전지로부터의 탈각이 대규모 신시장 창출 milliWh-GWh : 40라인의 예측 및 기술(2025-2045년)
Escape from Batteries Creates Large New Markets milliWh-GWh: Forecasts in 40 lines, Technology 2025-2045
상품코드:1590947
리서치사:Zhar Research
발행일:2024년 11월
페이지 정보:영문 493 Pages
라이선스 & 가격 (부가세 별도)
한글목차
배터리 불필요 스토리지는 20년 후에는 5배의 2,500억 달러의 사업이 될 것으로 예측되고 있습니다.
펄스 & 고전력 스토리지
슈퍼커패시터, 플라이휠 발전기, 양수 발전 등 기존의 스토리지에도 성장이 보이지만, 성장의 대부분은 많은 새로운 스토리지 형태에 의한 것입니다. 리튬 이온 커패시터는 현재 전자기 무기, 열핵 반응로, 채굴용 차량에 사용되고 있습니다. 탄탈 하이브리드 커패시터는 펄스 레이더와 같은 군용기 용도로 더욱 침투합니다. 또, 리프팅 블록, 지하 양수 발전, 압축 공기나 액체 가스, 히트 펌프식 축열 등을 이용한 대규모 송전망이 현재 구축되고 있습니다. 대부분의 배터리는 GWh를 얻는 데 더 많이 구입하지만 대체품은 모두 스케일 이점이 크고 불연성이며 열화와 누출이 거의 없습니다. 풍력 발전이나 태양광 발전이 1개월에 1회밖에 사용할 수 없다는 새로운 요구에도 대응할 수 있습니다.
거의 또는 전혀 저장하지 않고 관리하는 방법
이 보고서는 또한 태양열 담수화, 무인 항공기 및 계획 중 6G 통신 장치에서 볼 수 있는 스토리지 제거에 대해 다룹니다. Dracula, EnOcean, 8Power 등이 판매하는 에너지 수확을 이용한 배터리 프리 센서, 빌딩 제어, IoT 노드 등의 중간적인 옵션도 있습니다.
캡션 : 에너지 스토리지의 의사결정 트리와 예
본 보고서에서는 전지로부터의 탈각에 의한 신시장 동향을 조사했으며, 전지의 한계와 과제, 전지로부터의 탈각의 동향, 전지 불필요한 시스템의 유형과 개요, 주요 기술의 연구 파이프라인, 기술 로드맵, SWOT 분석, 주요 기업 프로파일 등을 정리했습니다.
목차
제1장 주요 요약 및 총론
제2장 서문
개요
배터리의 한계
리튬 이온 전지의 화재가 계속되고 있는 이유
전동화, 전지 채용, 전지 폐지의 메가 트렌드
스토리지에 대한 영향(2025-2045년)
2025년에 도입되는 전지 및 전지리스의 고정형 스토리지 기술의 비교 및 미래 동향
전지 점유율(2025-2045년)
제3장 전지 불필요 시스템 : 백 스캐터(EAS, RFID, 6G SWIPT), 전지 불필요 회로, 자기 급전형 초저전력 회로 및 센서, 수급 관리
개요
백스캐터 및 SWOT
배터리를 최소화하는 회로 설계
V2G, V2H, V2V에 의한 전지의 배제 및 태양광 패널로부터의 직접 차량 충전
수요 관리 : 저장 불필요한 태양광 담수화 장치(2024년)
소스 제어 : 진보(2024년)
전지의 배제 및 사양
배터리가 필요없는 에너지 수확
제4장 정전 스토리지 : 슈퍼커패시터, 슈도 커패시터, 리튬 이온 커패시터 및 기타 BSH
커패시터의 위치와 그 변형
선택 범위 : 커패시터에서 슈퍼커패시터, 배터리까지
연구 파이프라인 : 순수한 슈퍼커패시터
연구 파이프라인 : 하이브리드 접근
연구 파이프라인 : 슈도 커패시터
슈퍼커패시터와 그 파생품의 실제 용도 및 잠재적 용도
슈퍼커패시터 기업 103사의 평가 : 10항목
리튬 이온 커패시터 및 기타 배터리 슈퍼커패시터 하이브리드 BSH 스토리지
제5장 LGES(액화가스 에너지 저장) : LAES 또는 CO2
개요
LAES(액화 공기 에너지 저장) LDES(장기 에너지 저장 시스템)
액화 이산화탄소 LDES
제6장 CAES(압축 공기 에너지 저장)
개요
공급 부족이 클론을 끌어 당긴다
CAES 시장의 위치
CAES와 LAES의 파라미터 평가
CAES 기술 옵션
CAES 제조업체, 프로젝트, 연구
시스템 설계자 및 공급업체의 CAES 프로파일 및 평가
ALCAES(스위스)
APEX CAES(미국)
Augwind Energy(이스라엘)
Cheesecake Energy(영국)
Corre Energy(네덜란드)
Gaelectric(아일랜드)
Huaneng Group(중국)
Hydrostor(캐나다)
LiGE Pty(남아프리카)
Storelectric(영국)
Terrastor Energy Corporation(미국)
SWOT 평가
제7장 기계식 저장 : APHES(선진 양수 발전)·SGES(고체 중력 에너지 저장)·전기에서 전기로의 플라이휠
APHES(선진 양수 발전)
SGES(고체 중력 에너지 저장)
전기에서 전기로의 플라이휠
제8장 수소 및 기타 화학 중간체 LDES
개요
화학 중간체 LDES의 스위트 스폿
53개 연구의 진보(2025년, 2024년)
LDES에 있어서의 메탄 및 암모니아와 수소의 비교
수소 LDES 리더 : Calistoga Resiliency Centre USA
계산에 의해 장기의 LDES에서는 수소가 승리하는 것이 판명
광업 대기업은 신중하게 많은 선택을 진행하고 있습니다
건물 및 기타 좁은 위치
수소 저장 기술
LDES의 수소 저장 파라미터 평가
LDES에서 수소, 메탄, 암모니아 : SWOT 평가
제9장 지연 전력을 위한 ETES(열에너지 저장)
개요
연구의 진보(2024년)
열 엔진 접근은 성공 : Echogen USA
극단적인 온도와 광전 변환의 이용
하나의 플랜트에서 지연 열과 전력 판매
LDES용 ETES : SWOT 평가
ETES의 파라미터 평가
AJY
영문 목차
영문목차
Summary
Battery-free storage will quintuple to become a $250 billion business in 20 years. A new 493-page Zhar Research report has the detail. It is, "Escape from Batteries Creates Large New Markets milliWh-GWh: Forecasts in 40 lines, Technologies 2025-2045".
