀüÇÐÀº Ãà»êÀ» ¾î¶»°Ô ¹Ù²Ù´Â°¡?

µ¿¹° À¯ÀüÇÐÀº °¡Ãà ¹ø½Ä º¯Çõ¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, »ý»ê¼º, Áúº´ ÀúÇ×¼º ¹× Àü¹ÝÀûÀÎ µ¿¹°ÀÇ °Ç°­À» Å©°Ô Çâ»ó½ÃŰ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. À¯ÀüÀû ¼±Åðú À°Á¾ Àü·«À» ÅëÇØ ³ó°¡¿Í À°Á¾°¡´Â Á¥¼ÒÀÇ À¯·®, °¡±Ý·ùÀÇ ¼ºÀå·ü, ¾çÅÐÀÇ Áú µî °¡ÃàÀÇ ¹Ù¶÷Á÷ÇÑ ÇüÁúÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. À¯Àüü ¼±¹ß ¹× ¸¶Ä¿ Áö¿ø À°Á¾°ú °°Àº ÷´Ü À¯ÀüÇÐ ÅøÀ» Ȱ¿ëÇÏ¸é ¿ì¼öÇÑ °¡ÃàÀ» Á¤È®ÇÏ°Ô ½Äº°Çϰí À°Á¾ °úÁ¤À» °¡¼ÓÈ­ÇÏ¿© À¯¸®ÇÑ ÇüÁúÀÌ ¹ø½ÄÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÇÐÀû Á¢±Ù ¹æ½ÄÀº Ãà»ê °æ¿µÀÇ È¿À²¼º°ú ¼öÀͼºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, Ãà»ê°ú °ü·ÃµÈ ȯ°æÀû ¹ßÀÚ±¹À» ÁÙ¿© Ãà»ê¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº µ¿¹° À¯ÀüÇп¡¼­ ¾î¶² ¿ªÇÒÀ» Çϴ°¡?

±â¼úÀÇ ¹ßÀüÀº µ¿¹° À¯ÀüÇÐ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸ÄÑ ´õ¿í Á¤±³Çϰí È¿°úÀûÀÎ µ¿¹° À¯ÀüÇÐ ºÐ¾ß¸¦ ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù. Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS)°ú CRISPR-Cas9 À¯ÀüÀÚ ÆíÁý°ú °°Àº À¯ÀüüÇÐ Çõ½ÅÀº À¯ÀüÀÚ ¿¬±¸¿Í À¯ÀüÀÚ Á¶ÀÛÀÇ »õ·Î¿î ±æÀ» ¿­¾úÀ¸¸ç, NGS´Â µ¿¹° À¯ÀüüÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» °¡´ÉÇÏ°Ô Çϰí Áß¿äÇÑ ÇüÁú°ú °ü·ÃµÈ À¯ÀüÀû º¯À̸¦ ½±°Ô ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÇÑÆí, CRISPR-Cas9´Â DNA ¿°±â¼­¿­À» Á¤È®ÇÏ°Ô º¯ÇüÇÏ¿© ¿øÄ¡ ¾Ê´Â ÇüÁúÀ» Á¦°ÅÇϰí À¯ÀÍÇÑ ÇüÁúÀ» µµÀÔÇÒ ¼ö ÀÖ´Â °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀº À¯ÀüÀÚ ¼±¹ßÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó °³¼±µÈ ÇüÁúÀ» °¡Áø ÇüÁúÀüȯ µ¿¹°À» »ý»êÇÏ´Â µî µ¿¹° »ý¸í°øÇÐÀÇ È¹±âÀûÀÎ ¹ßÀüÀ» À§ÇÑ ±æÀ» ¿­¾îÁÙ °ÍÀÔ´Ï´Ù.

µ¿¹° À¯ÀüÇÐÀÌ Áúº´ °ü¸® ¹× ¿¹¹æ¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

µ¿¹° À¯ÀüÇÐÀº Áúº´À» ÅëÁ¦ÇÏ°í ¿¹¹æÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, Áúº´¿¡ °­ÇÑ °¡ÃàÀ» »çÀ°ÇÒ ¼ö ÀÖ´Â °úÇÐÀû ±Ù°Å¸¦ Á¦°øÇÕ´Ï´Ù. ƯÁ¤ º´¿ø±Õ¿¡ ´ëÇÑ À¯ÀüÀû ³»¼ºÀ» °¡Áø °¡ÃàÀ» ½Äº°ÇÏ°í ¼±¹ßÇÔÀ¸·Î½á À°Á¾°¡´Â °¡Ãà °³Ã¼±ºÀÇ Áúº´ ¹ß»ý·üÀ» ³·Ãß°í Ç×»ýÁ¦ ¹× ±âŸ ¾àǰ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ¿¬±¸´Â ¶ÇÇÑ Áúº´ ¸ÞÄ¿´ÏÁòÀÇ ÀÌÇØ¸¦ ÃËÁøÇÏ°í ¹é½Å°ú Ç¥Àû Ä¡·á¹ý °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ °¡Ãà °³Ã¼±ºÀÇ À¯ÀüÀû ¸ð´ÏÅ͸µÀº Àü¿°º´ ¹ß»ýÀ» °¨ÁöÇÏ°í °ü¸®ÇÏ¿© µ¿¹°ÀÇ °Ç°­À» º¸È£ÇÏ°í ½Ä·® °ø±Þ¸ÁÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌó·³ À¯ÀüÀÚ µ¥ÀÌÅÍ¿Í ÀüÅëÀûÀÎ ¼öÀÇÇÐÀû ¹æ¹ýÀ» ÅëÇÕÇÏ¸é °¡ÃàÀÇ Àü¹ÝÀûÀÎ ÇコÄɾ °­È­ÇÏ¿© º¸´Ù °ß°íÇϰí Áö¼Ó°¡´ÉÇÑ Ãà»ê ½Ã½ºÅÛÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

