¼¼°èÀÇ ³ó¾÷¿ë AI ½ÃÀåÀº 2024³â 47¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í ³ó¾÷ »ý»ê¼º Çâ»ó, ÀÚ¿ø ÀÌ¿ë ÃÖÀûÈ, ³ó¾÷ ³ëµ¿·Â ºÎÁ· ´ëó¸¦ ¸ñÀûÀ¸·Î ÇÑ AI ±â¼úÀÇ Ã¤Åà Áõ°¡·Î 2034³â¿¡´Â 466¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 26.3%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
¸Ó½Å·¯´× ¾Ë°í¸®Áò, ¿¹Ãø ºÐ¼®, ÀÚµ¿È µî AI ÀÀ¿ë ±â¼úÀº ÀÛ¹° ¸ð´ÏÅ͸µ, Áúº´ ŽÁö, °ü°³ °ü¸®, ¼öÈ®·® ¿¹Ãø µîÀ» °³¼±Çϱâ À§ÇØ È°¿ëµÇ°í ÀÖ½À´Ï´Ù.
AI ±â¼úÀº ³ó¹ÎµéÀÌ ¹æ´ëÇÑ µ¥ÀÌÅͼ¿¡¼ ½Ç½Ã°£ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¿© ÀÚ¿ø Ȱ¿ë ÃÖÀûÈ, ÀÛ¹° ¼Õ½Ç ÃÖ¼ÒÈ, Àüü ¼öÈ®·® ǰÁú Çâ»óÀ» µ½½À´Ï´Ù. ÀÌ Á¤¹ÐÇÑ Á¢±Ù ¹æ½ÄÀº ¿î¿µ È¿À²¼ºÀ» °³¼±ÇÏ´Â µ¿½Ã¿¡ Ç¥Àû °ü°³, ¿¹Ãø ÇØÃæ °ü¸®, Åä¾ç °Ç° ¸ð´ÏÅ͸µ°ú °°Àº Áö¼Ó °¡´ÉÇÑ ³ó¾÷ ¹æ¹ýÀ» ÃËÁøÇÕ´Ï´Ù. AI¸¦ ÀÏ»óÀûÀÎ ³óÀå ¿î¿µ¿¡ ÅëÇÕÇÔÀ¸·Î½á »ý»êÀÚ´Â ¹®Á¦¸¦ ¿¹ÃøÇϰí, ³¶ºñ¸¦ ÁÙÀ̸ç, ȯ°æ º¯È¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ÀÚ¿øÀÌ Á¦ÇÑµÈ ¼¼°è¿¡¼ Áõ°¡ÇÏ´Â ½Ä·® ¼ö¿ä¸¦ ÃæÁ·ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.
½ÃÀå ¹üÀ§ | |
---|---|
½ÃÀÛ ¿¬µµ | 2024³â |
¿¹Ãø ¿¬µµ | 2025³â-2034³â |
½ÃÀÛ±Ý¾× | 47¾ï ´Þ·¯ |
¿¹Ãø ±Ý¾× | 466¾ï ´Þ·¯ |
CAGR | 26.3% |
¼Ö·ç¼Ç ºÎ¹®Àº 2024³â¿¡ ½ÃÀåÀ» Áö¹èÇϸç 33¾ï ´Þ·¯¸¦ âÃâÇßÀ¸¸ç, 2034³â¿¡´Â 310¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. AI ±â¹Ý ¼Ö·ç¼ÇÀº ÀÛ¹° ¸ð´ÏÅ͸µ, Áúº´ °¨Áö, Á¤¹Ð ½É±â, Áö´ÉÇü °ü°³, ¼öÈ®·® ¿¹Ãø µî ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¸¦ Æ÷°ýÇÕ´Ï´Ù. ÀÌ ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀº ¼¾¼, µå·Ð, À§¼º À̹Ì¡¿¡¼ ¼öÁýµÈ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ³ó¹Î¿¡°Ô ½ÇÇà °¡´ÉÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. AI ¼Ö·ç¼ÇÀÇ È®À强°ú À¯¿¬¼ºÀº ´Ù¾çÇÑ ÀÛ¹°, Áö¿ª, ³ó¾÷ ¹æ½Ä¿¡ Àû¿ë °¡´ÉÇϸç, °³º° ¼ºñ½º¿¡ ºñÇØ ºñ¿ë È¿À²¼º°ú È¿°ú¼ºÀ» ³ôÀÔ´Ï´Ù. ´ëºÎºÐÀÇ AI ³ó¾÷ ¼Ö·ç¼ÇÀº Ŭ¶ó¿ìµå ±â¹ÝÀÌ¸ç »ç¿ëÀÚ Ä£ÈÀûÀÌ¾î¼ ¸ðµç ±Ô¸ðÀÇ ³óÀå¿¡¼ ½±°Ô ±¸ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.