Pulse and high-power storage
There is growth in the traditional forms - supercapacitors, flywheel generators and pumped hydro. However, most of the growth comes from a host of new forms. Lithium-ion capacitors are now seen in electromagnetic weapons, thermonuclear reactors and mining vehicles. Tantalum hybrid capacitors further penetrate military aircraft applications such as pulsed radar. Massive grid storage is being built based on lifting blocks, underground pumped hydro, compressed air and liquid gas, heat pump thermal storage. With most batteries, to get GWh you just buy more, whereas all alternatives have great economy of scale, they are all non-flammable and they have little or no fade and self-leakage. They better meet the new need of wind and solar power being feeble for a month at a time.
How to manage with little or no storage
The report also covers the elimination of storage as seen in next solar desalination, some drones and some planned 6G Communications devices. Add the in-between option of battery-free sensors, building controls and IOT nodes with energy harvesting sold by Dracula, EnOcean, 8Power and others.
Do not make batteries your first choice
Electronics and electrical designers now first consider if they need batteries - from chip to power station - because the new battery-free options are often far better. This report is their essential reference, assessing hundreds of companies that can now supply and the remarkable new research advances through 2024. It answers questions such as:
Gaps in the market?
Emerging competition?
Full list of technology options?
2024 research pipeline analysis?
Technology sweet spots by parameter?
Zhar Research appraisals by technology?
Market forecasts by value and GWh 2025-2045?
Technology readiness and potential improvement?
Technology parameters compared against each other?
Market drivers and forecasts of background parameters?
Potential winners and losers by company and technology?
Technologies compared by numbers GW, GWh, delay, duration, etc.?
Appraisal of proponents, your prospective partners and acquisitions?
Evolving market needs and technology milestones in roadmaps by year 2025-2045?
Report findings
The Executive Summary and Conclusions (39 pages) is the quick read, with many new infograms and 40 forecast lines with explanation. One image is "Lithium-ion capacitor LIC market positioning by energy density spectrum" showing images of applications over a range of energy density and cycle life. Another shows latest grid and off-grid storage projects - duration vs power - for six battery-free forms compared with battery versions.
Chapter 2. Introduction (7 pages) explains battery limitations, how lithium-ion battery fires are ongoing with many 2024 examples, electrification megatrends, battery adoption, battery elimination. See implications for storage 2025 - 2045: batteries will lose share yet remain the largest value market.
