스마트 작물 모니터링 시장 - 세계 및 지역별 분석 : 최종 이용 산업별, 유형별, 공정별, 국가별 - 분석 및 예측(2024-2034)
Smart Crop Monitoring Market - A Global and Regional Analysis: Focus on End-Use Industry, Type, Process, and Country Level Analysis - Analysis and Forecast, 2024-2034
상품코드 : 1565174
리서치사 : BIS Research
발행일 : 2024년 10월
페이지 정보 : 영문
 라이선스 & 가격 (부가세 별도)
US $ 5,500 ₩ 7,893,000
PDF and Excel (1-3 User License) help
PDF 및 Excel 보고서를 동일 사업장에서 3명까지 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.
US $ 8,400 ₩ 12,055,000
PDF and Excel (Global License) help
PDF 및 Excel 보고서를 동일 기업의 모든 분이 이용할 수 있는 라이선스입니다. 인쇄 가능하며 인쇄물의 이용 범위는 PDF 이용 범위와 동일합니다.


ㅁ Add-on 가능: 고객의 요청에 따라 일정한 범위 내에서 Customization이 가능합니다. 자세한 사항은 문의해 주시기 바랍니다.
ㅁ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송기일은 문의해 주시기 바랍니다.

한글목차

세계 스마트 작물 모니터링 시장 규모는 2023년 48억 8,300만 달러에 달했습니다. 이 시장은 연평균 15.74% 성장하여 2034년에는 238억 360만 달러에 달할 것으로 예상됩니다. 정밀 농업과 지속 가능한 농업에 대한 수요 증가가 시장을 주도하고 있으며, 모니터링 기술의 혁신을 주도하고 있습니다. 첨단 데이터 분석, IoT 솔루션, 진화하는 규제 프레임워크는 작물 건강, 토양 상태, 자원 관리를 정확하고 효율적으로 모니터링할 수 있는 역동적인 시장을 형성하고 있습니다. 전략적 파트너십과 기술 발전은 농업의 생산성과 지속가능성을 높이기 위해 신뢰할 수 있는 고정밀 도구의 필요성을 강조하며 시장에 더욱 영향을 미치고 있습니다. 수요가 증가함에 따라 시장은 기술 혁신과 환경 보호에 계속 초점을 맞추었습니다.

주요 시장 통계
예측 기간 2024-2034년
2024년 평가 55억 1,780만 달러
2034년 전망 238억 360만 달러
CAGR 15.74%

스마트 작물 모니터링은 토양 상태, 기상 패턴, 식물 건강 상태 등 작물의 성장에 영향을 미치는 다양한 요인을 평가하고 관리하기 위해 첨단 기술을 활용하는 과정으로 정의됩니다. 스마트 작물 모니터링은 센서, 드론, 데이터 분석 등의 도구를 사용하여 실시간 정보를 수집하고 농업 관행을 최적화합니다. 이 과정은 작물 수확량을 높이고 물과 비료와 같은 자원을 절약하며 지속 가능한 농업을 보장하는 데 필수적입니다. 스마트 작물 모니터링은 원격 감지, IoT 장치 및 AI 기반 분석을 통합하여 작물 상태에 대한 필수적인 통찰력을 제공하여 농부들이 생산성과 환경 관리 능력을 향상시키는 데이터 기반 의사 결정을 내릴 수 있도록 돕습니다.

세계 스마트 작물 모니터링 시장은 지속 가능한 농법에 대한 수요 증가와 농업 생산성 최적화에 대한 니즈 증가로 인해 빠르게 성장하고 있습니다. 스마트 작물 모니터링은 센서 및 데이터 분석과 같은 첨단 기술을 활용하여 토양 상태, 작물의 건강 상태, 기상 패턴에 대한 실시간 통찰력을 제공합니다. 정밀 농업이 자원 부족, 기후 변화, 식량 안보 등의 문제를 해결하는 데 필수적인 요소로 떠오르면서 정부와 산업계는 효율성과 지속가능성을 향상시키기 위해 이러한 기술을 채택하고 있습니다. 이 시장에는 IoT 기반 센서, 드론, AI 기반 분석 등 다양한 솔루션이 포함되어 있으며, 이는 농작물 모니터링, 자원 절약, 수확물 품질 향상에 필수적입니다. 정밀 농업의 부상과 지속 가능한 농업에 대한 관심으로 인해 세계 스마트 작물 모니터링 시장은 기술 혁신과 종합적인 데이터 기반 농업 솔루션의 필요성에 따라 크게 성장할 준비가 되어 있습니다.