¸Ó½Å·¯´×(ML)Àº 2024³â¿¡ 50%ÀÇ »ó´çÇÑ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, »ó´çÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ML ¾Ë°í¸®ÁòÀº ³ó¾÷¿¡¼ ´ë·®ÀÇ ±¸Á¶È ¹× ºñ±¸Á¶È µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â µ¥ Ź¿ùÇÏ¿© Á¤È®ÇÑ ¿¹ÃøÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. MLÀº ¼öÈ®·® ¿¹Ãø, Áúº´ ŽÁö ¹× ÇØÃæ °¨¿° ¿¹Ãø¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº »õ·Î¿î µ¥ÀÌÅͰ¡ ÃàÀûµÉ¼ö·Ï ½Ã°£ÀÌ Áö³²¿¡ µû¶ó °³¼±µÇ¾î MLÀ» AI ±â¹ÝÀÇ ´Ù¾çÇÑ ³ó¾÷ ¼Ö·ç¼ÇÀ» µÞ¹ÞħÇÏ´Â ´Ù¸ñÀû ±â¼ú·Î ¸¸µì´Ï´Ù. Áö´ÉÇü °ü°³, Á¤¹Ð ³ó¾÷, ½ÃÀå ¿¹Ãø, ÀÚµ¿È ±â°è µî¿¡ À̸£±â±îÁö ´ëºÎºÐÀÇ AI ½Ã½ºÅÛÀº ML ¾Ë°í¸®Áò¿¡ ÀÇÁ¸ÇÏ¿© ½Ç½Ã°£ µ¥ÀÌÅÍ ½ºÆ®¸²À» ±â¹ÝÀ¸·Î ÇÑ ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
ºÏ¹ÌÀÇ ³ó¾÷¿ë AI ½ÃÀåÀº 2024³â 36%ÀÇ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¹Ì±¹Àº ±â¼ú Çõ½ÅÀÇ ±Û·Î¹ú ¸®´õ·Î, ƯÈ÷ ÀΰøÁö´É°ú Á¤¹Ð ³ó¾÷ ºÐ¾ß¿¡¼ ¼±µµÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¼ú ±â¾÷µéÀº ³ó¾÷ »ý»ê¼º ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇØ AI ¹× ±â°è ÇнÀ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹Ì±¹Àº ´ëÇаú Á¤ºÎ ÇÁ·Î±×·¥ÀÌ ³ó¾÷ ±â¼úÀÇ ¹ßÀüÀ» ÃËÁøÇÏ´Â °·ÂÇÑ ¿¬±¸ °³¹ß »ýŰ踦 ÀÚ¶ûÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ³ôÀº ÅõÀÚ¿Í ¿ª·®°ú °áÇÕµÇ¾î ¹Ì±¹Àº ³ó¾÷¿ë AI ÀÀ¿ë ºÐ¾ßÀÇ ¼±µÎ¿¡ ¼¸ç ±Û·Î¹ú ½ÃÀå¿¡¼ ¸®´õ½ÊÀ» °ÈÇϰí ÀÖ½À´Ï´Ù.