The rest of the report is extremely detailed, starting with a chapter on how to minimise or eliminate storage. Other chapters deep-dive into battery-free storage, - electrostatic, mechanical, thermal, chemical - spanning microWh to GWh, electronics to heavy engineering, pulse to one year of storage. See this formidable virtuosity increasing to replace many batteries and do what batteries can never achieve but realise there is inability impact some other battery applications.
The 63 pages of Chapter 3 concern "Systems that eliminate batteries: backscatter (EAS, RFID, 6G SWIPT), battery elimination circuits, self-powering ultra-low-power circuits and sensors, demand and supply management". Navigate the jargon such as Electronic Article Surveillance EAS , passive RFID, SWIPT, AmBC, CD-ZED for 6G Communications, V2G, V2H, V2V and vehicle charging directly from solar panels. 13 primary energy harvesting technologies are compared. See examples of battery-free desalinators, cameras, drones, IOT nodes and the significance of 25 research advances through 2024.
Chapter 4. "Electrostatic storage: Supercapacitors, pseudocapacitors, lithium-ion capacitors, other BSH" (119 pages) spans activities of 103 companies compared in ten columns, a flood of important research advances in 2024, and a very wide variety of applications emerging. That spans aerospace, electric vehicles: AGV, material handling, car, truck, bus, tram, train, grid, microgrid, peak shaving, renewable energy, uninterrupted power supplies, medical and wearables, data centers, welding, laser cannon, railgun, pulsed linear accelerator weapon, capacitor-supercapacitor hybrids in radar. All have growth ahead but battery-supercapacitor hybrids have the greatest potential 2025-2045.
In electricity generation, your solar house will continue to have a battery. At the other extreme, national and continental grids will suffer massive earthworks and massive delays to get the very lowest levelised cost of storage LCOS up to months. However, there is a very large intermediate requirement emerging from the strong trend to factories, towns and islands being off-grid or capable of being off grid using wind and solar power for around 100MW. They prefer no long delays or major earthworks. Capital cost and long life, low maintenance, small footprint matter here. New redox flow batteries serve well potentially up to one month storage but they have competition from the subject of Chapter 5. "Liquefied gas energy storage LGES: Liquid air LAES or CO2" (22 pages, 5 companies). See SWOT appraisals, parameter comparisons and a niche opportunity in grids as well.
Chapter 6. Compressed air CAES (59 pages) covers the main competitor for pumped hydro grid storage as batteries fail to keep up with ever more wind and solar power demanding ever longer storage duration. Appraise 13 participants, strong research advances and major orders in 2024. Agree with the US Department of Energy that CAES will have one of the lowest LCOS and a splendid lack of expensive or toxic materials?
Chapter 7. "Mechanical storage: Advanced pumped hydro APHES, solid gravity energy storage SGES, flywheels for electricity-to-electricity" (90 pages) delves into a flood of 2024 research, 12 companies, many options. It sees greatest potential in APHES, a large system pumping water into mines being significant in 2024, then SGES for mainstream grid requirements. Flywheels tend to lose out to supercapacitors and their variants for high power density and pulse applications.
Chapter 8. "Hydrogen and other chemical intermediary LDES" (55 pages) reports potentially a very large market extending up to seasonal storage because it could store 10GWh levels underground. However, with only one small minigrid being prepared with tank hydrogen, the scope for extreme arguments for and against is considerable. Of possible chemical intermediaries, only hydrogen has a chance, mostly in salt caverns, but leakage is considerable, causing global warming, and efficiency very poor. Some will be built. Then we shall know the parameters.
Chapter 9. "Thermal energy storage for delayed electricity ETES" reports heating rocks then making steam for turbine generation of electricity has been a failure but 2024 research and the activity of several companies has led to one major installation using heat pumps in thermal storage and there is a wild card of white heat reconverted using photovoltaics. Thermal may be a niche grid/ minigrid storage opportunity.
For those wishing to enjoy this $250 billion opportunity, the essential handbook is Zhar Research report, "Escape from Batteries Creates Large New Markets milliWh-GWh: Forecasts in 40 lines, Technologies 2025-2045".
CAPTION: The energy storage decision tree with examples. Source, Zhar Research report, "Escape from Batteries Creates Large New Markets milliWh-GWh: Forecasts in 40 lines, Technologies 2025-2045".
Table of Contents
1. Executive summary and conclusions
1.1. Purpose and scope of this report
1.2. Methodology of this analysis
1.3. Battery current challenges and why alternatives are being adopted
1.3.1. General situation in electronics and electrical engineering
1.3.2. Battery challenges for 6G Communications and IoT and action arising 2025-2045
1.4. Battery-free options: eliminating storage or using alternative storage 2025-2045