이 보고서는 세계 스마트 작물 모니터링 시장을 조사했으며, 시장 개요와 함께 최종 이용 산업별, 유형별, 공정별, 국가별 동향, 시장 진출기업 프로파일 등의 정보를 제공합니다.

목차

주요 요약

제1장 시장

제2장 용도

제3장 제품

제4장 지역

제5장 시장 - 경쟁 벤치마킹과 기업 개요

제6장 조사 방법

LSH
영문 목차

영문목차

Global Smart Crop Monitoring Market Overview

The global smart crop monitoring market was valued at $4,883.0 million in 2023 and is expected to grow at a CAGR of 15.74%, reaching $23,803.6 million by 2034. The market is driven by increasing demand for precision agriculture and sustainable farming practices, leading to innovations in monitoring technologies. Advanced data analytics, IoT solutions, and evolving regulatory frameworks are shaping this dynamic market, enabling accurate and efficient monitoring of crop health, soil conditions, and resource management. Strategic partnerships and technological advancements are further influencing the market, emphasizing the need for reliable, high-precision tools to enhance productivity and sustainability in agriculture. As demand grows, the market continues to focus on innovation and environmental stewardship.

Introduction of Smart Crop Monitoring

KEY MARKET STATISTICS
Forecast Period2024 - 2034
2024 Evaluation$5,517.8 Million
2034 Forecast$23,803.6 Million
CAGR15.74%

The study conducted by BIS Research defines smart crop monitoring as the process of utilizing advanced technologies to assess and manage various factors affecting crop growth, such as soil conditions, weather patterns, and plant health. Smart crop monitoring employs tools such as sensors, drones, and data analytics to collect real-time information and optimize agricultural practices. This process is critical for improving crop yields, conserving resources such as water and fertilizers, and ensuring sustainable farming. Through the integration of remote sensing, IoT devices, and AI-driven analytics, smart crop monitoring provides essential insights into the condition of crops, allowing farmers to make data-driven decisions that enhance productivity and environmental stewardship.

Market Introduction

The global smart crop monitoring market is rapidly gaining prominence due to the increasing demand for sustainable farming practices and the growing need to optimize agricultural productivity. Smart crop monitoring leverages advanced technologies such as sensors and data analytics to provide real-time insights into soil conditions, crop health, and weather patterns. As precision agriculture becomes essential in addressing challenges such as resource scarcity, climate change, and food security, governments and industries are adopting these technologies to improve efficiency and sustainability. The market encompasses a variety of solutions, including IoT-based sensors, drones, and AI-driven analytics, which are critical for monitoring crops, conserving resources, and enhancing yield quality. With the rise of precision farming and the focus on sustainable agriculture, the global smart crop monitoring market is poised for significant growth, driven by technological innovations and the need for comprehensive, data-driven farming solutions.

Industrial Impact

The global smart crop monitoring market's industrial impact spans agriculture, environmental sustainability, and technological innovation. Advancements in monitoring technologies, such as IoT sensors and data analytics, drive improvements in crop management by enhancing the accuracy and efficiency of monitoring processes. This progress fosters collaborations between farmers, technology developers, and regulatory bodies, elevating industry standards and pushing the boundaries of precision agriculture. Furthermore, the emphasis on precise and reliable crop monitoring solutions aligns with global goals for food security, resource conservation, and sustainable farming practices, influencing broader agricultural practices and promoting the adoption of eco-friendly, data-driven farming techniques. As a result, the smart crop monitoring market plays a crucial role in improving agricultural productivity, driving technological innovation, and supporting sustainable development initiatives worldwide.

The key players operating in the global smart crop monitoring market include CNH Industrial N.V, Deere & Company, Climate LLC, AGRIVI, IBM Corporation, KUBOTA Corporation, Robert Bosch, DJI, AIRBUS, Small Robot Company, Semios, Trimble, Parrot, CropX Inc., Naio Technologies. These companies are focusing on strategic partnerships, collaborations, and acquisitions to enhance their product offerings and expand their market presence.