³ó¾÷¿ë AI ½ÃÀå¿¡¼ Ȱµ¿ÇÏ´Â ÁÖ¿ä ±â¾÷À¸·Î´Â Gamaya, Corteva, John Deere, Taranis, aWhere, Trimble, IBM, Microsoft ¹× Bayer Crop Science (Climate LLC) µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ ±â¾÷µéÀº ³ó¾÷ °üÇàÀ» °³¼±ÇÏ°í ³ó¾÷ »ê¾÷ÀÌ Á÷¸éÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§ÇØ AI ±â¹Ý ¼Ö·ç¼ÇÀ» Àû±ØÀûÀ¸·Î °³¹ß ¹× ¹èÆ÷Çϰí ÀÖ½À´Ï´Ù. ³ó¾÷¿ë AI ½ÃÀå¿¡¼ ÀÔÁö¸¦ °ÈÇϱâ À§ÇØ ±â¾÷µéÀº ¿©·¯ °¡Áö Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ³óºÎµéÀÇ Æ¯Á¤ ¿ä±¸¿¡ ¸Â´Â Çõ½ÅÀûÀÎ AI ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇÑ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ Æ÷ÇԵ˴ϴÙ. ½Ä·® ¾Èº¸, Áö¼Ó °¡´É¼º, ±âÈÄ º¯È¿Í °°Àº ±¤¹üÀ§ÇÑ °úÁ¦¸¦ ÇØ°áÇϱâ À§ÇÑ AI ±â¹Ý ¼Ö·ç¼ÇÀ» °³¹ßÇÏ°í ±¸ÇöÇϱâ À§ÇØ ³ó¾÷ ±â°ü, ¿¬±¸ ±â°ü ¹× Á¤ºÎ ±â°ü°úÀÇ Çù·Â ¹× ÆÄÆ®³Ê½ÊÀÌ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. »õ·Î¿î ½ÃÀå¿¡ ÁøÃâÇϰí ÁÖ¿ä Áö¿ª¿¡ ÀÔÁö¸¦ ±¸ÃàÇÏ¿© ±Û·Î¹ú ÀÔÁö¸¦ È®´ëÇÏ´Â °Íµµ ´õ Å« ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇÑ ¶Ç ´Ù¸¥ Àü·«ÀÔ´Ï´Ù.
The Global AI in Agriculture Market was valued at USD 4.7 billion in 2024 and is estimated to grow at a CAGR of 26.3% to reach USD 46.6 billion by 2034, driven by the increasing adoption of AI technologies to enhance agricultural productivity, optimize resource utilization, and address labor shortages in farming. AI applications, such as machine learning algorithms, predictive analytics, and automation, are being utilized to improve crop monitoring, disease detection, irrigation management, and yield forecasting.
AI technologies empower farmers to harness real-time insights from vast datasets, helping them optimize resource use, minimize crop losses, and enhance overall yield quality. This precision-driven approach improves operational efficiency while promoting sustainable agricultural methods, such as targeted irrigation, predictive pest management, and soil health monitoring. By integrating AI into everyday farm operations, producers can anticipate challenges, reduce waste, and respond quickly to environmental changes-all essential in meeting the growing global demand for food in a resource-constrained world.
Market Scope | |
---|---|
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $4.7 Billion |
Forecast Value | $46.6 Billion |
CAGR | 26.3% |
The solution segment dominated the market in 2024, generated USD 3.3 billion, and is projected to reach USD 31 billion by 2034. AI-based solutions encompass a wide range of applications, including crop monitoring, disease detection, precision planting, intelligent irrigation, and yield forecasting. These software platforms analyze data from sensors, drones, and satellite imaging to provide farmers with actionable insights. The scalability and flexibility of AI solutions make them applicable across various crops, geographies, and farming practices, enhancing their affordability and effectiveness compared to individual services. Most AI agricultural solutions are cloud-based and user-friendly, facilitating easy implementation on farms of any size.
Machine learning (ML) held a significant market share of 50% in 2024 and is expected to experience substantial growth. ML algorithms excel at processing large volumes of structured and unstructured data in agriculture, enabling accurate predictions. ML is extensively applied in yield prediction, disease detection, and pest infestation forecasting. These models improve over time as new data is accumulated, making ML a versatile technology that underpins many AI-driven agricultural solutions. From intelligent irrigation and precision farming to market forecasting and automated machinery, most AI systems rely on ML algorithms, enabling real-time decision-making based on live and historical data streams.
North America AI in Agriculture Market held a 36% share in 2024. The U.S. is a global leader in technological innovation, particularly in artificial intelligence and precision agriculture. Major technology firms have invested in AI and machine learning to develop agricultural productivity solutions. The country also boasts a strong research and development ecosystem, with universities and government programs driving agri-tech advancements. These factors, combined with high investments and capabilities, position the U.S. at the forefront of AI applications in agriculture, facilitating its leadership in the global market.
Key players operating in the AI in Agriculture Market include: Gamaya, Corteva, John Deere, Taranis, aWhere, Trimble, IBM, Microsoft, and Bayer Crop Science (Climate LLC). These companies are actively developing and deploying AI-driven solutions to enhance agricultural practices and address the challenges faced by the farming industry. To strengthen their presence in the AI in agriculture market, companies are focusing on several strategic initiatives. These include investing in research and development to create innovative AI solutions tailored to the specific needs of farmers. Collaborations and partnerships with agricultural organizations, research institutions, and government agencies are being pursued to develop and implement AI-driven solutions that address broader challenges such as food security, sustainability, and climate change. Expanding their global footprint by entering new markets and establishing a presence in key regions is another strategy to capture a larger market share.