µ¿¹°À¯ÀüÇÐ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

µ¿¹° À¯ÀüÇÐ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÃÖÁ¾ ¿ëµµ, ¼ÒºñÀÚ ¼±È£µµÀÇ ÁøÈ­¿Í °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. À°·ù, ¿ìÀ¯, °è¶õ°ú °°Àº °íǰÁú Ãà»ê¹°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â À¯ÀüÀûÀ¸·Î ¿ì¼öÇÑ °¡ÃàÀÇ Çʿ伺À» Áõ°¡½ÃŰ´Â ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®, CRISPR-Cas9 µî À¯Àüü ¹× »ý¸í°øÇÐ ºÐ¾ßÀÇ Çõ½ÅÀº º¸´Ù Á¤¹ÐÇϰí È¿À²ÀûÀÎ À°Á¾À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ½ÃÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ÀÚ¿øÀ» ´ú ÇÊ¿ä·Î Çϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ ÀûÀº À¯ÀüÀûÀ¸·Î ÃÖÀûÈ­µÈ °¡Ãà¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Äǰ ¾ÈÀü°ú Ç×»ýÁ¦ ³»¼º¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ µ¿¹°ÀÇ °Ç°­°ú Áúº´ ÀúÇ×¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÷´Ü À¯ÀüÀÚ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ½ÅÈï ±¹°¡ ½ÃÀåÀÇ Ãà»ê¾÷ È®´ë¿Í R&D ÅõÀÚ Áõ°¡µµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ÀÌ´Â µ¿¹° À¯ÀüÇÐ ºÐ¾ßÀÇ Çõ½Å°ú »ó¾÷È­¸¦ À§ÇÑ »õ·Î¿î ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Animal Genetics Market to Reach US$11.4 Billion by 2030

The global market for Animal Genetics estimated at US$7.7 Billion in the year 2023, is expected to reach US$11.4 Billion by 2030, growing at a CAGR of 5.8% over the analysis period 2023-2030. Live Animals, one of the segments analyzed in the report, is expected to record a 6.5% CAGR and reach US$7.3 Billion by the end of the analysis period. Growth in the Genetic Materials segment is estimated at 5.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.1 Billion While China is Forecast to Grow at 5.4% CAGR

The Animal Genetics market in the U.S. is estimated at US$2.1 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.8 Billion by the year 2030 trailing a CAGR of 5.4% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.8% and 4.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.6% CAGR.

Global Animal Genetics Market - Key Trends and Drivers Summarized

How Is Animal Genetics Transforming Livestock Breeding?

Animal genetics plays a pivotal role in the transformation of livestock breeding, driving significant improvements in productivity, disease resistance, and overall animal health. Through genetic selection and breeding strategies, farmers and breeders can enhance desirable traits in livestock, such as milk yield in dairy cattle, growth rate in poultry, and wool quality in sheep. The application of advanced genetic tools, such as genomic selection and marker-assisted breeding, allows for the precise identification of superior animals, accelerating the breeding process and ensuring the propagation of favorable traits. This scientific approach not only boosts the efficiency and profitability of livestock operations but also contributes to the sustainability of animal agriculture by reducing the environmental footprint associated with animal production.

What Role Do Technological Advancements Play in Animal Genetics?

Technological advancements are revolutionizing the field of animal genetics, making it more sophisticated and effective. Innovations in genomics, such as next-generation sequencing (NGS) and CRISPR-Cas9 gene editing, have opened new avenues for genetic research and manipulation. NGS allows for the comprehensive analysis of animal genomes, facilitating the identification of genetic variations linked to important traits. CRISPR-Cas9, on the other hand, enables precise modifications in the DNA sequence, offering the potential to eliminate undesirable traits and introduce beneficial ones. These cutting-edge technologies not only enhance the accuracy and efficiency of genetic selection but also pave the way for groundbreaking developments in animal biotechnology, including the creation of transgenic animals with improved characteristics.

Why Is Animal Genetics Crucial for Disease Control and Prevention?

Animal genetics is crucial for disease control and prevention, providing a scientific basis for breeding disease-resistant livestock. By identifying and selecting animals with genetic resistance to specific pathogens, breeders can reduce the incidence of diseases in animal populations, decreasing the reliance on antibiotics and other medications. Genetic research also facilitates the understanding of disease mechanisms, enabling the development of vaccines and targeted therapies. Moreover, genetic monitoring of livestock populations can help detect and manage outbreaks of infectious diseases, safeguarding animal health and ensuring the stability of food supply chains. The integration of genetic data with traditional veterinary practices thus enhances the overall health management of livestock, promoting a more resilient and sustainable animal agriculture system.

What Factors Are Driving Growth in the Animal Genetics Market?

The growth in the animal genetics market is driven by several factors related to technological advancements, end-use applications, and evolving consumer preferences. The increasing demand for high-quality animal products, such as meat, milk, and eggs, is a major driver, as it pushes the need for genetically superior livestock. Technological innovations in genomics and biotechnology, including next-generation sequencing and CRISPR-Cas9, are propelling the market by enabling more precise and efficient breeding practices. The rising awareness and adoption of sustainable farming practices further boost the demand for genetically optimized animals that require fewer resources and have a lower environmental impact. Additionally, the growing emphasis on animal health and disease resistance, driven by concerns over food safety and antibiotic resistance, is accelerating the adoption of advanced genetic solutions. The expansion of livestock industries in emerging markets and the increasing investments in research and development are also contributing to market growth, providing new opportunities for innovation and commercialization in the animal genetics sector.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â