Market Segmentation:

Segmentation 1: by Application

Disease and Pest Detection

Nutrient Management

Weed Management

Crop Insurance

Disease and Pest Detection Segment to Dominate the Global Smart Crop Monitoring Market (by Application)

In the global smart crop monitoring market, disease and pest detection remains the leading application, driven by the critical need to protect crops and ensure agricultural productivity. Smart crop monitoring is essential for identifying early signs of disease and pest infestations, which can significantly impact yield and quality. With the rise of precision agriculture, farmers are increasingly adopting advanced monitoring technologies to detect threats in real time and implement targeted interventions. Regulatory frameworks promoting sustainable farming practices, along with the growing awareness of the importance of food security, further fuel the demand for disease and pest detection solutions. As concerns about crop health intensify and precision monitoring tools advance, the demand for disease and pest detection is expected to grow significantly, ensuring it remains a vital component in optimizing crop yields and sustainability.

Segmentation 2: by Product

Software Scouting to Dominate the Global Smart Crop Monitoring Market

In the global smart crop monitoring market, software scouting leads the market due to its unparalleled ability to process real-time data and provide actionable insights for farmers. This advanced technology is essential for monitoring crop health, detecting pest and disease threats, and optimizing resource management. The increasing adoption of precision agriculture and the need for efficient farm management have boosted the demand for software scouting solutions. Furthermore, growing awareness of the benefits of data-driven farming practices is driving the adoption of these tools. As the need for accurate, real-time monitoring intensifies, the use of software scouting in smart crop monitoring is expected to grow significantly, solidifying its position as a critical product for enhancing agricultural productivity and sustainability.

Segmentation 3: by Region

North America: U.S., Canada, and Mexico

Europe: Germany, France, Spain, Italy, U.K., and Rest-of-Europe

Asia-Pacific: China, Japan, Australia, India, and Rest-of-Asia-Pacific

Rest-of-the-World: Latin America and the Middle East and Africa

The North America region is set to dominate the global smart crop monitoring market, driven by the widespread adoption of precision agriculture, technological advancements, and strong government support for sustainable farming practices. Countries such as the U.S. and Canada are experiencing a significant rise in demand for smart crop monitoring solutions due to the increasing focus on optimizing crop yields and resource management. The region's well-established agricultural infrastructure, coupled with a strong push for food security and water conservation, has been fueling the adoption of IoT sensors and data analytics. Governments are implementing policies to encourage sustainable farming, which boosts the demand for advanced monitoring technologies. Additionally, the region's commitment to technological innovation has been promoting the development of sophisticated tools for real-time crop health monitoring and resource optimization. As North America continues to lead in precision agriculture, it is expected to maintain its leadership position in the global smart crop monitoring market, significantly contributing to agricultural efficiency and sustainability through cutting-edge technologies and data-driven farming practices.

Recent Developments in the Global Smart Crop Monitoring Market

Demand - Drivers, Limitations, and Opportunities

Market Demand Drivers: Increasing Number of Pest Variant, Driving Demand for Smart Monitoring Technologies

In regions with extensive agricultural activity, the emergence of new pest variants poses a significant challenge to crop production. Climate change, global trade, and evolving pest resistance have contributed to the rise of more resilient and diverse pest species, threatening crop yields and food security. According to the U.S. Department of Agriculture (USDA), pests are responsible for up to 40% of global crop losses annually. The increasing prevalence of these pest variants is driving the demand for advanced smart monitoring technologies in agriculture.

Smart crop monitoring systems, equipped with IoT sensors and AI-powered data analytics, allow for real-time detection of pests, enabling farmers to identify and mitigate infestations before they cause widespread damage. As pest pressures rise, particularly in regions with high agricultural output, the adoption of these technologies is becoming crucial for sustainable farming. The ability to detect and respond to pest threats in a timely manner minimizes crop loss and reduces the need for chemical pesticides, supporting both environmental sustainability and crop health. As a result, the increasing number of pest variants is a key driver in the growing demand for smart crop monitoring solutions, ensuring efficient pest management and enhancing agricultural productivity.

Market Challenges: Growing Concerns over Data Security

Growing concerns over data security represent a significant restraint in the global smart crop monitoring market. As these systems increasingly rely on IoT devices, cloud-based platforms, and AI-driven analytics to collect and process real-time data from farms, the risk of data breaches and cyberattacks has become a critical issue. Farmers and agricultural businesses are often concerned about the vulnerability of their sensitive data, such as crop health information, field productivity, and proprietary farming practices, which could be exploited or misused if accessed by unauthorized parties.

In several cases, small to mid-sized farms, particularly in regions with limited technological infrastructure, have faced challenges in adopting smart monitoring technologies due to the lack of robust data protection measures. For instance, many farmers in North America and Europe have voiced concerns over potential data misuse by third-party companies or competitors, creating hesitancy in embracing these digital solutions.

The high cost of implementing advanced cybersecurity measures further exacerbates this issue, particularly for smaller agricultural enterprises with limited budgets. Addressing these data security concerns is essential for fostering broader adoption of smart crop monitoring technologies and ensuring that farmers can confidently use these innovations to enhance productivity and sustainability without compromising the safety and privacy of their data.

Market Opportunities: Partnerships with Agri-Tech Startups

Forming partnerships with Agri-Tech startups presents a significant growth opportunity in the global smart crop monitoring market. As the agriculture industry increasingly adopts digital solutions to optimize farming practices, Agri-Tech startups are at the forefront of developing innovative technologies such as AI-driven analytics, IoT-based sensors, and remote sensing tools. By collaborating with these startups, smart crop monitoring providers can enhance their technological capabilities, expand their product offerings, and tap into cutting-edge advancements in precision agriculture.

These partnerships offer the potential to co-develop customized solutions that address specific farming challenges, such as pest detection, resource optimization, and crop health monitoring. Additionally, aligning with Agri-Tech innovators can help smart monitoring providers stay ahead of industry trends, adapt to evolving farmer needs, and solidify their position in the rapidly growing market. By investing in these collaborations, companies can unlock new revenue streams, broaden their market presence, and contribute to the advancement of sustainable, data-driven agriculture practices worldwide.

How can this report add value to an organization?

This report can add value to an organization in several ways. Some of these are given here:

Product/Innovation Strategy: The product segment helps readers understand the various applications of smart crop monitoring technologies based on use cases (such as soil health monitoring, weather forecasting, pest and disease detection, water management, and yield prediction). It covers different technologies, including IoT sensors, drones, and data analytics platforms. With ongoing advancements in precision agriculture, increased investments, and growing awareness of sustainable farming, the smart crop monitoring business offers a high-revenue, high-investment opportunity.

Growth/Marketing Strategy: The global smart crop monitoring market is rapidly expanding, offering substantial opportunities for both established and emerging market players. Key strategies covered include mergers and acquisitions, product launches, partnerships, collaborations, and business expansions. Companies in this market tend to focus on product innovation and development to maintain and strengthen their market position.

Competitive Strategy: The report profiles key players in the global smart crop monitoring market, including technology providers and Agri-Tech companies. It offers a comprehensive view of the competitive landscape, including partnerships, agreements, and collaborations, helping readers identify untapped revenue opportunities in the market.

Research Methodology

Factors for Data Prediction and Modeling

Market Estimation and Forecast

This research study involves the usage of extensive secondary sources, such as certified publications, articles from recognized authors, white papers, annual reports of companies, directories, and major databases to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the global smart crop monitoring market.

The market engineering process involves the calculation of the market statistics, market size estimation, market forecast, market crackdown, and data triangulation (the methodology for such quantitative data processes is explained in further sections). The primary research study has been undertaken to gather information and validate the market numbers for segmentation types and industry trends of the key players in the market.

Primary Research

The primary sources involve industry experts from the global smart crop monitoring market and various stakeholders in the ecosystem. Respondents such as CEOs, vice presidents, marketing directors, and technology and innovation directors have been interviewed to obtain and verify both qualitative and quantitative aspects of this research study.

The key data points taken from primary sources include:

Secondary Research

This research study involves the usage of extensive secondary research, directories, company websites, and annual reports. It also makes use of databases, such as Hoovers, Bloomberg, Businessweek, and Factiva, to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the global market. In addition to the data sources, the study has been undertaken with the help of other data sources and websites, such as the Census Bureau, OICA, and ACEA.

Secondary research was done to obtain crucial information about the industry's value chain, revenue models, the market's monetary chain, the total pool of key players, and the current and potential use cases and applications.

The key data points taken from secondary research include:

Key Market Players and Competition Synopsis

The companies that are profiled in the global smart crop monitoring market have been selected based on inputs gathered from primary experts and analyzing company coverage, product portfolio, and market penetration.

Some of the prominent names in this market are:

Companies that are not a part of the aforementioned pool have been well represented across different sections of the report (wherever applicable).

Table of Contents

Executive Summary

Scope and Definition

1 Markets

2 Application

3 Products

4 Regions

5 Markets-Competitive Benchmarking and Company Profiles

6 Research Methodology

(주)글로벌인포메이션 02-2025-2992 kr-info@giikorea.co.kr
ⓒ Copyright Global Information, Inc. All rights reserved.
PC버전 보기